CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: ipset: Fix race between namespace cleanup and gc in the list:set type
Lion Ackermann reported that there is a race condition between namespace cleanup
in ipset and the garbage collection of the list:set type. The namespace
cleanup can destroy the list:set type of sets while the gc of the set type is
waiting to run in rcu cleanup. The latter uses data from the destroyed set which
thus leads use after free. The patch contains the following parts:
- When destroying all sets, first remove the garbage collectors, then wait
if needed and then destroy the sets.
- Fix the badly ordered "wait then remove gc" for the destroy a single set
case.
- Fix the missing rcu locking in the list:set type in the userspace test
case.
- Use proper RCU list handlings in the list:set type.
The patch depends on c1193d9bbbd3 (netfilter: ipset: Add list flush to cancel_gc). |
In the Linux kernel, the following vulnerability has been resolved:
ionic: fix use after netif_napi_del()
When queues are started, netif_napi_add() and napi_enable() are called.
If there are 4 queues and only 3 queues are used for the current
configuration, only 3 queues' napi should be registered and enabled.
The ionic_qcq_enable() checks whether the .poll pointer is not NULL for
enabling only the using queue' napi. Unused queues' napi will not be
registered by netif_napi_add(), so the .poll pointer indicates NULL.
But it couldn't distinguish whether the napi was unregistered or not
because netif_napi_del() doesn't reset the .poll pointer to NULL.
So, ionic_qcq_enable() calls napi_enable() for the queue, which was
unregistered by netif_napi_del().
Reproducer:
ethtool -L <interface name> rx 1 tx 1 combined 0
ethtool -L <interface name> rx 0 tx 0 combined 1
ethtool -L <interface name> rx 0 tx 0 combined 4
Splat looks like:
kernel BUG at net/core/dev.c:6666!
Oops: invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
CPU: 3 PID: 1057 Comm: kworker/3:3 Not tainted 6.10.0-rc2+ #16
Workqueue: events ionic_lif_deferred_work [ionic]
RIP: 0010:napi_enable+0x3b/0x40
Code: 48 89 c2 48 83 e2 f6 80 b9 61 09 00 00 00 74 0d 48 83 bf 60 01 00 00 00 74 03 80 ce 01 f0 4f
RSP: 0018:ffffb6ed83227d48 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff97560cda0828 RCX: 0000000000000029
RDX: 0000000000000001 RSI: 0000000000000000 RDI: ffff97560cda0a28
RBP: ffffb6ed83227d50 R08: 0000000000000400 R09: 0000000000000001
R10: 0000000000000001 R11: 0000000000000001 R12: 0000000000000000
R13: ffff97560ce3c1a0 R14: 0000000000000000 R15: ffff975613ba0a20
FS: 0000000000000000(0000) GS:ffff975d5f780000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f8f734ee200 CR3: 0000000103e50000 CR4: 00000000007506f0
PKRU: 55555554
Call Trace:
<TASK>
? die+0x33/0x90
? do_trap+0xd9/0x100
? napi_enable+0x3b/0x40
? do_error_trap+0x83/0xb0
? napi_enable+0x3b/0x40
? napi_enable+0x3b/0x40
? exc_invalid_op+0x4e/0x70
? napi_enable+0x3b/0x40
? asm_exc_invalid_op+0x16/0x20
? napi_enable+0x3b/0x40
ionic_qcq_enable+0xb7/0x180 [ionic 59bdfc8a035436e1c4224ff7d10789e3f14643f8]
ionic_start_queues+0xc4/0x290 [ionic 59bdfc8a035436e1c4224ff7d10789e3f14643f8]
ionic_link_status_check+0x11c/0x170 [ionic 59bdfc8a035436e1c4224ff7d10789e3f14643f8]
ionic_lif_deferred_work+0x129/0x280 [ionic 59bdfc8a035436e1c4224ff7d10789e3f14643f8]
process_one_work+0x145/0x360
worker_thread+0x2bb/0x3d0
? __pfx_worker_thread+0x10/0x10
kthread+0xcc/0x100
? __pfx_kthread+0x10/0x10
ret_from_fork+0x2d/0x50
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30 |
In the Linux kernel, the following vulnerability has been resolved:
net: wwan: iosm: Fix tainted pointer delete is case of region creation fail
In case of region creation fail in ipc_devlink_create_region(), previously
created regions delete process starts from tainted pointer which actually
holds error code value.
Fix this bug by decreasing region index before delete.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
In the Linux kernel, the following vulnerability has been resolved:
cachefiles: flush all requests after setting CACHEFILES_DEAD
In ondemand mode, when the daemon is processing an open request, if the
kernel flags the cache as CACHEFILES_DEAD, the cachefiles_daemon_write()
will always return -EIO, so the daemon can't pass the copen to the kernel.
Then the kernel process that is waiting for the copen triggers a hung_task.
Since the DEAD state is irreversible, it can only be exited by closing
/dev/cachefiles. Therefore, after calling cachefiles_io_error() to mark
the cache as CACHEFILES_DEAD, if in ondemand mode, flush all requests to
avoid the above hungtask. We may still be able to read some of the cached
data before closing the fd of /dev/cachefiles.
Note that this relies on the patch that adds reference counting to the req,
otherwise it may UAF. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: check n_ssids before accessing the ssids
In some versions of cfg80211, the ssids poinet might be a valid one even
though n_ssids is 0. Accessing the pointer in this case will cuase an
out-of-bound access. Fix this by checking n_ssids first. |
In the Linux kernel, the following vulnerability has been resolved:
xhci: Handle TD clearing for multiple streams case
When multiple streams are in use, multiple TDs might be in flight when
an endpoint is stopped. We need to issue a Set TR Dequeue Pointer for
each, to ensure everything is reset properly and the caches cleared.
Change the logic so that any N>1 TDs found active for different streams
are deferred until after the first one is processed, calling
xhci_invalidate_cancelled_tds() again from xhci_handle_cmd_set_deq() to
queue another command until we are done with all of them. Also change
the error/"should never happen" paths to ensure we at least clear any
affected TDs, even if we can't issue a command to clear the hardware
cache, and complain loudly with an xhci_warn() if this ever happens.
This problem case dates back to commit e9df17eb1408 ("USB: xhci: Correct
assumptions about number of rings per endpoint.") early on in the XHCI
driver's life, when stream support was first added.
It was then identified but not fixed nor made into a warning in commit
674f8438c121 ("xhci: split handling halted endpoints into two steps"),
which added a FIXME comment for the problem case (without materially
changing the behavior as far as I can tell, though the new logic made
the problem more obvious).
Then later, in commit 94f339147fc3 ("xhci: Fix failure to give back some
cached cancelled URBs."), it was acknowledged again.
[Mathias: commit 94f339147fc3 ("xhci: Fix failure to give back some cached
cancelled URBs.") was a targeted regression fix to the previously mentioned
patch. Users reported issues with usb stuck after unmounting/disconnecting
UAS devices. This rolled back the TD clearing of multiple streams to its
original state.]
Apparently the commit author was aware of the problem (yet still chose
to submit it): It was still mentioned as a FIXME, an xhci_dbg() was
added to log the problem condition, and the remaining issue was mentioned
in the commit description. The choice of making the log type xhci_dbg()
for what is, at this point, a completely unhandled and known broken
condition is puzzling and unfortunate, as it guarantees that no actual
users would see the log in production, thereby making it nigh
undebuggable (indeed, even if you turn on DEBUG, the message doesn't
really hint at there being a problem at all).
It took me *months* of random xHC crashes to finally find a reliable
repro and be able to do a deep dive debug session, which could all have
been avoided had this unhandled, broken condition been actually reported
with a warning, as it should have been as a bug intentionally left in
unfixed (never mind that it shouldn't have been left in at all).
> Another fix to solve clearing the caches of all stream rings with
> cancelled TDs is needed, but not as urgent.
3 years after that statement and 14 years after the original bug was
introduced, I think it's finally time to fix it. And maybe next time
let's not leave bugs unfixed (that are actually worse than the original
bug), and let's actually get people to review kernel commits please.
Fixes xHC crashes and IOMMU faults with UAS devices when handling
errors/faults. Easiest repro is to use `hdparm` to mark an early sector
(e.g. 1024) on a disk as bad, then `cat /dev/sdX > /dev/null` in a loop.
At least in the case of JMicron controllers, the read errors end up
having to cancel two TDs (for two queued requests to different streams)
and the one that didn't get cleared properly ends up faulting the xHC
entirely when it tries to access DMA pages that have since been unmapped,
referred to by the stale TDs. This normally happens quickly (after two
or three loops). After this fix, I left the `cat` in a loop running
overnight and experienced no xHC failures, with all read errors
recovered properly. Repro'd and tested on an Apple M1 Mac Mini
(dwc3 host).
On systems without an IOMMU, this bug would instead silently corrupt
freed memory, making this a
---truncated--- |
Open5GS v2.7.5, prior to commit 67ba7f92bbd7a378954895d96d9d7b05d5b64615, is vulnerable to a NULL pointer dereference when a multipart/related HTTP POST request with an empty HTTP body is sent to the SBI of either AMF, AUSF, BSF, NRF, NSSF, PCF, SMF, UDM, or UDR, resulting in a denial of service. This occurs in the parse_multipart function in lib/sbi/message.c. |
A Cross-Site Request Forgery (CSRF) vulnerability exists in the ResetPasswordRequest operation of Zimbra Collaboration (ZCS) when the zimbraFeatureResetPasswordStatus attribute is enabled. An attacker can exploit this by tricking an authenticated user into visiting a malicious webpage that silently sends a crafted SOAP request to reset the user's password. The vulnerability stems from a lack of CSRF token validation on the endpoint, allowing password resets without the user's consent. |
An issue in Perplexity AI GPT-4 allows a remote attacker to obtain sensitive information via a GET parameter |
Ilevia EVE X1 Server version ≤ 4.7.18.0.eden contains a vulnerability in its server-side logging mechanism that allows unauthenticated remote attackers to retrieve plaintext credentials from exposed .log files. This flaw enables full authentication bypass and system compromise through credential reuse. |
A vulnerability was found in SourceCodester Online Exam Form Submission 1.0. This affects an unknown part of the file /index.php. The manipulation of the argument usn results in sql injection. The attack can be launched remotely. The exploit has been made public and could be used. |
A flaw has been found in SourceCodester Online Student File Management System 1.0. Affected by this vulnerability is an unknown functionality of the file /admin/delete_student.php. Executing manipulation of the argument stud_id can lead to sql injection. It is possible to launch the attack remotely. The exploit has been published and may be used. |
This vulnerability affects Firefox < 143 and Thunderbird < 143. |
Use of a One-Way Hash with a Predictable Salt vulnerability in ABB FLXEON.This issue affects FLXEON: through 9.3.5. and newer versions |
Use of Hard-coded Credentials vulnerability in ABB FLXEON.This issue affects FLXEON: through 9.3.5 and newer versions |
In the Linux kernel, the following vulnerability has been resolved:
tracing: Fix race issue between cpu buffer write and swap
Warning happened in rb_end_commit() at code:
if (RB_WARN_ON(cpu_buffer, !local_read(&cpu_buffer->committing)))
WARNING: CPU: 0 PID: 139 at kernel/trace/ring_buffer.c:3142
rb_commit+0x402/0x4a0
Call Trace:
ring_buffer_unlock_commit+0x42/0x250
trace_buffer_unlock_commit_regs+0x3b/0x250
trace_event_buffer_commit+0xe5/0x440
trace_event_buffer_reserve+0x11c/0x150
trace_event_raw_event_sched_switch+0x23c/0x2c0
__traceiter_sched_switch+0x59/0x80
__schedule+0x72b/0x1580
schedule+0x92/0x120
worker_thread+0xa0/0x6f0
It is because the race between writing event into cpu buffer and swapping
cpu buffer through file per_cpu/cpu0/snapshot:
Write on CPU 0 Swap buffer by per_cpu/cpu0/snapshot on CPU 1
-------- --------
tracing_snapshot_write()
[...]
ring_buffer_lock_reserve()
cpu_buffer = buffer->buffers[cpu]; // 1. Suppose find 'cpu_buffer_a';
[...]
rb_reserve_next_event()
[...]
ring_buffer_swap_cpu()
if (local_read(&cpu_buffer_a->committing))
goto out_dec;
if (local_read(&cpu_buffer_b->committing))
goto out_dec;
buffer_a->buffers[cpu] = cpu_buffer_b;
buffer_b->buffers[cpu] = cpu_buffer_a;
// 2. cpu_buffer has swapped here.
rb_start_commit(cpu_buffer);
if (unlikely(READ_ONCE(cpu_buffer->buffer)
!= buffer)) { // 3. This check passed due to 'cpu_buffer->buffer'
[...] // has not changed here.
return NULL;
}
cpu_buffer_b->buffer = buffer_a;
cpu_buffer_a->buffer = buffer_b;
[...]
// 4. Reserve event from 'cpu_buffer_a'.
ring_buffer_unlock_commit()
[...]
cpu_buffer = buffer->buffers[cpu]; // 5. Now find 'cpu_buffer_b' !!!
rb_commit(cpu_buffer)
rb_end_commit() // 6. WARN for the wrong 'committing' state !!!
Based on above analysis, we can easily reproduce by following testcase:
``` bash
#!/bin/bash
dmesg -n 7
sysctl -w kernel.panic_on_warn=1
TR=/sys/kernel/tracing
echo 7 > ${TR}/buffer_size_kb
echo "sched:sched_switch" > ${TR}/set_event
while [ true ]; do
echo 1 > ${TR}/per_cpu/cpu0/snapshot
done &
while [ true ]; do
echo 1 > ${TR}/per_cpu/cpu0/snapshot
done &
while [ true ]; do
echo 1 > ${TR}/per_cpu/cpu0/snapshot
done &
```
To fix it, IIUC, we can use smp_call_function_single() to do the swap on
the target cpu where the buffer is located, so that above race would be
avoided. |
In the Linux kernel, the following vulnerability has been resolved:
accel/habanalabs: fix mem leak in capture user mappings
This commit fixes a memory leak caused when clearing the user_mappings
info when a new context is opened immediately after user_mapping is
captured and a hard reset is performed. |
In the Linux kernel, the following vulnerability has been resolved:
block: be a bit more careful in checking for NULL bdev while polling
Wei reports a crash with an application using polled IO:
PGD 14265e067 P4D 14265e067 PUD 47ec50067 PMD 0
Oops: 0000 [#1] SMP
CPU: 0 PID: 21915 Comm: iocore_0 Kdump: loaded Tainted: G S 5.12.0-0_fbk12_clang_7346_g1bb6f2e7058f #1
Hardware name: Wiwynn Delta Lake MP T8/Delta Lake-Class2, BIOS Y3DLM08 04/10/2022
RIP: 0010:bio_poll+0x25/0x200
Code: 0f 1f 44 00 00 0f 1f 44 00 00 55 41 57 41 56 41 55 41 54 53 48 83 ec 28 65 48 8b 04 25 28 00 00 00 48 89 44 24 20 48 8b 47 08 <48> 8b 80 70 02 00 00 4c 8b 70 50 8b 6f 34 31 db 83 fd ff 75 25 65
RSP: 0018:ffffc90005fafdf8 EFLAGS: 00010292
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 74b43cd65dd66600
RDX: 0000000000000003 RSI: ffffc90005fafe78 RDI: ffff8884b614e140
RBP: ffff88849964df78 R08: 0000000000000000 R09: 0000000000000008
R10: 0000000000000000 R11: 0000000000000000 R12: ffff88849964df00
R13: ffffc90005fafe78 R14: ffff888137d3c378 R15: 0000000000000001
FS: 00007fd195000640(0000) GS:ffff88903f400000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000270 CR3: 0000000466121001 CR4: 00000000007706f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
iocb_bio_iopoll+0x1d/0x30
io_do_iopoll+0xac/0x250
__se_sys_io_uring_enter+0x3c5/0x5a0
? __x64_sys_write+0x89/0xd0
do_syscall_64+0x2d/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x94f225d
Code: 24 cc 00 00 00 41 8b 84 24 d0 00 00 00 c1 e0 04 83 e0 10 41 09 c2 8b 33 8b 53 04 4c 8b 43 18 4c 63 4b 0c b8 aa 01 00 00 0f 05 <85> c0 0f 88 85 00 00 00 29 03 45 84 f6 0f 84 88 00 00 00 41 f6 c7
RSP: 002b:00007fd194ffcd88 EFLAGS: 00000202 ORIG_RAX: 00000000000001aa
RAX: ffffffffffffffda RBX: 00007fd194ffcdc0 RCX: 00000000094f225d
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000007
RBP: 00007fd194ffcdb0 R08: 0000000000000000 R09: 0000000000000008
R10: 0000000000000001 R11: 0000000000000202 R12: 00007fd269d68030
R13: 0000000000000000 R14: 0000000000000001 R15: 0000000000000000
which is due to bio->bi_bdev being NULL. This can happen if we have two
tasks doing polled IO, and task B ends up completing IO from task A if
they are sharing a poll queue. If task B completes the IO and puts the
bio into our cache, then it can allocate that bio again before task A
is done polling for it. As that would necessitate a preempt between the
two tasks, it's enough to just be a bit more careful in checking for
whether or not bio->bi_bdev is NULL. |
In the Linux kernel, the following vulnerability has been resolved:
ip6mr: Fix skb_under_panic in ip6mr_cache_report()
skbuff: skb_under_panic: text:ffffffff88771f69 len:56 put:-4
head:ffff88805f86a800 data:ffff887f5f86a850 tail:0x88 end:0x2c0 dev:pim6reg
------------[ cut here ]------------
kernel BUG at net/core/skbuff.c:192!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 2 PID: 22968 Comm: kworker/2:11 Not tainted 6.5.0-rc3-00044-g0a8db05b571a #236
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
Workqueue: ipv6_addrconf addrconf_dad_work
RIP: 0010:skb_panic+0x152/0x1d0
Call Trace:
<TASK>
skb_push+0xc4/0xe0
ip6mr_cache_report+0xd69/0x19b0
reg_vif_xmit+0x406/0x690
dev_hard_start_xmit+0x17e/0x6e0
__dev_queue_xmit+0x2d6a/0x3d20
vlan_dev_hard_start_xmit+0x3ab/0x5c0
dev_hard_start_xmit+0x17e/0x6e0
__dev_queue_xmit+0x2d6a/0x3d20
neigh_connected_output+0x3ed/0x570
ip6_finish_output2+0x5b5/0x1950
ip6_finish_output+0x693/0x11c0
ip6_output+0x24b/0x880
NF_HOOK.constprop.0+0xfd/0x530
ndisc_send_skb+0x9db/0x1400
ndisc_send_rs+0x12a/0x6c0
addrconf_dad_completed+0x3c9/0xea0
addrconf_dad_work+0x849/0x1420
process_one_work+0xa22/0x16e0
worker_thread+0x679/0x10c0
ret_from_fork+0x28/0x60
ret_from_fork_asm+0x11/0x20
When setup a vlan device on dev pim6reg, DAD ns packet may sent on reg_vif_xmit().
reg_vif_xmit()
ip6mr_cache_report()
skb_push(skb, -skb_network_offset(pkt));//skb_network_offset(pkt) is 4
And skb_push declared as:
void *skb_push(struct sk_buff *skb, unsigned int len);
skb->data -= len;
//0xffff88805f86a84c - 0xfffffffc = 0xffff887f5f86a850
skb->data is set to 0xffff887f5f86a850, which is invalid mem addr, lead to skb_push() fails. |
In the Linux kernel, the following vulnerability has been resolved:
regulator: da9063: better fix null deref with partial DT
Two versions of the original patch were sent but V1 was merged instead
of V2 due to a mistake.
So update to V2.
The advantage of V2 is that it completely avoids dereferencing the pointer,
even just to take the address, which may fix problems with some compilers.
Both versions work on my gcc 9.4 but use the safer one. |