| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: cs_dsp: Return error if block header overflows file
Return an error from cs_dsp_power_up() if a block header is longer
than the amount of data left in the file.
The previous code in cs_dsp_load() and cs_dsp_load_coeff() would loop
while there was enough data left in the file for a valid region. This
protected against overrunning the end of the file data, but it didn't
abort the file processing with an error. |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: cs_dsp: Validate payload length before processing block
Move the payload length check in cs_dsp_load() and cs_dsp_coeff_load()
to be done before the block is processed.
The check that the length of a block payload does not exceed the number
of remaining bytes in the firwmware file buffer was being done near the
end of the loop iteration. However, some code before that check used the
length field without validating it. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Using uninitialized value *size when calling amdgpu_vce_cs_reloc
Initialize the size before calling amdgpu_vce_cs_reloc, such as case 0x03000001.
V2: To really improve the handling we would actually
need to have a separate value of 0xffffffff.(Christian) |
| In the Linux kernel, the following vulnerability has been resolved:
tcp_metrics: validate source addr length
I don't see anything checking that TCP_METRICS_ATTR_SADDR_IPV4
is at least 4 bytes long, and the policy doesn't have an entry
for this attribute at all (neither does it for IPv6 but v6 is
manually validated). |
| In the Linux kernel, the following vulnerability has been resolved:
nvmet: fix a possible leak when destroy a ctrl during qp establishment
In nvmet_sq_destroy we capture sq->ctrl early and if it is non-NULL we
know that a ctrl was allocated (in the admin connect request handler)
and we need to release pending AERs, clear ctrl->sqs and sq->ctrl
(for nvme-loop primarily), and drop the final reference on the ctrl.
However, a small window is possible where nvmet_sq_destroy starts (as
a result of the client giving up and disconnecting) concurrently with
the nvme admin connect cmd (which may be in an early stage). But *before*
kill_and_confirm of sq->ref (i.e. the admin connect managed to get an sq
live reference). In this case, sq->ctrl was allocated however after it was
captured in a local variable in nvmet_sq_destroy.
This prevented the final reference drop on the ctrl.
Solve this by re-capturing the sq->ctrl after all inflight request has
completed, where for sure sq->ctrl reference is final, and move forward
based on that.
This issue was observed in an environment with many hosts connecting
multiple ctrls simoutanuosly, creating a delay in allocating a ctrl
leading up to this race window. |
| In the Linux kernel, the following vulnerability has been resolved:
mm: avoid overflows in dirty throttling logic
The dirty throttling logic is interspersed with assumptions that dirty
limits in PAGE_SIZE units fit into 32-bit (so that various multiplications
fit into 64-bits). If limits end up being larger, we will hit overflows,
possible divisions by 0 etc. Fix these problems by never allowing so
large dirty limits as they have dubious practical value anyway. For
dirty_bytes / dirty_background_bytes interfaces we can just refuse to set
so large limits. For dirty_ratio / dirty_background_ratio it isn't so
simple as the dirty limit is computed from the amount of available memory
which can change due to memory hotplug etc. So when converting dirty
limits from ratios to numbers of pages, we just don't allow the result to
exceed UINT_MAX.
This is root-only triggerable problem which occurs when the operator
sets dirty limits to >16 TB. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: qedf: Make qedf_execute_tmf() non-preemptible
Stop calling smp_processor_id() from preemptible code in
qedf_execute_tmf90. This results in BUG_ON() when running an RT kernel.
[ 659.343280] BUG: using smp_processor_id() in preemptible [00000000] code: sg_reset/3646
[ 659.343282] caller is qedf_execute_tmf+0x8b/0x360 [qedf] |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: restrict NL80211_ATTR_TXQ_QUANTUM values
syzbot is able to trigger softlockups, setting NL80211_ATTR_TXQ_QUANTUM
to 2^31.
We had a similar issue in sch_fq, fixed with commit
d9e15a273306 ("pkt_sched: fq: do not accept silly TCA_FQ_QUANTUM")
watchdog: BUG: soft lockup - CPU#1 stuck for 26s! [kworker/1:0:24]
Modules linked in:
irq event stamp: 131135
hardirqs last enabled at (131134): [<ffff80008ae8778c>] __exit_to_kernel_mode arch/arm64/kernel/entry-common.c:85 [inline]
hardirqs last enabled at (131134): [<ffff80008ae8778c>] exit_to_kernel_mode+0xdc/0x10c arch/arm64/kernel/entry-common.c:95
hardirqs last disabled at (131135): [<ffff80008ae85378>] __el1_irq arch/arm64/kernel/entry-common.c:533 [inline]
hardirqs last disabled at (131135): [<ffff80008ae85378>] el1_interrupt+0x24/0x68 arch/arm64/kernel/entry-common.c:551
softirqs last enabled at (125892): [<ffff80008907e82c>] neigh_hh_init net/core/neighbour.c:1538 [inline]
softirqs last enabled at (125892): [<ffff80008907e82c>] neigh_resolve_output+0x268/0x658 net/core/neighbour.c:1553
softirqs last disabled at (125896): [<ffff80008904166c>] local_bh_disable+0x10/0x34 include/linux/bottom_half.h:19
CPU: 1 PID: 24 Comm: kworker/1:0 Not tainted 6.9.0-rc7-syzkaller-gfda5695d692c #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024
Workqueue: mld mld_ifc_work
pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : __list_del include/linux/list.h:195 [inline]
pc : __list_del_entry include/linux/list.h:218 [inline]
pc : list_move_tail include/linux/list.h:310 [inline]
pc : fq_tin_dequeue include/net/fq_impl.h:112 [inline]
pc : ieee80211_tx_dequeue+0x6b8/0x3b4c net/mac80211/tx.c:3854
lr : __list_del_entry include/linux/list.h:218 [inline]
lr : list_move_tail include/linux/list.h:310 [inline]
lr : fq_tin_dequeue include/net/fq_impl.h:112 [inline]
lr : ieee80211_tx_dequeue+0x67c/0x3b4c net/mac80211/tx.c:3854
sp : ffff800093d36700
x29: ffff800093d36a60 x28: ffff800093d36960 x27: dfff800000000000
x26: ffff0000d800ad50 x25: ffff0000d800abe0 x24: ffff0000d800abf0
x23: ffff0000e0032468 x22: ffff0000e00324d4 x21: ffff0000d800abf0
x20: ffff0000d800abf8 x19: ffff0000d800abf0 x18: ffff800093d363c0
x17: 000000000000d476 x16: ffff8000805519dc x15: ffff7000127a6cc8
x14: 1ffff000127a6cc8 x13: 0000000000000004 x12: ffffffffffffffff
x11: ffff7000127a6cc8 x10: 0000000000ff0100 x9 : 0000000000000000
x8 : 0000000000000000 x7 : 0000000000000000 x6 : 0000000000000000
x5 : ffff80009287aa08 x4 : 0000000000000008 x3 : ffff80008034c7fc
x2 : ffff0000e0032468 x1 : 00000000da0e46b8 x0 : ffff0000e0032470
Call trace:
__list_del include/linux/list.h:195 [inline]
__list_del_entry include/linux/list.h:218 [inline]
list_move_tail include/linux/list.h:310 [inline]
fq_tin_dequeue include/net/fq_impl.h:112 [inline]
ieee80211_tx_dequeue+0x6b8/0x3b4c net/mac80211/tx.c:3854
wake_tx_push_queue net/mac80211/util.c:294 [inline]
ieee80211_handle_wake_tx_queue+0x118/0x274 net/mac80211/util.c:315
drv_wake_tx_queue net/mac80211/driver-ops.h:1350 [inline]
schedule_and_wake_txq net/mac80211/driver-ops.h:1357 [inline]
ieee80211_queue_skb+0x18e8/0x2244 net/mac80211/tx.c:1664
ieee80211_tx+0x260/0x400 net/mac80211/tx.c:1966
ieee80211_xmit+0x278/0x354 net/mac80211/tx.c:2062
__ieee80211_subif_start_xmit+0xab8/0x122c net/mac80211/tx.c:4338
ieee80211_subif_start_xmit+0xe0/0x438 net/mac80211/tx.c:4532
__netdev_start_xmit include/linux/netdevice.h:4903 [inline]
netdev_start_xmit include/linux/netdevice.h:4917 [inline]
xmit_one net/core/dev.c:3531 [inline]
dev_hard_start_xmit+0x27c/0x938 net/core/dev.c:3547
__dev_queue_xmit+0x1678/0x33fc net/core/dev.c:4341
dev_queue_xmit include/linux/netdevice.h:3091 [inline]
neigh_resolve_output+0x558/0x658 net/core/neighbour.c:1563
neigh_output include/net/neighbour.h:542 [inline]
ip6_fini
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "mm/writeback: fix possible divide-by-zero in wb_dirty_limits(), again"
Patch series "mm: Avoid possible overflows in dirty throttling".
Dirty throttling logic assumes dirty limits in page units fit into
32-bits. This patch series makes sure this is true (see patch 2/2 for
more details).
This patch (of 2):
This reverts commit 9319b647902cbd5cc884ac08a8a6d54ce111fc78.
The commit is broken in several ways. Firstly, the removed (u64) cast
from the multiplication will introduce a multiplication overflow on 32-bit
archs if wb_thresh * bg_thresh >= 1<<32 (which is actually common - the
default settings with 4GB of RAM will trigger this). Secondly, the
div64_u64() is unnecessarily expensive on 32-bit archs. We have
div64_ul() in case we want to be safe & cheap. Thirdly, if dirty
thresholds are larger than 1<<32 pages, then dirty balancing is going to
blow up in many other spectacular ways anyway so trying to fix one
possible overflow is just moot. |
| In the Linux kernel, the following vulnerability has been resolved:
pinctrl: fix deadlock in create_pinctrl() when handling -EPROBE_DEFER
In create_pinctrl(), pinctrl_maps_mutex is acquired before calling
add_setting(). If add_setting() returns -EPROBE_DEFER, create_pinctrl()
calls pinctrl_free(). However, pinctrl_free() attempts to acquire
pinctrl_maps_mutex, which is already held by create_pinctrl(), leading to
a potential deadlock.
This patch resolves the issue by releasing pinctrl_maps_mutex before
calling pinctrl_free(), preventing the deadlock.
This bug was discovered and resolved using Coverity Static Analysis
Security Testing (SAST) by Synopsys, Inc. |
| In the Linux kernel, the following vulnerability has been resolved:
ftruncate: pass a signed offset
The old ftruncate() syscall, using the 32-bit off_t misses a sign
extension when called in compat mode on 64-bit architectures. As a
result, passing a negative length accidentally succeeds in truncating
to file size between 2GiB and 4GiB.
Changing the type of the compat syscall to the signed compat_off_t
changes the behavior so it instead returns -EINVAL.
The native entry point, the truncate() syscall and the corresponding
loff_t based variants are all correct already and do not suffer
from this mistake. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: fully validate NFT_DATA_VALUE on store to data registers
register store validation for NFT_DATA_VALUE is conditional, however,
the datatype is always either NFT_DATA_VALUE or NFT_DATA_VERDICT. This
only requires a new helper function to infer the register type from the
set datatype so this conditional check can be removed. Otherwise,
pointer to chain object can be leaked through the registers. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: atm: cxacru: fix endpoint checking in cxacru_bind()
Syzbot is still reporting quite an old issue [1] that occurs due to
incomplete checking of present usb endpoints. As such, wrong
endpoints types may be used at urb sumbitting stage which in turn
triggers a warning in usb_submit_urb().
Fix the issue by verifying that required endpoint types are present
for both in and out endpoints, taking into account cmd endpoint type.
Unfortunately, this patch has not been tested on real hardware.
[1] Syzbot report:
usb 1-1: BOGUS urb xfer, pipe 1 != type 3
WARNING: CPU: 0 PID: 8667 at drivers/usb/core/urb.c:502 usb_submit_urb+0xed2/0x18a0 drivers/usb/core/urb.c:502
Modules linked in:
CPU: 0 PID: 8667 Comm: kworker/0:4 Not tainted 5.14.0-rc4-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Workqueue: usb_hub_wq hub_event
RIP: 0010:usb_submit_urb+0xed2/0x18a0 drivers/usb/core/urb.c:502
...
Call Trace:
cxacru_cm+0x3c0/0x8e0 drivers/usb/atm/cxacru.c:649
cxacru_card_status+0x22/0xd0 drivers/usb/atm/cxacru.c:760
cxacru_bind+0x7ac/0x11a0 drivers/usb/atm/cxacru.c:1209
usbatm_usb_probe+0x321/0x1ae0 drivers/usb/atm/usbatm.c:1055
cxacru_usb_probe+0xdf/0x1e0 drivers/usb/atm/cxacru.c:1363
usb_probe_interface+0x315/0x7f0 drivers/usb/core/driver.c:396
call_driver_probe drivers/base/dd.c:517 [inline]
really_probe+0x23c/0xcd0 drivers/base/dd.c:595
__driver_probe_device+0x338/0x4d0 drivers/base/dd.c:747
driver_probe_device+0x4c/0x1a0 drivers/base/dd.c:777
__device_attach_driver+0x20b/0x2f0 drivers/base/dd.c:894
bus_for_each_drv+0x15f/0x1e0 drivers/base/bus.c:427
__device_attach+0x228/0x4a0 drivers/base/dd.c:965
bus_probe_device+0x1e4/0x290 drivers/base/bus.c:487
device_add+0xc2f/0x2180 drivers/base/core.c:3354
usb_set_configuration+0x113a/0x1910 drivers/usb/core/message.c:2170
usb_generic_driver_probe+0xba/0x100 drivers/usb/core/generic.c:238
usb_probe_device+0xd9/0x2c0 drivers/usb/core/driver.c:293 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: avoid using null object of framebuffer
Instead of using state->fb->obj[0] directly, get object from framebuffer
by calling drm_gem_fb_get_obj() and return error code when object is
null to avoid using null object of framebuffer. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915/gt: Fix potential UAF by revoke of fence registers
CI has been sporadically reporting the following issue triggered by
igt@i915_selftest@live@hangcheck on ADL-P and similar machines:
<6> [414.049203] i915: Running intel_hangcheck_live_selftests/igt_reset_evict_fence
...
<6> [414.068804] i915 0000:00:02.0: [drm] GT0: GUC: submission enabled
<6> [414.068812] i915 0000:00:02.0: [drm] GT0: GUC: SLPC enabled
<3> [414.070354] Unable to pin Y-tiled fence; err:-4
<3> [414.071282] i915_vma_revoke_fence:301 GEM_BUG_ON(!i915_active_is_idle(&fence->active))
...
<4>[ 609.603992] ------------[ cut here ]------------
<2>[ 609.603995] kernel BUG at drivers/gpu/drm/i915/gt/intel_ggtt_fencing.c:301!
<4>[ 609.604003] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
<4>[ 609.604006] CPU: 0 PID: 268 Comm: kworker/u64:3 Tainted: G U W 6.9.0-CI_DRM_14785-g1ba62f8cea9c+ #1
<4>[ 609.604008] Hardware name: Intel Corporation Alder Lake Client Platform/AlderLake-P DDR4 RVP, BIOS RPLPFWI1.R00.4035.A00.2301200723 01/20/2023
<4>[ 609.604010] Workqueue: i915 __i915_gem_free_work [i915]
<4>[ 609.604149] RIP: 0010:i915_vma_revoke_fence+0x187/0x1f0 [i915]
...
<4>[ 609.604271] Call Trace:
<4>[ 609.604273] <TASK>
...
<4>[ 609.604716] __i915_vma_evict+0x2e9/0x550 [i915]
<4>[ 609.604852] __i915_vma_unbind+0x7c/0x160 [i915]
<4>[ 609.604977] force_unbind+0x24/0xa0 [i915]
<4>[ 609.605098] i915_vma_destroy+0x2f/0xa0 [i915]
<4>[ 609.605210] __i915_gem_object_pages_fini+0x51/0x2f0 [i915]
<4>[ 609.605330] __i915_gem_free_objects.isra.0+0x6a/0xc0 [i915]
<4>[ 609.605440] process_scheduled_works+0x351/0x690
...
In the past, there were similar failures reported by CI from other IGT
tests, observed on other platforms.
Before commit 63baf4f3d587 ("drm/i915/gt: Only wait for GPU activity
before unbinding a GGTT fence"), i915_vma_revoke_fence() was waiting for
idleness of vma->active via fence_update(). That commit introduced
vma->fence->active in order for the fence_update() to be able to wait
selectively on that one instead of vma->active since only idleness of
fence registers was needed. But then, another commit 0d86ee35097a
("drm/i915/gt: Make fence revocation unequivocal") replaced the call to
fence_update() in i915_vma_revoke_fence() with only fence_write(), and
also added that GEM_BUG_ON(!i915_active_is_idle(&fence->active)) in front.
No justification was provided on why we might then expect idleness of
vma->fence->active without first waiting on it.
The issue can be potentially caused by a race among revocation of fence
registers on one side and sequential execution of signal callbacks invoked
on completion of a request that was using them on the other, still
processed in parallel to revocation of those fence registers. Fix it by
waiting for idleness of vma->fence->active in i915_vma_revoke_fence().
(cherry picked from commit 24bb052d3dd499c5956abad5f7d8e4fd07da7fb1) |
| In the Linux kernel, the following vulnerability has been resolved:
tun: add missing verification for short frame
The cited commit missed to check against the validity of the frame length
in the tun_xdp_one() path, which could cause a corrupted skb to be sent
downstack. Even before the skb is transmitted, the
tun_xdp_one-->eth_type_trans() may access the Ethernet header although it
can be less than ETH_HLEN. Once transmitted, this could either cause
out-of-bound access beyond the actual length, or confuse the underlayer
with incorrect or inconsistent header length in the skb metadata.
In the alternative path, tun_get_user() already prohibits short frame which
has the length less than Ethernet header size from being transmitted for
IFF_TAP.
This is to drop any frame shorter than the Ethernet header size just like
how tun_get_user() does.
CVE: CVE-2024-41091 |
| In the Linux kernel, the following vulnerability has been resolved:
tap: add missing verification for short frame
The cited commit missed to check against the validity of the frame length
in the tap_get_user_xdp() path, which could cause a corrupted skb to be
sent downstack. Even before the skb is transmitted, the
tap_get_user_xdp()-->skb_set_network_header() may assume the size is more
than ETH_HLEN. Once transmitted, this could either cause out-of-bound
access beyond the actual length, or confuse the underlayer with incorrect
or inconsistent header length in the skb metadata.
In the alternative path, tap_get_user() already prohibits short frame which
has the length less than Ethernet header size from being transmitted.
This is to drop any frame shorter than the Ethernet header size just like
how tap_get_user() does.
CVE: CVE-2024-41090 |
| In the Linux kernel, the following vulnerability has been resolved:
NFSv4: Fix memory leak in nfs4_set_security_label
We leak nfs_fattr and nfs4_label every time we set a security xattr. |
| In the Linux kernel, the following vulnerability has been resolved:
ibmvnic: Add tx check to prevent skb leak
Below is a summary of how the driver stores a reference to an skb during
transmit:
tx_buff[free_map[consumer_index]]->skb = new_skb;
free_map[consumer_index] = IBMVNIC_INVALID_MAP;
consumer_index ++;
Where variable data looks like this:
free_map == [4, IBMVNIC_INVALID_MAP, IBMVNIC_INVALID_MAP, 0, 3]
consumer_index^
tx_buff == [skb=null, skb=<ptr>, skb=<ptr>, skb=null, skb=null]
The driver has checks to ensure that free_map[consumer_index] pointed to
a valid index but there was no check to ensure that this index pointed
to an unused/null skb address. So, if, by some chance, our free_map and
tx_buff lists become out of sync then we were previously risking an
skb memory leak. This could then cause tcp congestion control to stop
sending packets, eventually leading to ETIMEDOUT.
Therefore, add a conditional to ensure that the skb address is null. If
not then warn the user (because this is still a bug that should be
patched) and free the old pointer to prevent memleak/tcp problems. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/eeh: avoid possible crash when edev->pdev changes
If a PCI device is removed during eeh_pe_report_edev(), edev->pdev
will change and can cause a crash, hold the PCI rescan/remove lock
while taking a copy of edev->pdev->bus. |