CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
HID: apple: validate feature-report field count to prevent NULL pointer dereference
A malicious HID device with quirk APPLE_MAGIC_BACKLIGHT can trigger a NULL
pointer dereference whilst the power feature-report is toggled and sent to
the device in apple_magic_backlight_report_set(). The power feature-report
is expected to have two data fields, but if the descriptor declares one
field then accessing field[1] and dereferencing it in
apple_magic_backlight_report_set() becomes invalid
since field[1] will be NULL.
An example of a minimal descriptor which can cause the crash is something
like the following where the report with ID 3 (power report) only
references a single 1-byte field. When hid core parses the descriptor it
will encounter the final feature tag, allocate a hid_report (all members
of field[] will be zeroed out), create field structure and populate it,
increasing the maxfield to 1. The subsequent field[1] access and
dereference causes the crash.
Usage Page (Vendor Defined 0xFF00)
Usage (0x0F)
Collection (Application)
Report ID (1)
Usage (0x01)
Logical Minimum (0)
Logical Maximum (255)
Report Size (8)
Report Count (1)
Feature (Data,Var,Abs)
Usage (0x02)
Logical Maximum (32767)
Report Size (16)
Report Count (1)
Feature (Data,Var,Abs)
Report ID (3)
Usage (0x03)
Logical Minimum (0)
Logical Maximum (1)
Report Size (8)
Report Count (1)
Feature (Data,Var,Abs)
End Collection
Here we see the KASAN splat when the kernel dereferences the
NULL pointer and crashes:
[ 15.164723] Oops: general protection fault, probably for non-canonical address 0xdffffc0000000006: 0000 [#1] SMP KASAN NOPTI
[ 15.165691] KASAN: null-ptr-deref in range [0x0000000000000030-0x0000000000000037]
[ 15.165691] CPU: 0 UID: 0 PID: 10 Comm: kworker/0:1 Not tainted 6.15.0 #31 PREEMPT(voluntary)
[ 15.165691] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
[ 15.165691] RIP: 0010:apple_magic_backlight_report_set+0xbf/0x210
[ 15.165691] Call Trace:
[ 15.165691] <TASK>
[ 15.165691] apple_probe+0x571/0xa20
[ 15.165691] hid_device_probe+0x2e2/0x6f0
[ 15.165691] really_probe+0x1ca/0x5c0
[ 15.165691] __driver_probe_device+0x24f/0x310
[ 15.165691] driver_probe_device+0x4a/0xd0
[ 15.165691] __device_attach_driver+0x169/0x220
[ 15.165691] bus_for_each_drv+0x118/0x1b0
[ 15.165691] __device_attach+0x1d5/0x380
[ 15.165691] device_initial_probe+0x12/0x20
[ 15.165691] bus_probe_device+0x13d/0x180
[ 15.165691] device_add+0xd87/0x1510
[...]
To fix this issue we should validate the number of fields that the
backlight and power reports have and if they do not have the required
number of fields then bail. |
In the Linux kernel, the following vulnerability has been resolved:
mm: fix a UAF when vma->mm is freed after vma->vm_refcnt got dropped
By inducing delays in the right places, Jann Horn created a reproducer for
a hard to hit UAF issue that became possible after VMAs were allowed to be
recycled by adding SLAB_TYPESAFE_BY_RCU to their cache.
Race description is borrowed from Jann's discovery report:
lock_vma_under_rcu() looks up a VMA locklessly with mas_walk() under
rcu_read_lock(). At that point, the VMA may be concurrently freed, and it
can be recycled by another process. vma_start_read() then increments the
vma->vm_refcnt (if it is in an acceptable range), and if this succeeds,
vma_start_read() can return a recycled VMA.
In this scenario where the VMA has been recycled, lock_vma_under_rcu()
will then detect the mismatching ->vm_mm pointer and drop the VMA through
vma_end_read(), which calls vma_refcount_put(). vma_refcount_put() drops
the refcount and then calls rcuwait_wake_up() using a copy of vma->vm_mm.
This is wrong: It implicitly assumes that the caller is keeping the VMA's
mm alive, but in this scenario the caller has no relation to the VMA's mm,
so the rcuwait_wake_up() can cause UAF.
The diagram depicting the race:
T1 T2 T3
== == ==
lock_vma_under_rcu
mas_walk
<VMA gets removed from mm>
mmap
<the same VMA is reallocated>
vma_start_read
__refcount_inc_not_zero_limited_acquire
munmap
__vma_enter_locked
refcount_add_not_zero
vma_end_read
vma_refcount_put
__refcount_dec_and_test
rcuwait_wait_event
<finish operation>
rcuwait_wake_up [UAF]
Note that rcuwait_wait_event() in T3 does not block because refcount was
already dropped by T1. At this point T3 can exit and free the mm causing
UAF in T1.
To avoid this we move vma->vm_mm verification into vma_start_read() and
grab vma->vm_mm to stabilize it before vma_refcount_put() operation.
[surenb@google.com: v3] |
In the Linux kernel, the following vulnerability has been resolved:
perf/core: Handle buffer mapping fail correctly in perf_mmap()
After successful allocation of a buffer or a successful attachment to an
existing buffer perf_mmap() tries to map the buffer read only into the page
table. If that fails, the already set up page table entries are zapped, but
the other perf specific side effects of that failure are not handled. The
calling code just cleans up the VMA and does not invoke perf_mmap_close().
This leaks reference counts, corrupts user->vm accounting and also results
in an unbalanced invocation of event::event_mapped().
Cure this by moving the event::event_mapped() invocation before the
map_range() call so that on map_range() failure perf_mmap_close() can be
invoked without causing an unbalanced event::event_unmapped() call.
perf_mmap_close() undoes the reference counts and eventually frees buffers. |
In the Linux kernel, the following vulnerability has been resolved:
net/sched: mqprio: fix stack out-of-bounds write in tc entry parsing
TCA_MQPRIO_TC_ENTRY_INDEX is validated using
NLA_POLICY_MAX(NLA_U32, TC_QOPT_MAX_QUEUE), which allows the value
TC_QOPT_MAX_QUEUE (16). This leads to a 4-byte out-of-bounds stack
write in the fp[] array, which only has room for 16 elements (0–15).
Fix this by changing the policy to allow only up to TC_QOPT_MAX_QUEUE - 1. |
In the Linux kernel, the following vulnerability has been resolved:
iommu/vt-d: Fix UAF on sva unbind with pending IOPFs
Commit 17fce9d2336d ("iommu/vt-d: Put iopf enablement in domain attach
path") disables IOPF on device by removing the device from its IOMMU's
IOPF queue when the last IOPF-capable domain is detached from the device.
Unfortunately, it did this in a wrong place where there are still pending
IOPFs. As a result, a use-after-free error is potentially triggered and
eventually a kernel panic with a kernel trace similar to the following:
refcount_t: underflow; use-after-free.
WARNING: CPU: 3 PID: 313 at lib/refcount.c:28 refcount_warn_saturate+0xd8/0xe0
Workqueue: iopf_queue/dmar0-iopfq iommu_sva_handle_iopf
Call Trace:
<TASK>
iopf_free_group+0xe/0x20
process_one_work+0x197/0x3d0
worker_thread+0x23a/0x350
? rescuer_thread+0x4a0/0x4a0
kthread+0xf8/0x230
? finish_task_switch.isra.0+0x81/0x260
? kthreads_online_cpu+0x110/0x110
? kthreads_online_cpu+0x110/0x110
ret_from_fork+0x13b/0x170
? kthreads_online_cpu+0x110/0x110
ret_from_fork_asm+0x11/0x20
</TASK>
---[ end trace 0000000000000000 ]---
The intel_pasid_tear_down_entry() function is responsible for blocking
hardware from generating new page faults and flushing all in-flight
ones. Therefore, moving iopf_for_domain_remove() after this function
should resolve this. |
In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: uvc: Initialize frame-based format color matching descriptor
Fix NULL pointer crash in uvcg_framebased_make due to uninitialized color
matching descriptor for frame-based format which was added in
commit f5e7bdd34aca ("usb: gadget: uvc: Allow creating new color matching
descriptors") that added handling for uncompressed and mjpeg format.
Crash is seen when userspace configuration (via configfs) does not
explicitly define the color matching descriptor. If color_matching is not
found, config_group_find_item() returns NULL. The code then jumps to
out_put_cm, where it calls config_item_put(color_matching);. If
color_matching is NULL, this will dereference a null pointer, leading to a
crash.
[ 2.746440] Unable to handle kernel NULL pointer dereference at virtual address 000000000000008c
[ 2.756273] Mem abort info:
[ 2.760080] ESR = 0x0000000096000005
[ 2.764872] EC = 0x25: DABT (current EL), IL = 32 bits
[ 2.771068] SET = 0, FnV = 0
[ 2.771069] EA = 0, S1PTW = 0
[ 2.771070] FSC = 0x05: level 1 translation fault
[ 2.771071] Data abort info:
[ 2.771072] ISV = 0, ISS = 0x00000005, ISS2 = 0x00000000
[ 2.771073] CM = 0, WnR = 0, TnD = 0, TagAccess = 0
[ 2.771074] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[ 2.771075] user pgtable: 4k pages, 39-bit VAs, pgdp=00000000a3e59000
[ 2.771077] [000000000000008c] pgd=0000000000000000, p4d=0000000000000000, pud=0000000000000000
[ 2.771081] Internal error: Oops: 0000000096000005 [#1] PREEMPT SMP
[ 2.771084] Dumping ftrace buffer:
[ 2.771085] (ftrace buffer empty)
[ 2.771138] CPU: 7 PID: 486 Comm: ln Tainted: G W E 6.6.58-android15
[ 2.771139] Hardware name: Qualcomm Technologies, Inc. SunP QRD HDK (DT)
[ 2.771140] pstate: 61400005 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--)
[ 2.771141] pc : __uvcg_fill_strm+0x198/0x2cc
[ 2.771145] lr : __uvcg_iter_strm_cls+0xc8/0x17c
[ 2.771146] sp : ffffffc08140bbb0
[ 2.771146] x29: ffffffc08140bbb0 x28: ffffff803bc81380 x27: ffffff8023bbd250
[ 2.771147] x26: ffffff8023bbd250 x25: ffffff803c361348 x24: ffffff803d8e6768
[ 2.771148] x23: 0000000000000004 x22: 0000000000000003 x21: ffffffc08140bc48
[ 2.771149] x20: 0000000000000000 x19: ffffffc08140bc48 x18: ffffffe9f8cf4a00
[ 2.771150] x17: 000000001bf64ec3 x16: 000000001bf64ec3 x15: ffffff8023bbd250
[ 2.771151] x14: 000000000000000f x13: 004c4b40000f4240 x12: 000a2c2a00051615
[ 2.771152] x11: 000000000000004f x10: ffffffe9f76b40ec x9 : ffffffe9f7e389d0
[ 2.771153] x8 : ffffff803d0d31ce x7 : 000f4240000a2c2a x6 : 0005161500028b0a
[ 2.771154] x5 : ffffff803d0d31ce x4 : 0000000000000003 x3 : 0000000000000000
[ 2.771155] x2 : ffffffc08140bc50 x1 : ffffffc08140bc48 x0 : 0000000000000000
[ 2.771156] Call trace:
[ 2.771157] __uvcg_fill_strm+0x198/0x2cc
[ 2.771157] __uvcg_iter_strm_cls+0xc8/0x17c
[ 2.771158] uvcg_streaming_class_allow_link+0x240/0x290
[ 2.771159] configfs_symlink+0x1f8/0x630
[ 2.771161] vfs_symlink+0x114/0x1a0
[ 2.771163] do_symlinkat+0x94/0x28c
[ 2.771164] __arm64_sys_symlinkat+0x54/0x70
[ 2.771164] invoke_syscall+0x58/0x114
[ 2.771166] el0_svc_common+0x80/0xe0
[ 2.771168] do_el0_svc+0x1c/0x28
[ 2.771169] el0_svc+0x3c/0x70
[ 2.771172] el0t_64_sync_handler+0x68/0xbc
[ 2.771173] el0t_64_sync+0x1a8/0x1ac
Initialize color matching descriptor for frame-based format to prevent
NULL pointer crash by mirroring the handling done for uncompressed and
mjpeg formats. |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/hns: Fix double destruction of rsv_qp
rsv_qp may be double destroyed in error flow, first in free_mr_init(),
and then in hns_roce_exit(). Fix it by moving the free_mr_init() call
into hns_roce_v2_init().
list_del corruption, ffff589732eb9b50->next is LIST_POISON1 (dead000000000100)
WARNING: CPU: 8 PID: 1047115 at lib/list_debug.c:53 __list_del_entry_valid+0x148/0x240
...
Call trace:
__list_del_entry_valid+0x148/0x240
hns_roce_qp_remove+0x4c/0x3f0 [hns_roce_hw_v2]
hns_roce_v2_destroy_qp_common+0x1dc/0x5f4 [hns_roce_hw_v2]
hns_roce_v2_destroy_qp+0x22c/0x46c [hns_roce_hw_v2]
free_mr_exit+0x6c/0x120 [hns_roce_hw_v2]
hns_roce_v2_exit+0x170/0x200 [hns_roce_hw_v2]
hns_roce_exit+0x118/0x350 [hns_roce_hw_v2]
__hns_roce_hw_v2_init_instance+0x1c8/0x304 [hns_roce_hw_v2]
hns_roce_hw_v2_reset_notify_init+0x170/0x21c [hns_roce_hw_v2]
hns_roce_hw_v2_reset_notify+0x6c/0x190 [hns_roce_hw_v2]
hclge_notify_roce_client+0x6c/0x160 [hclge]
hclge_reset_rebuild+0x150/0x5c0 [hclge]
hclge_reset+0x10c/0x140 [hclge]
hclge_reset_subtask+0x80/0x104 [hclge]
hclge_reset_service_task+0x168/0x3ac [hclge]
hclge_service_task+0x50/0x100 [hclge]
process_one_work+0x250/0x9a0
worker_thread+0x324/0x990
kthread+0x190/0x210
ret_from_fork+0x10/0x18 |
In the Linux kernel, the following vulnerability has been resolved:
eth: fbnic: unlink NAPIs from queues on error to open
CI hit a UaF in fbnic in the AF_XDP portion of the queues.py test.
The UaF is in the __sk_mark_napi_id_once() call in xsk_bind(),
NAPI has been freed. Looks like the device failed to open earlier,
and we lack clearing the NAPI pointer from the queue. |
In the Linux kernel, the following vulnerability has been resolved:
nfsd: avoid ref leak in nfsd_open_local_fh()
If two calls to nfsd_open_local_fh() race and both successfully call
nfsd_file_acquire_local(), they will both get an extra reference to the
net to accompany the file reference stored in *pnf.
One of them will fail to store (using xchg()) the file reference in
*pnf and will drop that reference but WON'T drop the accompanying
reference to the net. This leak means that when the nfs server is shut
down it will hang in nfsd_shutdown_net() waiting for
&nn->nfsd_net_free_done.
This patch adds the missing nfsd_net_put(). |
In the Linux kernel, the following vulnerability has been resolved:
staging: media: atomisp: Fix stack buffer overflow in gmin_get_var_int()
When gmin_get_config_var() calls efi.get_variable() and the EFI variable
is larger than the expected buffer size, two behaviors combine to create
a stack buffer overflow:
1. gmin_get_config_var() does not return the proper error code when
efi.get_variable() fails. It returns the stale 'ret' value from
earlier operations instead of indicating the EFI failure.
2. When efi.get_variable() returns EFI_BUFFER_TOO_SMALL, it updates
*out_len to the required buffer size but writes no data to the output
buffer. However, due to bug #1, gmin_get_var_int() believes the call
succeeded.
The caller gmin_get_var_int() then performs:
- Allocates val[CFG_VAR_NAME_MAX + 1] (65 bytes) on stack
- Calls gmin_get_config_var(dev, is_gmin, var, val, &len) with len=64
- If EFI variable is >64 bytes, efi.get_variable() sets len=required_size
- Due to bug #1, thinks call succeeded with len=required_size
- Executes val[len] = 0, writing past end of 65-byte stack buffer
This creates a stack buffer overflow when EFI variables are larger than
64 bytes. Since EFI variables can be controlled by firmware or system
configuration, this could potentially be exploited for code execution.
Fix the bug by returning proper error codes from gmin_get_config_var()
based on EFI status instead of stale 'ret' value.
The gmin_get_var_int() function is called during device initialization
for camera sensor configuration on Intel Bay Trail and Cherry Trail
platforms using the atomisp camera stack. |
In the Linux kernel, the following vulnerability has been resolved:
bpf, arm64: Fix fp initialization for exception boundary
In the ARM64 BPF JIT when prog->aux->exception_boundary is set for a BPF
program, find_used_callee_regs() is not called because for a program
acting as exception boundary, all callee saved registers are saved.
find_used_callee_regs() sets `ctx->fp_used = true;` when it sees FP
being used in any of the instructions.
For programs acting as exception boundary, ctx->fp_used remains false
even if frame pointer is used by the program and therefore, FP is not
set-up for such programs in the prologue. This can cause the kernel to
crash due to a pagefault.
Fix it by setting ctx->fp_used = true for exception boundary programs as
fp is always saved in such programs. |
In the Linux kernel, the following vulnerability has been resolved:
sunrpc: fix client side handling of tls alerts
A security exploit was discovered in NFS over TLS in tls_alert_recv
due to its assumption that there is valid data in the msghdr's
iterator's kvec.
Instead, this patch proposes the rework how control messages are
setup and used by sock_recvmsg().
If no control message structure is setup, kTLS layer will read and
process TLS data record types. As soon as it encounters a TLS control
message, it would return an error. At that point, NFS can setup a kvec
backed control buffer and read in the control message such as a TLS
alert. Scott found that a msg iterator can advance the kvec pointer
as a part of the copy process thus we need to revert the iterator
before calling into the tls_alert_recv. |
In the Linux kernel, the following vulnerability has been resolved:
platform/x86/intel/pmt: fix a crashlog NULL pointer access
Usage of the intel_pmt_read() for binary sysfs, requires a pcidev. The
current use of the endpoint value is only valid for telemetry endpoint
usage.
Without the ep, the crashlog usage causes the following NULL pointer
exception:
BUG: kernel NULL pointer dereference, address: 0000000000000000
Oops: Oops: 0000 [#1] SMP NOPTI
RIP: 0010:intel_pmt_read+0x3b/0x70 [pmt_class]
Code:
Call Trace:
<TASK>
? sysfs_kf_bin_read+0xc0/0xe0
kernfs_fop_read_iter+0xac/0x1a0
vfs_read+0x26d/0x350
ksys_read+0x6b/0xe0
__x64_sys_read+0x1d/0x30
x64_sys_call+0x1bc8/0x1d70
do_syscall_64+0x6d/0x110
Augment struct intel_pmt_entry with a pointer to the pcidev to avoid
the NULL pointer exception. |
In the Linux kernel, the following vulnerability has been resolved:
neighbour: Fix null-ptr-deref in neigh_flush_dev().
kernel test robot reported null-ptr-deref in neigh_flush_dev(). [0]
The cited commit introduced per-netdev neighbour list and converted
neigh_flush_dev() to use it instead of the global hash table.
One thing we missed is that neigh_table_clear() calls neigh_ifdown()
with NULL dev.
Let's restore the hash table iteration.
Note that IPv6 module is no longer unloadable, so neigh_table_clear()
is called only when IPv6 fails to initialise, which is unlikely to
happen.
[0]:
IPv6: Attempt to unregister permanent protocol 136
IPv6: Attempt to unregister permanent protocol 17
Oops: general protection fault, probably for non-canonical address 0xdffffc00000001a0: 0000 [#1] SMP KASAN
KASAN: null-ptr-deref in range [0x0000000000000d00-0x0000000000000d07]
CPU: 1 UID: 0 PID: 1 Comm: systemd Tainted: G T 6.12.0-rc6-01246-gf7f52738637f #1
Tainted: [T]=RANDSTRUCT
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
RIP: 0010:neigh_flush_dev.llvm.6395807810224103582+0x52/0x570
Code: c1 e8 03 42 8a 04 38 84 c0 0f 85 15 05 00 00 31 c0 41 83 3e 0a 0f 94 c0 48 8d 1c c3 48 81 c3 f8 0c 00 00 48 89 d8 48 c1 e8 03 <42> 80 3c 38 00 74 08 48 89 df e8 f7 49 93 fe 4c 8b 3b 4d 85 ff 0f
RSP: 0000:ffff88810026f408 EFLAGS: 00010206
RAX: 00000000000001a0 RBX: 0000000000000d00 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffffffffc0631640
RBP: ffff88810026f470 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000
R13: ffffffffc0625250 R14: ffffffffc0631640 R15: dffffc0000000000
FS: 00007f575cb83940(0000) GS:ffff8883aee00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f575db40008 CR3: 00000002bf936000 CR4: 00000000000406f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
__neigh_ifdown.llvm.6395807810224103582+0x44/0x390
neigh_table_clear+0xb1/0x268
ndisc_cleanup+0x21/0x38 [ipv6]
init_module+0x2f5/0x468 [ipv6]
do_one_initcall+0x1ba/0x628
do_init_module+0x21a/0x530
load_module+0x2550/0x2ea0
__se_sys_finit_module+0x3d2/0x620
__x64_sys_finit_module+0x76/0x88
x64_sys_call+0x7ff/0xde8
do_syscall_64+0xfb/0x1e8
entry_SYSCALL_64_after_hwframe+0x67/0x6f
RIP: 0033:0x7f575d6f2719
Code: 08 89 e8 5b 5d c3 66 2e 0f 1f 84 00 00 00 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d b7 06 0d 00 f7 d8 64 89 01 48
RSP: 002b:00007fff82a2a268 EFLAGS: 00000246 ORIG_RAX: 0000000000000139
RAX: ffffffffffffffda RBX: 0000557827b45310 RCX: 00007f575d6f2719
RDX: 0000000000000000 RSI: 00007f575d584efd RDI: 0000000000000004
RBP: 00007f575d584efd R08: 0000000000000000 R09: 0000557827b47b00
R10: 0000000000000004 R11: 0000000000000246 R12: 0000000000020000
R13: 0000000000000000 R14: 0000557827b470e0 R15: 00007f575dbb4270
</TASK>
Modules linked in: ipv6(+) |
In the Linux kernel, the following vulnerability has been resolved:
ipv6: fix possible infinite loop in fib6_info_uses_dev()
fib6_info_uses_dev() seems to rely on RCU without an explicit
protection.
Like the prior fix in rt6_nlmsg_size(),
we need to make sure fib6_del_route() or fib6_add_rt2node()
have not removed the anchor from the list, or we risk an infinite loop. |
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Remove skb secpath if xfrm state is not found
Hardware returns a unique identifier for a decrypted packet's xfrm
state, this state is looked up in an xarray. However, the state might
have been freed by the time of this lookup.
Currently, if the state is not found, only a counter is incremented.
The secpath (sp) extension on the skb is not removed, resulting in
sp->len becoming 0.
Subsequently, functions like __xfrm_policy_check() attempt to access
fields such as xfrm_input_state(skb)->xso.type (which dereferences
sp->xvec[sp->len - 1]) without first validating sp->len. This leads to
a crash when dereferencing an invalid state pointer.
This patch prevents the crash by explicitly removing the secpath
extension from the skb if the xfrm state is not found after hardware
decryption. This ensures downstream functions do not operate on a
zero-length secpath.
BUG: unable to handle page fault for address: ffffffff000002c8
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 282e067 P4D 282e067 PUD 0
Oops: Oops: 0000 [#1] SMP
CPU: 12 UID: 0 PID: 0 Comm: swapper/12 Not tainted 6.15.0-rc7_for_upstream_min_debug_2025_05_27_22_44 #1 NONE
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:__xfrm_policy_check+0x61a/0xa30
Code: b6 77 7f 83 e6 02 74 14 4d 8b af d8 00 00 00 41 0f b6 45 05 c1 e0 03 48 98 49 01 c5 41 8b 45 00 83 e8 01 48 98 49 8b 44 c5 10 <0f> b6 80 c8 02 00 00 83 e0 0c 3c 04 0f 84 0c 02 00 00 31 ff 80 fa
RSP: 0018:ffff88885fb04918 EFLAGS: 00010297
RAX: ffffffff00000000 RBX: 0000000000000002 RCX: 0000000000000000
RDX: 0000000000000002 RSI: 0000000000000002 RDI: 0000000000000000
RBP: ffffffff8311af80 R08: 0000000000000020 R09: 00000000c2eda353
R10: ffff88812be2bbc8 R11: 000000001faab533 R12: ffff88885fb049c8
R13: ffff88812be2bbc8 R14: 0000000000000000 R15: ffff88811896ae00
FS: 0000000000000000(0000) GS:ffff8888dca82000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffffff000002c8 CR3: 0000000243050002 CR4: 0000000000372eb0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<IRQ>
? try_to_wake_up+0x108/0x4c0
? udp4_lib_lookup2+0xbe/0x150
? udp_lib_lport_inuse+0x100/0x100
? __udp4_lib_lookup+0x2b0/0x410
__xfrm_policy_check2.constprop.0+0x11e/0x130
udp_queue_rcv_one_skb+0x1d/0x530
udp_unicast_rcv_skb+0x76/0x90
__udp4_lib_rcv+0xa64/0xe90
ip_protocol_deliver_rcu+0x20/0x130
ip_local_deliver_finish+0x75/0xa0
ip_local_deliver+0xc1/0xd0
? ip_protocol_deliver_rcu+0x130/0x130
ip_sublist_rcv+0x1f9/0x240
? ip_rcv_finish_core+0x430/0x430
ip_list_rcv+0xfc/0x130
__netif_receive_skb_list_core+0x181/0x1e0
netif_receive_skb_list_internal+0x200/0x360
? mlx5e_build_rx_skb+0x1bc/0xda0 [mlx5_core]
gro_receive_skb+0xfd/0x210
mlx5e_handle_rx_cqe_mpwrq+0x141/0x280 [mlx5_core]
mlx5e_poll_rx_cq+0xcc/0x8e0 [mlx5_core]
? mlx5e_handle_rx_dim+0x91/0xd0 [mlx5_core]
mlx5e_napi_poll+0x114/0xab0 [mlx5_core]
__napi_poll+0x25/0x170
net_rx_action+0x32d/0x3a0
? mlx5_eq_comp_int+0x8d/0x280 [mlx5_core]
? notifier_call_chain+0x33/0xa0
handle_softirqs+0xda/0x250
irq_exit_rcu+0x6d/0xc0
common_interrupt+0x81/0xa0
</IRQ> |
snowflake-connector-nodejs is a NodeJS driver for Snowflake. Snowflake discovered and remediated a vulnerability in the Snowflake NodeJS Driver. File permissions checks of the temporary credential cache could be bypassed by an attacker with write access to the local cache directory. This vulnerability affects versions 1.12.0 through 2.0.1 on Linux. Snowflake fixed the issue in version 2.0.2. |
IBM WebSphere Application Server 8.5 and 9.0 is vulnerable to cross-site scripting. This vulnerability allows users to embed arbitrary JavaScript code in the Web UI thus altering the intended functionality potentially leading to credentials disclosure within a trusted session. |
This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
IBM MQ 9.2 LTS, 9.3 LTS, 9.3 CD, 9.4 LTS, and 9.4 CD web console could allow a remote attacker to obtain sensitive information when a detailed technical error message is returned. |