CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
macsec: sync features on RTM_NEWLINK
Syzkaller managed to lock the lower device via ETHTOOL_SFEATURES:
netdev_lock include/linux/netdevice.h:2761 [inline]
netdev_lock_ops include/net/netdev_lock.h:42 [inline]
netdev_sync_lower_features net/core/dev.c:10649 [inline]
__netdev_update_features+0xcb1/0x1be0 net/core/dev.c:10819
netdev_update_features+0x6d/0xe0 net/core/dev.c:10876
macsec_notify+0x2f5/0x660 drivers/net/macsec.c:4533
notifier_call_chain+0x1b3/0x3e0 kernel/notifier.c:85
call_netdevice_notifiers_extack net/core/dev.c:2267 [inline]
call_netdevice_notifiers net/core/dev.c:2281 [inline]
netdev_features_change+0x85/0xc0 net/core/dev.c:1570
__dev_ethtool net/ethtool/ioctl.c:3469 [inline]
dev_ethtool+0x1536/0x19b0 net/ethtool/ioctl.c:3502
dev_ioctl+0x392/0x1150 net/core/dev_ioctl.c:759
It happens because lower features are out of sync with the upper:
__dev_ethtool (real_dev)
netdev_lock_ops(real_dev)
ETHTOOL_SFEATURES
__netdev_features_change
netdev_sync_upper_features
disable LRO on the lower
if (old_features != dev->features)
netdev_features_change
fires NETDEV_FEAT_CHANGE
macsec_notify
NETDEV_FEAT_CHANGE
netdev_update_features (for each macsec dev)
netdev_sync_lower_features
if (upper_features != lower_features)
netdev_lock_ops(lower) # lower == real_dev
stuck
...
netdev_unlock_ops(real_dev)
Per commit af5f54b0ef9e ("net: Lock lower level devices when updating
features"), we elide the lock/unlock when the upper and lower features
are synced. Makes sure the lower (real_dev) has proper features after
the macsec link has been created. This makes sure we never hit the
situation where we need to sync upper flags to the lower. |
In the Linux kernel, the following vulnerability has been resolved:
kernfs: Fix UAF in polling when open file is released
A use-after-free (UAF) vulnerability was identified in the PSI (Pressure
Stall Information) monitoring mechanism:
BUG: KASAN: slab-use-after-free in psi_trigger_poll+0x3c/0x140
Read of size 8 at addr ffff3de3d50bd308 by task systemd/1
psi_trigger_poll+0x3c/0x140
cgroup_pressure_poll+0x70/0xa0
cgroup_file_poll+0x8c/0x100
kernfs_fop_poll+0x11c/0x1c0
ep_item_poll.isra.0+0x188/0x2c0
Allocated by task 1:
cgroup_file_open+0x88/0x388
kernfs_fop_open+0x73c/0xaf0
do_dentry_open+0x5fc/0x1200
vfs_open+0xa0/0x3f0
do_open+0x7e8/0xd08
path_openat+0x2fc/0x6b0
do_filp_open+0x174/0x368
Freed by task 8462:
cgroup_file_release+0x130/0x1f8
kernfs_drain_open_files+0x17c/0x440
kernfs_drain+0x2dc/0x360
kernfs_show+0x1b8/0x288
cgroup_file_show+0x150/0x268
cgroup_pressure_write+0x1dc/0x340
cgroup_file_write+0x274/0x548
Reproduction Steps:
1. Open test/cpu.pressure and establish epoll monitoring
2. Disable monitoring: echo 0 > test/cgroup.pressure
3. Re-enable monitoring: echo 1 > test/cgroup.pressure
The race condition occurs because:
1. When cgroup.pressure is disabled (echo 0 > cgroup.pressure), it:
- Releases PSI triggers via cgroup_file_release()
- Frees of->priv through kernfs_drain_open_files()
2. While epoll still holds reference to the file and continues polling
3. Re-enabling (echo 1 > cgroup.pressure) accesses freed of->priv
epolling disable/enable cgroup.pressure
fd=open(cpu.pressure)
while(1)
...
epoll_wait
kernfs_fop_poll
kernfs_get_active = true echo 0 > cgroup.pressure
... cgroup_file_show
kernfs_show
// inactive kn
kernfs_drain_open_files
cft->release(of);
kfree(ctx);
...
kernfs_get_active = false
echo 1 > cgroup.pressure
kernfs_show
kernfs_activate_one(kn);
kernfs_fop_poll
kernfs_get_active = true
cgroup_file_poll
psi_trigger_poll
// UAF
...
end: close(fd)
To address this issue, introduce kernfs_get_active_of() for kernfs open
files to obtain active references. This function will fail if the open file
has been released. Replace kernfs_get_active() with kernfs_get_active_of()
to prevent further operations on released file descriptors. |
Improper Neutralization of Input During Web Page Generation (XSS or 'Cross-site Scripting') vulnerability in Netcad Software Inc. Netigma allows Stored XSS.This issue affects Netigma: from 6.3.3 before 6.3.5 V8. |
The Product Options and Price Calculation Formulas for WooCommerce – Uni CPO (Premium) plugin for WordPress is vulnerable to arbitrary file uploads due to misconfigured file type validation in the 'uni_cpo_upload_file' function in all versions up to, and including, 4.9.54. This makes it possible for unauthenticated attackers to upload arbitrary files on the affected site's server which may make remote code execution possible. |
In the Linux kernel, the following vulnerability has been resolved:
ceph: always call ceph_shift_unused_folios_left()
The function ceph_process_folio_batch() sets folio_batch entries to
NULL, which is an illegal state. Before folio_batch_release() crashes
due to this API violation, the function ceph_shift_unused_folios_left()
is supposed to remove those NULLs from the array.
However, since commit ce80b76dd327 ("ceph: introduce
ceph_process_folio_batch() method"), this shifting doesn't happen
anymore because the "for" loop got moved to ceph_process_folio_batch(),
and now the `i` variable that remains in ceph_writepages_start()
doesn't get incremented anymore, making the shifting effectively
unreachable much of the time.
Later, commit 1551ec61dc55 ("ceph: introduce ceph_submit_write()
method") added more preconditions for doing the shift, replacing the
`i` check (with something that is still just as broken):
- if ceph_process_folio_batch() fails, shifting never happens
- if ceph_move_dirty_page_in_page_array() was never called (because
ceph_process_folio_batch() has returned early for some of various
reasons), shifting never happens
- if `processed_in_fbatch` is zero (because ceph_process_folio_batch()
has returned early for some of the reasons mentioned above or
because ceph_move_dirty_page_in_page_array() has failed), shifting
never happens
Since those two commits, any problem in ceph_process_folio_batch()
could crash the kernel, e.g. this way:
BUG: kernel NULL pointer dereference, address: 0000000000000034
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: Oops: 0002 [#1] SMP NOPTI
CPU: 172 UID: 0 PID: 2342707 Comm: kworker/u778:8 Not tainted 6.15.10-cm4all1-es #714 NONE
Hardware name: Dell Inc. PowerEdge R7615/0G9DHV, BIOS 1.6.10 12/08/2023
Workqueue: writeback wb_workfn (flush-ceph-1)
RIP: 0010:folios_put_refs+0x85/0x140
Code: 83 c5 01 39 e8 7e 76 48 63 c5 49 8b 5c c4 08 b8 01 00 00 00 4d 85 ed 74 05 41 8b 44 ad 00 48 8b 15 b0 >
RSP: 0018:ffffb880af8db778 EFLAGS: 00010207
RAX: 0000000000000001 RBX: 0000000000000000 RCX: 0000000000000003
RDX: ffffe377cc3b0000 RSI: 0000000000000000 RDI: ffffb880af8db8c0
RBP: 0000000000000000 R08: 000000000000007d R09: 000000000102b86f
R10: 0000000000000001 R11: 00000000000000ac R12: ffffb880af8db8c0
R13: 0000000000000000 R14: 0000000000000000 R15: ffff9bd262c97000
FS: 0000000000000000(0000) GS:ffff9c8efc303000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000034 CR3: 0000000160958004 CR4: 0000000000770ef0
PKRU: 55555554
Call Trace:
<TASK>
ceph_writepages_start+0xeb9/0x1410
The crash can be reproduced easily by changing the
ceph_check_page_before_write() return value to `-E2BIG`.
(Interestingly, the crash happens only if `huge_zero_folio` has
already been allocated; without `huge_zero_folio`,
is_huge_zero_folio(NULL) returns true and folios_put_refs() skips NULL
entries instead of dereferencing them. That makes reproducing the bug
somewhat unreliable. See
https://lore.kernel.org/20250826231626.218675-1-max.kellermann@ionos.com
for a discussion of this detail.)
My suggestion is to move the ceph_shift_unused_folios_left() to right
after ceph_process_folio_batch() to ensure it always gets called to
fix up the illegal folio_batch state. |
The SureForms WordPress plugin before 1.9.1 does not sanitise and escape some parameters when outputing them in the page, which could allow admin and above users to perform Cross-Site Scripting attacks. |
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: idxd: Fix double free in idxd_setup_wqs()
The clean up in idxd_setup_wqs() has had a couple bugs because the error
handling is a bit subtle. It's simpler to just re-write it in a cleaner
way. The issues here are:
1) If "idxd->max_wqs" is <= 0 then we call put_device(conf_dev) when
"conf_dev" hasn't been initialized.
2) If kzalloc_node() fails then again "conf_dev" is invalid. It's
either uninitialized or it points to the "conf_dev" from the
previous iteration so it leads to a double free.
It's better to free partial loop iterations within the loop and then
the unwinding at the end can handle whole loop iterations. I also
renamed the labels to describe what the goto does and not where the goto
was located. |
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: ti: edma: Fix memory allocation size for queue_priority_map
Fix a critical memory allocation bug in edma_setup_from_hw() where
queue_priority_map was allocated with insufficient memory. The code
declared queue_priority_map as s8 (*)[2] (pointer to array of 2 s8),
but allocated memory using sizeof(s8) instead of the correct size.
This caused out-of-bounds memory writes when accessing:
queue_priority_map[i][0] = i;
queue_priority_map[i][1] = i;
The bug manifested as kernel crashes with "Oops - undefined instruction"
on ARM platforms (BeagleBoard-X15) during EDMA driver probe, as the
memory corruption triggered kernel hardening features on Clang.
Change the allocation to use sizeof(*queue_priority_map) which
automatically gets the correct size for the 2D array structure. |
In the Linux kernel, the following vulnerability has been resolved:
ceph: fix crash after fscrypt_encrypt_pagecache_blocks() error
The function move_dirty_folio_in_page_array() was created by commit
ce80b76dd327 ("ceph: introduce ceph_process_folio_batch() method") by
moving code from ceph_writepages_start() to this function.
This new function is supposed to return an error code which is checked
by the caller (now ceph_process_folio_batch()), and on error, the
caller invokes redirty_page_for_writepage() and then breaks from the
loop.
However, the refactoring commit has gone wrong, and it by accident, it
always returns 0 (= success) because it first NULLs the pointer and
then returns PTR_ERR(NULL) which is always 0. This means errors are
silently ignored, leaving NULL entries in the page array, which may
later crash the kernel.
The simple solution is to call PTR_ERR() before clearing the pointer. |
In the Linux kernel, the following vulnerability has been resolved:
hsr: hold rcu and dev lock for hsr_get_port_ndev
hsr_get_port_ndev calls hsr_for_each_port, which need to hold rcu lock.
On the other hand, before return the port device, we need to hold the
device reference to avoid UaF in the caller function. |
In the Linux kernel, the following vulnerability has been resolved:
drm/mediatek: fix potential OF node use-after-free
The for_each_child_of_node() helper drops the reference it takes to each
node as it iterates over children and an explicit of_node_put() is only
needed when exiting the loop early.
Drop the recently introduced bogus additional reference count decrement
at each iteration that could potentially lead to a use-after-free. |
A security flaw has been discovered in Campcodes Point of Sale System POS 1.0. Affected by this issue is some unknown functionality of the file /login.php. Performing manipulation of the argument Username results in sql injection. The attack is possible to be carried out remotely. The exploit has been released to the public and may be exploited. |
In the Linux kernel, the following vulnerability has been resolved:
mm/damon/sysfs: fix use-after-free in state_show()
state_show() reads kdamond->damon_ctx without holding damon_sysfs_lock.
This allows a use-after-free race:
CPU 0 CPU 1
----- -----
state_show() damon_sysfs_turn_damon_on()
ctx = kdamond->damon_ctx; mutex_lock(&damon_sysfs_lock);
damon_destroy_ctx(kdamond->damon_ctx);
kdamond->damon_ctx = NULL;
mutex_unlock(&damon_sysfs_lock);
damon_is_running(ctx); /* ctx is freed */
mutex_lock(&ctx->kdamond_lock); /* UAF */
(The race can also occur with damon_sysfs_kdamonds_rm_dirs() and
damon_sysfs_kdamond_release(), which free or replace the context under
damon_sysfs_lock.)
Fix by taking damon_sysfs_lock before dereferencing the context, mirroring
the locking used in pid_show().
The bug has existed since state_show() first accessed kdamond->damon_ctx. |
In the Linux kernel, the following vulnerability has been resolved:
bpf: Tell memcg to use allow_spinning=false path in bpf_timer_init()
Currently, calling bpf_map_kmalloc_node() from __bpf_async_init() can
cause various locking issues; see the following stack trace (edited for
style) as one example:
...
[10.011566] do_raw_spin_lock.cold
[10.011570] try_to_wake_up (5) double-acquiring the same
[10.011575] kick_pool rq_lock, causing a hardlockup
[10.011579] __queue_work
[10.011582] queue_work_on
[10.011585] kernfs_notify
[10.011589] cgroup_file_notify
[10.011593] try_charge_memcg (4) memcg accounting raises an
[10.011597] obj_cgroup_charge_pages MEMCG_MAX event
[10.011599] obj_cgroup_charge_account
[10.011600] __memcg_slab_post_alloc_hook
[10.011603] __kmalloc_node_noprof
...
[10.011611] bpf_map_kmalloc_node
[10.011612] __bpf_async_init
[10.011615] bpf_timer_init (3) BPF calls bpf_timer_init()
[10.011617] bpf_prog_xxxxxxxxxxxxxxxx_fcg_runnable
[10.011619] bpf__sched_ext_ops_runnable
[10.011620] enqueue_task_scx (2) BPF runs with rq_lock held
[10.011622] enqueue_task
[10.011626] ttwu_do_activate
[10.011629] sched_ttwu_pending (1) grabs rq_lock
...
The above was reproduced on bpf-next (b338cf849ec8) by modifying
./tools/sched_ext/scx_flatcg.bpf.c to call bpf_timer_init() during
ops.runnable(), and hacking the memcg accounting code a bit to make
a bpf_timer_init() call more likely to raise an MEMCG_MAX event.
We have also run into other similar variants (both internally and on
bpf-next), including double-acquiring cgroup_file_kn_lock, the same
worker_pool::lock, etc.
As suggested by Shakeel, fix this by using __GFP_HIGH instead of
GFP_ATOMIC in __bpf_async_init(), so that e.g. if try_charge_memcg()
raises an MEMCG_MAX event, we call __memcg_memory_event() with
@allow_spinning=false and avoid calling cgroup_file_notify() there.
Depends on mm patch
"memcg: skip cgroup_file_notify if spinning is not allowed":
https://lore.kernel.org/bpf/20250905201606.66198-1-shakeel.butt@linux.dev/
v0 approach s/bpf_map_kmalloc_node/bpf_mem_alloc/
https://lore.kernel.org/bpf/20250905061919.439648-1-yepeilin@google.com/
v1 approach:
https://lore.kernel.org/bpf/20250905234547.862249-1-yepeilin@google.com/ |
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: idxd: Remove improper idxd_free
The call to idxd_free() introduces a duplicate put_device() leading to a
reference count underflow:
refcount_t: underflow; use-after-free.
WARNING: CPU: 15 PID: 4428 at lib/refcount.c:28 refcount_warn_saturate+0xbe/0x110
...
Call Trace:
<TASK>
idxd_remove+0xe4/0x120 [idxd]
pci_device_remove+0x3f/0xb0
device_release_driver_internal+0x197/0x200
driver_detach+0x48/0x90
bus_remove_driver+0x74/0xf0
pci_unregister_driver+0x2e/0xb0
idxd_exit_module+0x34/0x7a0 [idxd]
__do_sys_delete_module.constprop.0+0x183/0x280
do_syscall_64+0x54/0xd70
entry_SYSCALL_64_after_hwframe+0x76/0x7e
The idxd_unregister_devices() which is invoked at the very beginning of
idxd_remove(), already takes care of the necessary put_device() through the
following call path:
idxd_unregister_devices() -> device_unregister() -> put_device()
In addition, when CONFIG_DEBUG_KOBJECT_RELEASE is enabled, put_device() may
trigger asynchronous cleanup via schedule_delayed_work(). If idxd_free() is
called immediately after, it can result in a use-after-free.
Remove the improper idxd_free() to avoid both the refcount underflow and
potential memory corruption during module unload. |
In the Linux kernel, the following vulnerability has been resolved:
tracing/osnoise: Fix null-ptr-deref in bitmap_parselist()
A crash was observed with the following output:
BUG: kernel NULL pointer dereference, address: 0000000000000010
Oops: Oops: 0000 [#1] SMP NOPTI
CPU: 2 UID: 0 PID: 92 Comm: osnoise_cpus Not tainted 6.17.0-rc4-00201-gd69eb204c255 #138 PREEMPT(voluntary)
RIP: 0010:bitmap_parselist+0x53/0x3e0
Call Trace:
<TASK>
osnoise_cpus_write+0x7a/0x190
vfs_write+0xf8/0x410
? do_sys_openat2+0x88/0xd0
ksys_write+0x60/0xd0
do_syscall_64+0xa4/0x260
entry_SYSCALL_64_after_hwframe+0x77/0x7f
</TASK>
This issue can be reproduced by below code:
fd=open("/sys/kernel/debug/tracing/osnoise/cpus", O_WRONLY);
write(fd, "0-2", 0);
When user pass 'count=0' to osnoise_cpus_write(), kmalloc() will return
ZERO_SIZE_PTR (16) and cpulist_parse() treat it as a normal value, which
trigger the null pointer dereference. Add check for the parameter 'count'. |
In the Linux kernel, the following vulnerability has been resolved:
fuse: Block access to folio overlimit
syz reported a slab-out-of-bounds Write in fuse_dev_do_write.
When the number of bytes to be retrieved is truncated to the upper limit
by fc->max_pages and there is an offset, the oob is triggered.
Add a loop termination condition to prevent overruns. |
SolarWinds Web Help Desk was found to be susceptible to an unauthenticated AjaxProxy deserialization remote code execution vulnerability that, if exploited, would allow an attacker to run commands on the host machine. This vulnerability is a patch bypass of CVE-2024-28988, which in turn is a patch bypass of CVE-2024-28986. |
A vulnerability was found in Portabilis i-Educar up to 2.10. This affects an unknown part of the file /module/ComponenteCurricular/view. The manipulation of the argument ID results in sql injection. The attack can be executed remotely. The exploit has been made public and could be used. |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix subvolume deletion lockup caused by inodes xarray race
There is a race condition between inode eviction and inode caching that
can cause a live struct btrfs_inode to be missing from the root->inodes
xarray. Specifically, there is a window during evict() between the inode
being unhashed and deleted from the xarray. If btrfs_iget() is called
for the same inode in that window, it will be recreated and inserted
into the xarray, but then eviction will delete the new entry, leaving
nothing in the xarray:
Thread 1 Thread 2
---------------------------------------------------------------
evict()
remove_inode_hash()
btrfs_iget_path()
btrfs_iget_locked()
btrfs_read_locked_inode()
btrfs_add_inode_to_root()
destroy_inode()
btrfs_destroy_inode()
btrfs_del_inode_from_root()
__xa_erase
In turn, this can cause issues for subvolume deletion. Specifically, if
an inode is in this lost state, and all other inodes are evicted, then
btrfs_del_inode_from_root() will call btrfs_add_dead_root() prematurely.
If the lost inode has a delayed_node attached to it, then when
btrfs_clean_one_deleted_snapshot() calls btrfs_kill_all_delayed_nodes(),
it will loop forever because the delayed_nodes xarray will never become
empty (unless memory pressure forces the inode out). We saw this
manifest as soft lockups in production.
Fix it by only deleting the xarray entry if it matches the given inode
(using __xa_cmpxchg()). |