| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
accel/habanalabs: postpone mem_mgr IDR destruction to hpriv_release()
The memory manager IDR is currently destroyed when user releases the
file descriptor.
However, at this point the user context might be still held, and memory
buffers might be still in use.
Later on, calls to release those buffers will fail due to not finding
their handles in the IDR, leading to a memory leak.
To avoid this leak, split the IDR destruction from the memory manager
fini, and postpone it to hpriv_release() when there is no user context
and no buffers are used. |
| In the Linux kernel, the following vulnerability has been resolved:
skbuff: skb_segment, Call zero copy functions before using skbuff frags
Commit bf5c25d60861 ("skbuff: in skb_segment, call zerocopy functions
once per nskb") added the call to zero copy functions in skb_segment().
The change introduced a bug in skb_segment() because skb_orphan_frags()
may possibly change the number of fragments or allocate new fragments
altogether leaving nrfrags and frag to point to the old values. This can
cause a panic with stacktrace like the one below.
[ 193.894380] BUG: kernel NULL pointer dereference, address: 00000000000000bc
[ 193.895273] CPU: 13 PID: 18164 Comm: vh-net-17428 Kdump: loaded Tainted: G O 5.15.123+ #26
[ 193.903919] RIP: 0010:skb_segment+0xb0e/0x12f0
[ 194.021892] Call Trace:
[ 194.027422] <TASK>
[ 194.072861] tcp_gso_segment+0x107/0x540
[ 194.082031] inet_gso_segment+0x15c/0x3d0
[ 194.090783] skb_mac_gso_segment+0x9f/0x110
[ 194.095016] __skb_gso_segment+0xc1/0x190
[ 194.103131] netem_enqueue+0x290/0xb10 [sch_netem]
[ 194.107071] dev_qdisc_enqueue+0x16/0x70
[ 194.110884] __dev_queue_xmit+0x63b/0xb30
[ 194.121670] bond_start_xmit+0x159/0x380 [bonding]
[ 194.128506] dev_hard_start_xmit+0xc3/0x1e0
[ 194.131787] __dev_queue_xmit+0x8a0/0xb30
[ 194.138225] macvlan_start_xmit+0x4f/0x100 [macvlan]
[ 194.141477] dev_hard_start_xmit+0xc3/0x1e0
[ 194.144622] sch_direct_xmit+0xe3/0x280
[ 194.147748] __dev_queue_xmit+0x54a/0xb30
[ 194.154131] tap_get_user+0x2a8/0x9c0 [tap]
[ 194.157358] tap_sendmsg+0x52/0x8e0 [tap]
[ 194.167049] handle_tx_zerocopy+0x14e/0x4c0 [vhost_net]
[ 194.173631] handle_tx+0xcd/0xe0 [vhost_net]
[ 194.176959] vhost_worker+0x76/0xb0 [vhost]
[ 194.183667] kthread+0x118/0x140
[ 194.190358] ret_from_fork+0x1f/0x30
[ 194.193670] </TASK>
In this case calling skb_orphan_frags() updated nr_frags leaving nrfrags
local variable in skb_segment() stale. This resulted in the code hitting
i >= nrfrags prematurely and trying to move to next frag_skb using
list_skb pointer, which was NULL, and caused kernel panic. Move the call
to zero copy functions before using frags and nr_frags. |
| In the Linux kernel, the following vulnerability has been resolved:
staging: pi433: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. This requires saving off the root directory dentry to make
creation of individual device subdirectories easier. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: u_serial: Add null pointer check in gserial_suspend
Consider a case where gserial_disconnect has already cleared
gser->ioport. And if gserial_suspend gets called afterwards,
it will lead to accessing of gser->ioport and thus causing
null pointer dereference.
Avoid this by adding a null pointer check. Added a static
spinlock to prevent gser->ioport from becoming null after
the newly added null pointer check. |
| In the Linux kernel, the following vulnerability has been resolved:
md/raid10: check slab-out-of-bounds in md_bitmap_get_counter
If we write a large number to md/bitmap_set_bits, md_bitmap_checkpage()
will return -EINVAL because 'page >= bitmap->pages', but the return value
was not checked immediately in md_bitmap_get_counter() in order to set
*blocks value and slab-out-of-bounds occurs.
Move check of 'page >= bitmap->pages' to md_bitmap_get_counter() and
return directly if true. |
| In the Linux kernel, the following vulnerability has been resolved:
ceph: fix race condition validating r_parent before applying state
Add validation to ensure the cached parent directory inode matches the
directory info in MDS replies. This prevents client-side race conditions
where concurrent operations (e.g. rename) cause r_parent to become stale
between request initiation and reply processing, which could lead to
applying state changes to incorrect directory inodes.
[ idryomov: folded a kerneldoc fixup and a follow-up fix from Alex to
move CEPH_CAP_PIN reference when r_parent is updated:
When the parent directory lock is not held, req->r_parent can become
stale and is updated to point to the correct inode. However, the
associated CEPH_CAP_PIN reference was not being adjusted. The
CEPH_CAP_PIN is a reference on an inode that is tracked for
accounting purposes. Moving this pin is important to keep the
accounting balanced. When the pin was not moved from the old parent
to the new one, it created two problems: The reference on the old,
stale parent was never released, causing a reference leak.
A reference for the new parent was never acquired, creating the risk
of a reference underflow later in ceph_mdsc_release_request(). This
patch corrects the logic by releasing the pin from the old parent and
acquiring it for the new parent when r_parent is switched. This
ensures reference accounting stays balanced. ] |
| In the Linux kernel, the following vulnerability has been resolved:
i2c: rtl9300: ensure data length is within supported range
Add an explicit check for the xfer length to 'rtl9300_i2c_config_xfer'
to ensure the data length isn't within the supported range. In
particular a data length of 0 is not supported by the hardware and
causes unintended or destructive behaviour.
This limitation becomes obvious when looking at the register
documentation [1]. 4 bits are reserved for DATA_WIDTH and the value
of these 4 bits is used as N + 1, allowing a data length range of
1 <= len <= 16.
Affected by this is the SMBus Quick Operation which works with a data
length of 0. Passing 0 as the length causes an underflow of the value
due to:
(len - 1) & 0xf
and effectively specifying a transfer length of 16 via the registers.
This causes a 16-byte write operation instead of a Quick Write. For
example, on SFP modules without write-protected EEPROM this soft-bricks
them by overwriting some initial bytes.
For completeness, also add a quirk for the zero length.
[1] https://svanheule.net/realtek/longan/register/i2c_mst1_ctrl2 |
| 1Panel is an open-source, web-based control panel for Linux server management. Versions 2.0.13 and below allow an unauthenticated attacker to disable CAPTCHA verification by abusing a client-controlled parameter. Because the server previously trusted this value without proper validation, CAPTCHA protections can be bypassed, enabling automated login attempts and significantly increasing the risk of account takeover (ATO). This issue is fixed in version 2.0.14. |
| Path Traversal in the log file retrieval function in Canonical LXD 5.0 LTS on Linux allows authenticated remote attackers to read arbitrary files on the host system via crafted log file names or symbolic links. |
| In the Linux kernel, the following vulnerability has been resolved:
skbuff: Account for tail adjustment during pull operations
Extending the tail can have some unexpected side effects if a program uses
a helper like BPF_FUNC_skb_pull_data to read partial content beyond the
head skb headlen when all the skbs in the gso frag_list are linear with no
head_frag -
kernel BUG at net/core/skbuff.c:4219!
pc : skb_segment+0xcf4/0xd2c
lr : skb_segment+0x63c/0xd2c
Call trace:
skb_segment+0xcf4/0xd2c
__udp_gso_segment+0xa4/0x544
udp4_ufo_fragment+0x184/0x1c0
inet_gso_segment+0x16c/0x3a4
skb_mac_gso_segment+0xd4/0x1b0
__skb_gso_segment+0xcc/0x12c
udp_rcv_segment+0x54/0x16c
udp_queue_rcv_skb+0x78/0x144
udp_unicast_rcv_skb+0x8c/0xa4
__udp4_lib_rcv+0x490/0x68c
udp_rcv+0x20/0x30
ip_protocol_deliver_rcu+0x1b0/0x33c
ip_local_deliver+0xd8/0x1f0
ip_rcv+0x98/0x1a4
deliver_ptype_list_skb+0x98/0x1ec
__netif_receive_skb_core+0x978/0xc60
Fix this by marking these skbs as GSO_DODGY so segmentation can handle
the tail updates accordingly. |
| In the Linux kernel, the following vulnerability has been resolved:
skmsg: pass gfp argument to alloc_sk_msg()
syzbot found that alloc_sk_msg() could be called from a
non sleepable context. sk_psock_verdict_recv() uses
rcu_read_lock() protection.
We need the callers to pass a gfp_t argument to avoid issues.
syzbot report was:
BUG: sleeping function called from invalid context at include/linux/sched/mm.h:274
in_atomic(): 0, irqs_disabled(): 0, non_block: 0, pid: 3613, name: syz-executor414
preempt_count: 0, expected: 0
RCU nest depth: 1, expected: 0
INFO: lockdep is turned off.
CPU: 0 PID: 3613 Comm: syz-executor414 Not tainted 6.0.0-syzkaller-09589-g55be6084c8e0 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/22/2022
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1e3/0x2cb lib/dump_stack.c:106
__might_resched+0x538/0x6a0 kernel/sched/core.c:9877
might_alloc include/linux/sched/mm.h:274 [inline]
slab_pre_alloc_hook mm/slab.h:700 [inline]
slab_alloc_node mm/slub.c:3162 [inline]
slab_alloc mm/slub.c:3256 [inline]
kmem_cache_alloc_trace+0x59/0x310 mm/slub.c:3287
kmalloc include/linux/slab.h:600 [inline]
kzalloc include/linux/slab.h:733 [inline]
alloc_sk_msg net/core/skmsg.c:507 [inline]
sk_psock_skb_ingress_self+0x5c/0x330 net/core/skmsg.c:600
sk_psock_verdict_apply+0x395/0x440 net/core/skmsg.c:1014
sk_psock_verdict_recv+0x34d/0x560 net/core/skmsg.c:1201
tcp_read_skb+0x4a1/0x790 net/ipv4/tcp.c:1770
tcp_rcv_established+0x129d/0x1a10 net/ipv4/tcp_input.c:5971
tcp_v4_do_rcv+0x479/0xac0 net/ipv4/tcp_ipv4.c:1681
sk_backlog_rcv include/net/sock.h:1109 [inline]
__release_sock+0x1d8/0x4c0 net/core/sock.c:2906
release_sock+0x5d/0x1c0 net/core/sock.c:3462
tcp_sendmsg+0x36/0x40 net/ipv4/tcp.c:1483
sock_sendmsg_nosec net/socket.c:714 [inline]
sock_sendmsg net/socket.c:734 [inline]
__sys_sendto+0x46d/0x5f0 net/socket.c:2117
__do_sys_sendto net/socket.c:2129 [inline]
__se_sys_sendto net/socket.c:2125 [inline]
__x64_sys_sendto+0xda/0xf0 net/socket.c:2125
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x2b/0x70 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: hisilicon: Add multi-thread support for a DMA channel
When we get a DMA channel and try to use it in multiple threads it
will cause oops and hanging the system.
% echo 100 > /sys/module/dmatest/parameters/threads_per_chan
% echo 100 > /sys/module/dmatest/parameters/iterations
% echo 1 > /sys/module/dmatest/parameters/run
[383493.327077] Unable to handle kernel paging request at virtual
address dead000000000108
[383493.335103] Mem abort info:
[383493.335103] ESR = 0x96000044
[383493.335105] EC = 0x25: DABT (current EL), IL = 32 bits
[383493.335107] SET = 0, FnV = 0
[383493.335108] EA = 0, S1PTW = 0
[383493.335109] FSC = 0x04: level 0 translation fault
[383493.335110] Data abort info:
[383493.335111] ISV = 0, ISS = 0x00000044
[383493.364739] CM = 0, WnR = 1
[383493.367793] [dead000000000108] address between user and kernel
address ranges
[383493.375021] Internal error: Oops: 96000044 [#1] PREEMPT SMP
[383493.437574] CPU: 63 PID: 27895 Comm: dma0chan0-copy2 Kdump:
loaded Tainted: GO 5.17.0-rc4+ #2
[383493.457851] pstate: 204000c9 (nzCv daIF +PAN -UAO -TCO -DIT
-SSBS BTYPE=--)
[383493.465331] pc : vchan_tx_submit+0x64/0xa0
[383493.469957] lr : vchan_tx_submit+0x34/0xa0
This occurs because the transmission timed out, and that's due
to data race. Each thread rewrite channels's descriptor as soon as
device_issue_pending is called. It leads to the situation that
the driver thinks that it uses the right descriptor in interrupt
handler while channels's descriptor has been changed by other
thread. The descriptor which in fact reported interrupt will not
be handled any more, as well as its tx->callback.
That's why timeout reports.
With current fixes channels' descriptor changes it's value only
when it has been used. A new descriptor is acquired from
vc->desc_issued queue that is already filled with descriptors
that are ready to be sent. Threads have no direct access to DMA
channel descriptor. In case of channel's descriptor is busy, try
to submit to HW again when a descriptor is completed. In this case,
vc->desc_issued may be empty when hisi_dma_start_transfer is called,
so delete error reporting on this. Now it is just possible to queue
a descriptor for further processing. |
| In the Linux kernel, the following vulnerability has been resolved:
genirq/ipi: Fix NULL pointer deref in irq_data_get_affinity_mask()
If ipi_send_{mask|single}() is called with an invalid interrupt number, all
the local variables there will be NULL. ipi_send_verify() which is invoked
from these functions does verify its 'data' parameter, resulting in a
kernel oops in irq_data_get_affinity_mask() as the passed NULL pointer gets
dereferenced.
Add a missing NULL pointer check in ipi_send_verify()...
Found by Linux Verification Center (linuxtesting.org) with the SVACE static
analysis tool. |
| In the Linux kernel, the following vulnerability has been resolved:
pstore/ram: Check start of empty przs during init
After commit 30696378f68a ("pstore/ram: Do not treat empty buffers as
valid"), initialization would assume a prz was valid after seeing that
the buffer_size is zero (regardless of the buffer start position). This
unchecked start value means it could be outside the bounds of the buffer,
leading to future access panics when written to:
sysdump_panic_event+0x3b4/0x5b8
atomic_notifier_call_chain+0x54/0x90
panic+0x1c8/0x42c
die+0x29c/0x2a8
die_kernel_fault+0x68/0x78
__do_kernel_fault+0x1c4/0x1e0
do_bad_area+0x40/0x100
do_translation_fault+0x68/0x80
do_mem_abort+0x68/0xf8
el1_da+0x1c/0xc0
__raw_writeb+0x38/0x174
__memcpy_toio+0x40/0xac
persistent_ram_update+0x44/0x12c
persistent_ram_write+0x1a8/0x1b8
ramoops_pstore_write+0x198/0x1e8
pstore_console_write+0x94/0xe0
...
To avoid this, also check if the prz start is 0 during the initialization
phase. If not, the next prz sanity check case will discover it (start >
size) and zap the buffer back to a sane state.
[kees: update commit log with backtrace and clarifications] |
| In the Linux kernel, the following vulnerability has been resolved:
caif: fix memory leak in cfctrl_linkup_request()
When linktype is unknown or kzalloc failed in cfctrl_linkup_request(),
pkt is not released. Add release process to error path. |
| In the Linux kernel, the following vulnerability has been resolved:
workqueue: fix data race with the pwq->stats[] increment
KCSAN has discovered a data race in kernel/workqueue.c:2598:
[ 1863.554079] ==================================================================
[ 1863.554118] BUG: KCSAN: data-race in process_one_work / process_one_work
[ 1863.554142] write to 0xffff963d99d79998 of 8 bytes by task 5394 on cpu 27:
[ 1863.554154] process_one_work (kernel/workqueue.c:2598)
[ 1863.554166] worker_thread (./include/linux/list.h:292 kernel/workqueue.c:2752)
[ 1863.554177] kthread (kernel/kthread.c:389)
[ 1863.554186] ret_from_fork (arch/x86/kernel/process.c:145)
[ 1863.554197] ret_from_fork_asm (arch/x86/entry/entry_64.S:312)
[ 1863.554213] read to 0xffff963d99d79998 of 8 bytes by task 5450 on cpu 12:
[ 1863.554224] process_one_work (kernel/workqueue.c:2598)
[ 1863.554235] worker_thread (./include/linux/list.h:292 kernel/workqueue.c:2752)
[ 1863.554247] kthread (kernel/kthread.c:389)
[ 1863.554255] ret_from_fork (arch/x86/kernel/process.c:145)
[ 1863.554266] ret_from_fork_asm (arch/x86/entry/entry_64.S:312)
[ 1863.554280] value changed: 0x0000000000001766 -> 0x000000000000176a
[ 1863.554295] Reported by Kernel Concurrency Sanitizer on:
[ 1863.554303] CPU: 12 PID: 5450 Comm: kworker/u64:1 Tainted: G L 6.5.0-rc6+ #44
[ 1863.554314] Hardware name: ASRock X670E PG Lightning/X670E PG Lightning, BIOS 1.21 04/26/2023
[ 1863.554322] Workqueue: btrfs-endio btrfs_end_bio_work [btrfs]
[ 1863.554941] ==================================================================
lockdep_invariant_state(true);
→ pwq->stats[PWQ_STAT_STARTED]++;
trace_workqueue_execute_start(work);
worker->current_func(work);
Moving pwq->stats[PWQ_STAT_STARTED]++; before the line
raw_spin_unlock_irq(&pool->lock);
resolves the data race without performance penalty.
KCSAN detected at least one additional data race:
[ 157.834751] ==================================================================
[ 157.834770] BUG: KCSAN: data-race in process_one_work / process_one_work
[ 157.834793] write to 0xffff9934453f77a0 of 8 bytes by task 468 on cpu 29:
[ 157.834804] process_one_work (/home/marvin/linux/kernel/linux_torvalds/kernel/workqueue.c:2606)
[ 157.834815] worker_thread (/home/marvin/linux/kernel/linux_torvalds/./include/linux/list.h:292 /home/marvin/linux/kernel/linux_torvalds/kernel/workqueue.c:2752)
[ 157.834826] kthread (/home/marvin/linux/kernel/linux_torvalds/kernel/kthread.c:389)
[ 157.834834] ret_from_fork (/home/marvin/linux/kernel/linux_torvalds/arch/x86/kernel/process.c:145)
[ 157.834845] ret_from_fork_asm (/home/marvin/linux/kernel/linux_torvalds/arch/x86/entry/entry_64.S:312)
[ 157.834859] read to 0xffff9934453f77a0 of 8 bytes by task 214 on cpu 7:
[ 157.834868] process_one_work (/home/marvin/linux/kernel/linux_torvalds/kernel/workqueue.c:2606)
[ 157.834879] worker_thread (/home/marvin/linux/kernel/linux_torvalds/./include/linux/list.h:292 /home/marvin/linux/kernel/linux_torvalds/kernel/workqueue.c:2752)
[ 157.834890] kthread (/home/marvin/linux/kernel/linux_torvalds/kernel/kthread.c:389)
[ 157.834897] ret_from_fork (/home/marvin/linux/kernel/linux_torvalds/arch/x86/kernel/process.c:145)
[ 157.834907] ret_from_fork_asm (/home/marvin/linux/kernel/linux_torvalds/arch/x86/entry/entry_64.S:312)
[ 157.834920] value changed: 0x000000000000052a -> 0x0000000000000532
[ 157.834933] Reported by Kernel Concurrency Sanitizer on:
[ 157.834941] CPU: 7 PID: 214 Comm: kworker/u64:2 Tainted: G L 6.5.0-rc7-kcsan-00169-g81eaf55a60fc #4
[ 157.834951] Hardware name: ASRock X670E PG Lightning/X670E PG Lightning, BIOS 1.21 04/26/2023
[ 157.834958] Workqueue: btrfs-endio btrfs_end_bio_work [btrfs]
[ 157.835567] ==================================================================
in code:
trace_workqueue_execute_end(work, worker->current_func);
→ pwq->stats[PWQ_STAT_COM
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Enhance sanity check while generating attr_list
ni_create_attr_list uses WARN_ON to catch error cases while generating
attribute list, which only prints out stack trace and may not be enough.
This repalces them with more proper error handling flow.
[ 59.666332] BUG: kernel NULL pointer dereference, address: 000000000000000e
[ 59.673268] #PF: supervisor read access in kernel mode
[ 59.678354] #PF: error_code(0x0000) - not-present page
[ 59.682831] PGD 8000000005ff1067 P4D 8000000005ff1067 PUD 7dee067 PMD 0
[ 59.688556] Oops: 0000 [#1] PREEMPT SMP KASAN PTI
[ 59.692642] CPU: 0 PID: 198 Comm: poc Tainted: G B W 6.2.0-rc1+ #4
[ 59.698868] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
[ 59.708795] RIP: 0010:ni_create_attr_list+0x505/0x860
[ 59.713657] Code: 7e 10 e8 5e d0 d0 ff 45 0f b7 76 10 48 8d 7b 16 e8 00 d1 d0 ff 66 44 89 73 16 4d 8d 75 0e 4c 89 f7 e8 3f d0 d0 ff 4c 8d8
[ 59.731559] RSP: 0018:ffff88800a56f1e0 EFLAGS: 00010282
[ 59.735691] RAX: 0000000000000001 RBX: ffff88800b7b5088 RCX: ffffffffb83079fe
[ 59.741792] RDX: 0000000000000001 RSI: 0000000000000008 RDI: ffffffffbb7f9fc0
[ 59.748423] RBP: ffff88800a56f3a8 R08: ffff88800b7b50a0 R09: fffffbfff76ff3f9
[ 59.754654] R10: ffffffffbb7f9fc7 R11: fffffbfff76ff3f8 R12: ffff88800b756180
[ 59.761552] R13: 0000000000000000 R14: 000000000000000e R15: 0000000000000050
[ 59.768323] FS: 00007feaa8c96440(0000) GS:ffff88806d400000(0000) knlGS:0000000000000000
[ 59.776027] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 59.781395] CR2: 00007f3a2e0b1000 CR3: 000000000a5bc000 CR4: 00000000000006f0
[ 59.787607] Call Trace:
[ 59.790271] <TASK>
[ 59.792488] ? __pfx_ni_create_attr_list+0x10/0x10
[ 59.797235] ? kernel_text_address+0xd3/0xe0
[ 59.800856] ? unwind_get_return_address+0x3e/0x60
[ 59.805101] ? __kasan_check_write+0x18/0x20
[ 59.809296] ? preempt_count_sub+0x1c/0xd0
[ 59.813421] ni_ins_attr_ext+0x52c/0x5c0
[ 59.817034] ? __pfx_ni_ins_attr_ext+0x10/0x10
[ 59.821926] ? __vfs_setxattr+0x121/0x170
[ 59.825718] ? __vfs_setxattr_noperm+0x97/0x300
[ 59.829562] ? __vfs_setxattr_locked+0x145/0x170
[ 59.833987] ? vfs_setxattr+0x137/0x2a0
[ 59.836732] ? do_setxattr+0xce/0x150
[ 59.839807] ? setxattr+0x126/0x140
[ 59.842353] ? path_setxattr+0x164/0x180
[ 59.845275] ? __x64_sys_setxattr+0x71/0x90
[ 59.848838] ? do_syscall_64+0x3f/0x90
[ 59.851898] ? entry_SYSCALL_64_after_hwframe+0x72/0xdc
[ 59.857046] ? stack_depot_save+0x17/0x20
[ 59.860299] ni_insert_attr+0x1ba/0x420
[ 59.863104] ? __pfx_ni_insert_attr+0x10/0x10
[ 59.867069] ? preempt_count_sub+0x1c/0xd0
[ 59.869897] ? _raw_spin_unlock_irqrestore+0x2b/0x50
[ 59.874088] ? __create_object+0x3ae/0x5d0
[ 59.877865] ni_insert_resident+0xc4/0x1c0
[ 59.881430] ? __pfx_ni_insert_resident+0x10/0x10
[ 59.886355] ? kasan_save_alloc_info+0x1f/0x30
[ 59.891117] ? __kasan_kmalloc+0x8b/0xa0
[ 59.894383] ntfs_set_ea+0x90d/0xbf0
[ 59.897703] ? __pfx_ntfs_set_ea+0x10/0x10
[ 59.901011] ? kernel_text_address+0xd3/0xe0
[ 59.905308] ? __kernel_text_address+0x16/0x50
[ 59.909811] ? unwind_get_return_address+0x3e/0x60
[ 59.914898] ? __pfx_stack_trace_consume_entry+0x10/0x10
[ 59.920250] ? arch_stack_walk+0xa2/0x100
[ 59.924560] ? filter_irq_stacks+0x27/0x80
[ 59.928722] ntfs_setxattr+0x405/0x440
[ 59.932512] ? __pfx_ntfs_setxattr+0x10/0x10
[ 59.936634] ? kvmalloc_node+0x2d/0x120
[ 59.940378] ? kasan_save_stack+0x41/0x60
[ 59.943870] ? kasan_save_stack+0x2a/0x60
[ 59.947719] ? kasan_set_track+0x29/0x40
[ 59.951417] ? kasan_save_alloc_info+0x1f/0x30
[ 59.955733] ? __kasan_kmalloc+0x8b/0xa0
[ 59.959598] ? __kmalloc_node+0x68/0x150
[ 59.963163] ? kvmalloc_node+0x2d/0x120
[ 59.966490] ? vmemdup_user+0x2b/0xa0
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
iommufd/selftest: Catch overflow of uptr and length
syzkaller hits a WARN_ON when trying to have a uptr close to UINTPTR_MAX:
WARNING: CPU: 1 PID: 393 at drivers/iommu/iommufd/selftest.c:403 iommufd_test+0xb19/0x16f0
Modules linked in:
CPU: 1 PID: 393 Comm: repro Not tainted 6.2.0-c9c3395d5e3d #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
RIP: 0010:iommufd_test+0xb19/0x16f0
Code: 94 c4 31 ff 44 89 e6 e8 a5 54 17 ff 45 84 e4 0f 85 bb 0b 00 00 41 be fb ff ff ff e8 31 53 17 ff e9 a0 f7 ff ff e8 27 53 17 ff <0f> 0b 41 be 8
RSP: 0018:ffffc90000eabdc0 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffff8214c487
RDX: 0000000000000000 RSI: ffff88800f5c8000 RDI: 0000000000000002
RBP: ffffc90000eabe48 R08: 0000000000000000 R09: 0000000000000001
R10: 0000000000000001 R11: 0000000000000000 R12: 00000000cd2b0000
R13: 00000000cd2af000 R14: 0000000000000000 R15: ffffc90000eabe68
FS: 00007f94d76d5740(0000) GS:ffff88807dd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000020000043 CR3: 0000000006880006 CR4: 0000000000770ee0
PKRU: 55555554
Call Trace:
<TASK>
? write_comp_data+0x2f/0x90
iommufd_fops_ioctl+0x1ef/0x310
__x64_sys_ioctl+0x10e/0x160
? __pfx_iommufd_fops_ioctl+0x10/0x10
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x72/0xdc
Check that the user memory range doesn't overflow. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc: Don't try to copy PPR for task with NULL pt_regs
powerpc sets up PF_KTHREAD and PF_IO_WORKER with a NULL pt_regs, which
from my (arguably very short) checking is not commonly done for other
archs. This is fine, except when PF_IO_WORKER's have been created and
the task does something that causes a coredump to be generated. Then we
get this crash:
Kernel attempted to read user page (160) - exploit attempt? (uid: 1000)
BUG: Kernel NULL pointer dereference on read at 0x00000160
Faulting instruction address: 0xc0000000000c3a60
Oops: Kernel access of bad area, sig: 11 [#1]
LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=32 NUMA pSeries
Modules linked in: bochs drm_vram_helper drm_kms_helper xts binfmt_misc ecb ctr syscopyarea sysfillrect cbc sysimgblt drm_ttm_helper aes_generic ttm sg libaes evdev joydev virtio_balloon vmx_crypto gf128mul drm dm_mod fuse loop configfs drm_panel_orientation_quirks ip_tables x_tables autofs4 hid_generic usbhid hid xhci_pci xhci_hcd usbcore usb_common sd_mod
CPU: 1 PID: 1982 Comm: ppc-crash Not tainted 6.3.0-rc2+ #88
Hardware name: IBM pSeries (emulated by qemu) POWER9 (raw) 0x4e1202 0xf000005 of:SLOF,HEAD hv:linux,kvm pSeries
NIP: c0000000000c3a60 LR: c000000000039944 CTR: c0000000000398e0
REGS: c0000000041833b0 TRAP: 0300 Not tainted (6.3.0-rc2+)
MSR: 800000000280b033 <SF,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 88082828 XER: 200400f8
...
NIP memcpy_power7+0x200/0x7d0
LR ppr_get+0x64/0xb0
Call Trace:
ppr_get+0x40/0xb0 (unreliable)
__regset_get+0x180/0x1f0
regset_get_alloc+0x64/0x90
elf_core_dump+0xb98/0x1b60
do_coredump+0x1c34/0x24a0
get_signal+0x71c/0x1410
do_notify_resume+0x140/0x6f0
interrupt_exit_user_prepare_main+0x29c/0x320
interrupt_exit_user_prepare+0x6c/0xa0
interrupt_return_srr_user+0x8/0x138
Because ppr_get() is trying to copy from a PF_IO_WORKER with a NULL
pt_regs.
Check for a valid pt_regs in both ppc_get/ppr_set, and return an error
if not set. The actual error value doesn't seem to be important here, so
just pick -EINVAL.
[mpe: Trim oops in change log, add Fixes & Cc stable] |
| In the Linux kernel, the following vulnerability has been resolved:
drm/mediatek: dp: Change logging to dev for mtk_dp_aux_transfer()
Change logging from drm_{err,info}() to dev_{err,info}() in functions
mtk_dp_aux_transfer() and mtk_dp_aux_do_transfer(): this will be
essential to avoid getting NULL pointer kernel panics if any kind
of error happens during AUX transfers happening before the bridge
is attached.
This may potentially start happening in a later commit implementing
aux-bus support, as AUX transfers will be triggered from the panel
driver (for EDID) before the mtk-dp bridge gets attached, and it's
done in preparation for the same. |