CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
The Keras Model.load_model method can be exploited to achieve arbitrary code execution, even with safe_mode=True.
One can create a specially crafted .h5/.hdf5 model archive that, when loaded via Model.load_model, will trigger arbitrary code to be executed.
This is achieved by crafting a special .h5 archive file that uses the Lambda layer feature of keras which allows arbitrary Python code in the form of pickled code. The vulnerability comes from the fact that the safe_mode=True option is not honored when reading .h5 archives.
Note that the .h5/.hdf5 format is a legacy format supported by Keras 3 for backwards compatibility. |
The Keras Model.load_model method can be exploited to achieve arbitrary code execution, even with safe_mode=True.
One can create a specially crafted .keras model archive that, when loaded via Model.load_model, will trigger arbitrary code to be executed. This is achieved by crafting a special config.json (a file within the .keras archive) that will invoke keras.config.enable_unsafe_deserialization() to disable safe mode. Once safe mode is disable, one can use the Lambda layer feature of keras, which allows arbitrary Python code in the form of pickled code. Both can appear in the same archive. Simply the keras.config.enable_unsafe_deserialization() needs to appear first in the archive and the Lambda with arbitrary code needs to be second. |
Improper Neutralization of Input During Web Page Generation (XSS or 'Cross-site Scripting') vulnerability in Vizly Web Design Real Estate Packages allows Content Spoofing, CAPEC - 593 - Session Hijacking, CAPEC - 591 - Reflected XSS.This issue affects Real Estate Packages: before 5.1. |
In the Linux kernel, the following vulnerability has been resolved:
ACPICA: Fix error code path in acpi_ds_call_control_method()
A use-after-free in acpi_ps_parse_aml() after a failing invocaion of
acpi_ds_call_control_method() is reported by KASAN [1] and code
inspection reveals that next_walk_state pushed to the thread by
acpi_ds_create_walk_state() is freed on errors, but it is not popped
from the thread beforehand. Thus acpi_ds_get_current_walk_state()
called by acpi_ps_parse_aml() subsequently returns it as the new
walk state which is incorrect.
To address this, make acpi_ds_call_control_method() call
acpi_ds_pop_walk_state() to pop next_walk_state from the thread before
returning an error. |
In the Linux kernel, the following vulnerability has been resolved:
cifs: prevent use-after-free by freeing the cfile later
In smb2_compound_op we have a possible use-after-free
which can cause hard to debug problems later on.
This was revealed during stress testing with KASAN enabled
kernel. Fixing it by moving the cfile free call to
a few lines below, after the usage. |
In the Linux kernel, the following vulnerability has been resolved:
irqchip/gicv3: Workaround for NVIDIA erratum T241-FABRIC-4
The T241 platform suffers from the T241-FABRIC-4 erratum which causes
unexpected behavior in the GIC when multiple transactions are received
simultaneously from different sources. This hardware issue impacts
NVIDIA server platforms that use more than two T241 chips
interconnected. Each chip has support for 320 {E}SPIs.
This issue occurs when multiple packets from different GICs are
incorrectly interleaved at the target chip. The erratum text below
specifies exactly what can cause multiple transfer packets susceptible
to interleaving and GIC state corruption. GIC state corruption can
lead to a range of problems, including kernel panics, and unexpected
behavior.
>From the erratum text:
"In some cases, inter-socket AXI4 Stream packets with multiple
transfers, may be interleaved by the fabric when presented to ARM
Generic Interrupt Controller. GIC expects all transfers of a packet
to be delivered without any interleaving.
The following GICv3 commands may result in multiple transfer packets
over inter-socket AXI4 Stream interface:
- Register reads from GICD_I* and GICD_N*
- Register writes to 64-bit GICD registers other than GICD_IROUTERn*
- ITS command MOVALL
Multiple commands in GICv4+ utilize multiple transfer packets,
including VMOVP, VMOVI, VMAPP, and 64-bit register accesses."
This issue impacts system configurations with more than 2 sockets,
that require multi-transfer packets to be sent over inter-socket
AXI4 Stream interface between GIC instances on different sockets.
GICv4 cannot be supported. GICv3 SW model can only be supported
with the workaround. Single and Dual socket configurations are not
impacted by this issue and support GICv3 and GICv4."
Writing to the chip alias region of the GICD_In{E} registers except
GICD_ICENABLERn has an equivalent effect as writing to the global
distributor. The SPI interrupt deactivate path is not impacted by
the erratum.
To fix this problem, implement a workaround that ensures read accesses
to the GICD_In{E} registers are directed to the chip that owns the
SPI, and disable GICv4.x features. To simplify code changes, the
gic_configure_irq() function uses the same alias region for both read
and write operations to GICD_ICFGR. |
In the Linux kernel, the following vulnerability has been resolved:
drivers: base: component: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
In the Linux kernel, the following vulnerability has been resolved:
PM: EM: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
In the Linux kernel, the following vulnerability has been resolved:
clk: mediatek: fix of_iomap memory leak
Smatch reports:
drivers/clk/mediatek/clk-mtk.c:583 mtk_clk_simple_probe() warn:
'base' from of_iomap() not released on lines: 496.
This problem was also found in linux-next. In mtk_clk_simple_probe(),
base is not released when handling errors
if clk_data is not existed, which may cause a leak.
So free_base should be added here to release base. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: dma: fix memory leak running mt76_dma_tx_cleanup
Fix device unregister memory leak and alway cleanup all configured
rx queues in mt76_dma_tx_cleanup routine. |
In the Linux kernel, the following vulnerability has been resolved:
ASoC: mediatek: mt8183: fix refcount leak in mt8183_mt6358_ts3a227_max98357_dev_probe()
The node returned by of_parse_phandle() with refcount incremented,
of_node_put() needs be called when finish using it. So add it in the
error path in mt8183_mt6358_ts3a227_max98357_dev_probe(). |
In the Linux kernel, the following vulnerability has been resolved:
net: sched: fix memory leak in tcindex_set_parms
Syzkaller reports a memory leak as follows:
====================================
BUG: memory leak
unreferenced object 0xffff88810c287f00 (size 256):
comm "syz-executor105", pid 3600, jiffies 4294943292 (age 12.990s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<ffffffff814cf9f0>] kmalloc_trace+0x20/0x90 mm/slab_common.c:1046
[<ffffffff839c9e07>] kmalloc include/linux/slab.h:576 [inline]
[<ffffffff839c9e07>] kmalloc_array include/linux/slab.h:627 [inline]
[<ffffffff839c9e07>] kcalloc include/linux/slab.h:659 [inline]
[<ffffffff839c9e07>] tcf_exts_init include/net/pkt_cls.h:250 [inline]
[<ffffffff839c9e07>] tcindex_set_parms+0xa7/0xbe0 net/sched/cls_tcindex.c:342
[<ffffffff839caa1f>] tcindex_change+0xdf/0x120 net/sched/cls_tcindex.c:553
[<ffffffff8394db62>] tc_new_tfilter+0x4f2/0x1100 net/sched/cls_api.c:2147
[<ffffffff8389e91c>] rtnetlink_rcv_msg+0x4dc/0x5d0 net/core/rtnetlink.c:6082
[<ffffffff839eba67>] netlink_rcv_skb+0x87/0x1d0 net/netlink/af_netlink.c:2540
[<ffffffff839eab87>] netlink_unicast_kernel net/netlink/af_netlink.c:1319 [inline]
[<ffffffff839eab87>] netlink_unicast+0x397/0x4c0 net/netlink/af_netlink.c:1345
[<ffffffff839eb046>] netlink_sendmsg+0x396/0x710 net/netlink/af_netlink.c:1921
[<ffffffff8383e796>] sock_sendmsg_nosec net/socket.c:714 [inline]
[<ffffffff8383e796>] sock_sendmsg+0x56/0x80 net/socket.c:734
[<ffffffff8383eb08>] ____sys_sendmsg+0x178/0x410 net/socket.c:2482
[<ffffffff83843678>] ___sys_sendmsg+0xa8/0x110 net/socket.c:2536
[<ffffffff838439c5>] __sys_sendmmsg+0x105/0x330 net/socket.c:2622
[<ffffffff83843c14>] __do_sys_sendmmsg net/socket.c:2651 [inline]
[<ffffffff83843c14>] __se_sys_sendmmsg net/socket.c:2648 [inline]
[<ffffffff83843c14>] __x64_sys_sendmmsg+0x24/0x30 net/socket.c:2648
[<ffffffff84605fd5>] do_syscall_x64 arch/x86/entry/common.c:50 [inline]
[<ffffffff84605fd5>] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
[<ffffffff84800087>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
====================================
Kernel uses tcindex_change() to change an existing
filter properties.
Yet the problem is that, during the process of changing,
if `old_r` is retrieved from `p->perfect`, then
kernel uses tcindex_alloc_perfect_hash() to newly
allocate filter results, uses tcindex_filter_result_init()
to clear the old filter result, without destroying
its tcf_exts structure, which triggers the above memory leak.
To be more specific, there are only two source for the `old_r`,
according to the tcindex_lookup(). `old_r` is retrieved from
`p->perfect`, or `old_r` is retrieved from `p->h`.
* If `old_r` is retrieved from `p->perfect`, kernel uses
tcindex_alloc_perfect_hash() to newly allocate the
filter results. Then `r` is assigned with `cp->perfect + handle`,
which is newly allocated. So condition `old_r && old_r != r` is
true in this situation, and kernel uses tcindex_filter_result_init()
to clear the old filter result, without destroying
its tcf_exts structure
* If `old_r` is retrieved from `p->h`, then `p->perfect` is NULL
according to the tcindex_lookup(). Considering that `cp->h`
is directly copied from `p->h` and `p->perfect` is NULL,
`r` is assigned with `tcindex_lookup(cp, handle)`, whose value
should be the same as `old_r`, so condition `old_r && old_r != r`
is false in this situation, kernel ignores using
tcindex_filter_result_init() to clear the old filter result.
So only when `old_r` is retrieved from `p->perfect` does kernel use
tcindex_filter_result_init() to clear the old filter result, which
triggers the above memory leak.
Considering that there already exists a tc_filter_wq workqueue
to destroy the old tcindex_d
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
net/ieee802154: reject zero-sized raw_sendmsg()
syzbot is hitting skb_assert_len() warning at raw_sendmsg() for ieee802154
socket. What commit dc633700f00f726e ("net/af_packet: check len when
min_header_len equals to 0") does also applies to ieee802154 socket. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix memory leak in mes self test
The fences associated with mes queue have to be freed
up during amdgpu_ring_fini. |
In the Linux kernel, the following vulnerability has been resolved:
usb: phy: phy-tahvo: fix memory leak in tahvo_usb_probe()
Smatch reports:
drivers/usb/phy/phy-tahvo.c: tahvo_usb_probe()
warn: missing unwind goto?
After geting irq, if ret < 0, it will return without error handling to
free memory.
Just add error handling to fix this problem. |
In the Linux kernel, the following vulnerability has been resolved:
net/smc: Reset connection when trying to use SMCRv2 fails.
We found a crash when using SMCRv2 with 2 Mellanox ConnectX-4. It
can be reproduced by:
- smc_run nginx
- smc_run wrk -t 32 -c 500 -d 30 http://<ip>:<port>
BUG: kernel NULL pointer dereference, address: 0000000000000014
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 8000000108713067 P4D 8000000108713067 PUD 151127067 PMD 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 4 PID: 2441 Comm: kworker/4:249 Kdump: loaded Tainted: G W E 6.4.0-rc1+ #42
Workqueue: smc_hs_wq smc_listen_work [smc]
RIP: 0010:smc_clc_send_confirm_accept+0x284/0x580 [smc]
RSP: 0018:ffffb8294b2d7c78 EFLAGS: 00010a06
RAX: ffff8f1873238880 RBX: ffffb8294b2d7dc8 RCX: 0000000000000000
RDX: 00000000000000b4 RSI: 0000000000000001 RDI: 0000000000b40c00
RBP: ffffb8294b2d7db8 R08: ffff8f1815c5860c R09: 0000000000000000
R10: 0000000000000400 R11: 0000000000000000 R12: ffff8f1846f56180
R13: ffff8f1815c5860c R14: 0000000000000001 R15: 0000000000000001
FS: 0000000000000000(0000) GS:ffff8f1aefd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000014 CR3: 00000001027a0001 CR4: 00000000003706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
? mlx5_ib_map_mr_sg+0xa1/0xd0 [mlx5_ib]
? smcr_buf_map_link+0x24b/0x290 [smc]
? __smc_buf_create+0x4ee/0x9b0 [smc]
smc_clc_send_accept+0x4c/0xb0 [smc]
smc_listen_work+0x346/0x650 [smc]
? __schedule+0x279/0x820
process_one_work+0x1e5/0x3f0
worker_thread+0x4d/0x2f0
? __pfx_worker_thread+0x10/0x10
kthread+0xe5/0x120
? __pfx_kthread+0x10/0x10
ret_from_fork+0x2c/0x50
</TASK>
During the CLC handshake, server sequentially tries available SMCRv2
and SMCRv1 devices in smc_listen_work().
If an SMCRv2 device is found. SMCv2 based link group and link will be
assigned to the connection. Then assumed that some buffer assignment
errors happen later in the CLC handshake, such as RMB registration
failure, server will give up SMCRv2 and try SMCRv1 device instead. But
the resources assigned to the connection won't be reset.
When server tries SMCRv1 device, the connection creation process will
be executed again. Since conn->lnk has been assigned when trying SMCRv2,
it will not be set to the correct SMCRv1 link in
smcr_lgr_conn_assign_link(). So in such situation, conn->lgr points to
correct SMCRv1 link group but conn->lnk points to the SMCRv2 link
mistakenly.
Then in smc_clc_send_confirm_accept(), conn->rmb_desc->mr[link->link_idx]
will be accessed. Since the link->link_idx is not correct, the related
MR may not have been initialized, so crash happens.
| Try SMCRv2 device first
| |-> conn->lgr: assign existed SMCRv2 link group;
| |-> conn->link: assign existed SMCRv2 link (link_idx may be 1 in SMC_LGR_SYMMETRIC);
| |-> sndbuf & RMB creation fails, quit;
|
| Try SMCRv1 device then
| |-> conn->lgr: create SMCRv1 link group and assign;
| |-> conn->link: keep SMCRv2 link mistakenly;
| |-> sndbuf & RMB creation succeed, only RMB->mr[link_idx = 0]
| initialized.
|
| Then smc_clc_send_confirm_accept() accesses
| conn->rmb_desc->mr[conn->link->link_idx, which is 1], then crash.
v
This patch tries to fix this by cleaning conn->lnk before assigning
link. In addition, it is better to reset the connection and clean the
resources assigned if trying SMCRv2 failed in buffer creation or
registration. |
In the Linux kernel, the following vulnerability has been resolved:
drm/mediatek: dp: Only trigger DRM HPD events if bridge is attached
The MediaTek DisplayPort interface bridge driver starts its interrupts
as soon as its probed. However when the interrupts trigger the bridge
might not have been attached to a DRM device. As drm_helper_hpd_irq_event()
does not check whether the passed in drm_device is valid or not, a NULL
pointer passed in results in a kernel NULL pointer dereference in it.
Check whether the bridge is attached and only trigger an HPD event if
it is. |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/mlx5: Fix mlx5_ib_get_hw_stats when used for device
Currently, when mlx5_ib_get_hw_stats() is used for device (port_num = 0),
there is a special handling in order to use the correct counters, but,
port_num is being passed down the stack without any change. Also, some
functions assume that port_num >=1. As a result, the following oops can
occur.
BUG: unable to handle page fault for address: ffff89510294f1a8
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] SMP
CPU: 8 PID: 1382 Comm: devlink Tainted: G W 6.1.0-rc4_for_upstream_base_2022_11_10_16_12 #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:_raw_spin_lock+0xc/0x20
Call Trace:
<TASK>
mlx5_ib_get_native_port_mdev+0x73/0xe0 [mlx5_ib]
do_get_hw_stats.constprop.0+0x109/0x160 [mlx5_ib]
mlx5_ib_get_hw_stats+0xad/0x180 [mlx5_ib]
ib_setup_device_attrs+0xf0/0x290 [ib_core]
ib_register_device+0x3bb/0x510 [ib_core]
? atomic_notifier_chain_register+0x67/0x80
__mlx5_ib_add+0x2b/0x80 [mlx5_ib]
mlx5r_probe+0xb8/0x150 [mlx5_ib]
? auxiliary_match_id+0x6a/0x90
auxiliary_bus_probe+0x3c/0x70
? driver_sysfs_add+0x6b/0x90
really_probe+0xcd/0x380
__driver_probe_device+0x80/0x170
driver_probe_device+0x1e/0x90
__device_attach_driver+0x7d/0x100
? driver_allows_async_probing+0x60/0x60
? driver_allows_async_probing+0x60/0x60
bus_for_each_drv+0x7b/0xc0
__device_attach+0xbc/0x200
bus_probe_device+0x87/0xa0
device_add+0x404/0x940
? dev_set_name+0x53/0x70
__auxiliary_device_add+0x43/0x60
add_adev+0x99/0xe0 [mlx5_core]
mlx5_attach_device+0xc8/0x120 [mlx5_core]
mlx5_load_one_devl_locked+0xb2/0xe0 [mlx5_core]
devlink_reload+0x133/0x250
devlink_nl_cmd_reload+0x480/0x570
? devlink_nl_pre_doit+0x44/0x2b0
genl_family_rcv_msg_doit.isra.0+0xc2/0x110
genl_rcv_msg+0x180/0x2b0
? devlink_nl_cmd_region_read_dumpit+0x540/0x540
? devlink_reload+0x250/0x250
? devlink_put+0x50/0x50
? genl_family_rcv_msg_doit.isra.0+0x110/0x110
netlink_rcv_skb+0x54/0x100
genl_rcv+0x24/0x40
netlink_unicast+0x1f6/0x2c0
netlink_sendmsg+0x237/0x490
sock_sendmsg+0x33/0x40
__sys_sendto+0x103/0x160
? handle_mm_fault+0x10e/0x290
? do_user_addr_fault+0x1c0/0x5f0
__x64_sys_sendto+0x25/0x30
do_syscall_64+0x3d/0x90
entry_SYSCALL_64_after_hwframe+0x46/0xb0
Fix it by setting port_num to 1 in order to get device status and remove
unused variable. |
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: xsk: Fix crash on regular rq reactivation
When the regular rq is reactivated after the XSK socket is closed
it could be reading stale cqes which eventually corrupts the rq.
This leads to no more traffic being received on the regular rq and a
crash on the next close or deactivation of the rq.
Kal Cuttler Conely reported this issue as a crash on the release
path when the xdpsock sample program is stopped (killed) and restarted
in sequence while traffic is running.
This patch flushes all cqes when during the rq flush. The cqe flushing
is done in the reset state of the rq. mlx5e_rq_to_ready code is moved
into the flush function to allow for this. |
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix NULL pointer dereference in smb2_get_info_filesystem()
If share is , share->path is NULL and it cause NULL pointer
dereference issue. |