| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| An issue was found in the CPython `tempfile.TemporaryDirectory` class affecting versions 3.12.1, 3.11.7, 3.10.13, 3.9.18, and 3.8.18 and prior.
The tempfile.TemporaryDirectory class would dereference symlinks during cleanup of permissions-related errors. This means users which can run privileged programs are potentially able to modify permissions of files referenced by symlinks in some circumstances.
|
| Issue summary: A bug has been identified in the processing of key and
initialisation vector (IV) lengths. This can lead to potential truncation
or overruns during the initialisation of some symmetric ciphers.
Impact summary: A truncation in the IV can result in non-uniqueness,
which could result in loss of confidentiality for some cipher modes.
When calling EVP_EncryptInit_ex2(), EVP_DecryptInit_ex2() or
EVP_CipherInit_ex2() the provided OSSL_PARAM array is processed after
the key and IV have been established. Any alterations to the key length,
via the "keylen" parameter or the IV length, via the "ivlen" parameter,
within the OSSL_PARAM array will not take effect as intended, potentially
causing truncation or overreading of these values. The following ciphers
and cipher modes are impacted: RC2, RC4, RC5, CCM, GCM and OCB.
For the CCM, GCM and OCB cipher modes, truncation of the IV can result in
loss of confidentiality. For example, when following NIST's SP 800-38D
section 8.2.1 guidance for constructing a deterministic IV for AES in
GCM mode, truncation of the counter portion could lead to IV reuse.
Both truncations and overruns of the key and overruns of the IV will
produce incorrect results and could, in some cases, trigger a memory
exception. However, these issues are not currently assessed as security
critical.
Changing the key and/or IV lengths is not considered to be a common operation
and the vulnerable API was recently introduced. Furthermore it is likely that
application developers will have spotted this problem during testing since
decryption would fail unless both peers in the communication were similarly
vulnerable. For these reasons we expect the probability of an application being
vulnerable to this to be quite low. However if an application is vulnerable then
this issue is considered very serious. For these reasons we have assessed this
issue as Moderate severity overall.
The OpenSSL SSL/TLS implementation is not affected by this issue.
The OpenSSL 3.0 and 3.1 FIPS providers are not affected by this because
the issue lies outside of the FIPS provider boundary.
OpenSSL 3.1 and 3.0 are vulnerable to this issue. |
| The jose4j component before 0.9.4 for Java allows attackers to cause a denial of service (CPU consumption) via a large p2c (aka PBES2 Count) value. |
| urllib3 is a user-friendly HTTP client library for Python. urllib3 previously wouldn't remove the HTTP request body when an HTTP redirect response using status 301, 302, or 303 after the request had its method changed from one that could accept a request body (like `POST`) to `GET` as is required by HTTP RFCs. Although this behavior is not specified in the section for redirects, it can be inferred by piecing together information from different sections and we have observed the behavior in other major HTTP client implementations like curl and web browsers. Because the vulnerability requires a previously trusted service to become compromised in order to have an impact on confidentiality we believe the exploitability of this vulnerability is low. Additionally, many users aren't putting sensitive data in HTTP request bodies, if this is the case then this vulnerability isn't exploitable. Both of the following conditions must be true to be affected by this vulnerability: 1. Using urllib3 and submitting sensitive information in the HTTP request body (such as form data or JSON) and 2. The origin service is compromised and starts redirecting using 301, 302, or 303 to a malicious peer or the redirected-to service becomes compromised. This issue has been addressed in versions 1.26.18 and 2.0.7 and users are advised to update to resolve this issue. Users unable to update should disable redirects for services that aren't expecting to respond with redirects with `redirects=False` and disable automatic redirects with `redirects=False` and handle 301, 302, and 303 redirects manually by stripping the HTTP request body. |
| An issue was discovered in PostCSS before 8.4.31. The vulnerability affects linters using PostCSS to parse external untrusted CSS. An attacker can prepare CSS in such a way that it will contains parts parsed by PostCSS as a CSS comment. After processing by PostCSS, it will be included in the PostCSS output in CSS nodes (rules, properties) despite being included in a comment. |
| urllib3 is a user-friendly HTTP client library for Python. urllib3 doesn't treat the `Cookie` HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a `Cookie` header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. This issue has been patched in urllib3 version 1.26.17 or 2.0.5. |
| The email module of Python through 3.11.3 incorrectly parses e-mail addresses that contain a special character. The wrong portion of an RFC2822 header is identified as the value of the addr-spec. In some applications, an attacker can bypass a protection mechanism in which application access is granted only after verifying receipt of e-mail to a specific domain (e.g., only @company.example.com addresses may be used for signup). This occurs in email/_parseaddr.py in recent versions of Python. |
| Versions of the package follow-redirects before 1.15.4 are vulnerable to Improper Input Validation due to the improper handling of URLs by the url.parse() function. When new URL() throws an error, it can be manipulated to misinterpret the hostname. An attacker could exploit this weakness to redirect traffic to a malicious site, potentially leading to information disclosure, phishing attacks, or other security breaches. |
| moment is a JavaScript date library for parsing, validating, manipulating, and formatting dates. Affected versions of moment were found to use an inefficient parsing algorithm. Specifically using string-to-date parsing in moment (more specifically rfc2822 parsing, which is tried by default) has quadratic (N^2) complexity on specific inputs. Users may notice a noticeable slowdown is observed with inputs above 10k characters. Users who pass user-provided strings without sanity length checks to moment constructor are vulnerable to (Re)DoS attacks. The problem is patched in 2.29.4, the patch can be applied to all affected versions with minimal tweaking. Users are advised to upgrade. Users unable to upgrade should consider limiting date lengths accepted from user input. |
| Moment.js is a JavaScript date library for parsing, validating, manipulating, and formatting dates. A path traversal vulnerability impacts npm (server) users of Moment.js between versions 1.0.1 and 2.29.1, especially if a user-provided locale string is directly used to switch moment locale. This problem is patched in 2.29.2, and the patch can be applied to all affected versions. As a workaround, sanitize the user-provided locale name before passing it to Moment.js. |
| XStream is an open source java library to serialize objects to XML and back again. Versions prior to 1.4.19 may allow a remote attacker to allocate 100% CPU time on the target system depending on CPU type or parallel execution of such a payload resulting in a denial of service only by manipulating the processed input stream. XStream 1.4.19 monitors and accumulates the time it takes to add elements to collections and throws an exception if a set threshold is exceeded. Users are advised to upgrade as soon as possible. Users unable to upgrade may set the NO_REFERENCE mode to prevent recursion. See GHSA-rmr5-cpv2-vgjf for further details on a workaround if an upgrade is not possible. |
| A flaw was found in the Linux kernel. Measuring usage of the shared memory does not scale with large shared memory segment counts which could lead to resource exhaustion and DoS. |
| The package nanoid from 3.0.0 and before 3.1.31 are vulnerable to Information Exposure via the valueOf() function which allows to reproduce the last id generated. |
| The issue was addressed with improved memory handling. This issue is fixed in visionOS 2.4, tvOS 18.4, iPadOS 17.7.6, iOS 18.4 and iPadOS 18.4, macOS Sequoia 15.4, Safari 18.4. Processing maliciously crafted web content may lead to an unexpected Safari crash. |
| A buffer overflow issue was addressed with improved memory handling. This issue is fixed in tvOS 18.4, Safari 18.4, iPadOS 17.7.6, iOS 18.4 and iPadOS 18.4, macOS Sequoia 15.4. Processing maliciously crafted web content may lead to an unexpected process crash. |
| A command injection flaw was found in the text editor Emacs. It could allow a remote, unauthenticated attacker to execute arbitrary shell commands on a vulnerable system. Exploitation is possible by tricking users into visiting a specially crafted website or an HTTP URL with a redirect. |
| libxml2 before 2.12.10 and 2.13.x before 2.13.6 has a use-after-free in xmlSchemaIDCFillNodeTables and xmlSchemaBubbleIDCNodeTables in xmlschemas.c. To exploit this, a crafted XML document must be validated against an XML schema with certain identity constraints, or a crafted XML schema must be used. |
| xsltGetInheritedNsList in libxslt before 1.1.43 has a use-after-free issue related to exclusion of result prefixes. |
| DOMPurify is a DOM-only, super-fast, uber-tolerant XSS sanitizer for HTML, MathML and SVG. DOMPurify was vulnerable to prototype pollution. This vulnerability is fixed in 2.4.2. |
| DOMPurify is a DOM-only, super-fast, uber-tolerant XSS sanitizer for HTML, MathML and SVG. DOMpurify was vulnerable to nesting-based mXSS. This vulnerability is fixed in 2.5.0 and 3.1.3. |