Search Results (8448 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-5318 2 Libssh, Redhat 10 Libssh, Enterprise Linux, Openshift and 7 more 2025-11-11 5.4 Medium
A flaw was found in the libssh library in versions less than 0.11.2. An out-of-bounds read can be triggered in the sftp_handle function due to an incorrect comparison check that permits the function to access memory beyond the valid handle list and to return an invalid pointer, which is used in further processing. This vulnerability allows an authenticated remote attacker to potentially read unintended memory regions, exposing sensitive information or affect service behavior.
CVE-2025-11021 1 Redhat 1 Enterprise Linux 2025-11-11 7.5 High
A flaw was found in the cookie date handling logic of the libsoup HTTP library, widely used by GNOME and other applications for web communication. When processing cookies with specially crafted expiration dates, the library may perform an out-of-bounds memory read. This flaw could result in unintended disclosure of memory contents, potentially exposing sensitive information from the process using libsoup.
CVE-2022-49883 1 Linux 1 Linux Kernel 2025-11-10 7.1 High
In the Linux kernel, the following vulnerability has been resolved: KVM: x86: smm: number of GPRs in the SMRAM image depends on the image format On 64 bit host, if the guest doesn't have X86_FEATURE_LM, KVM will access 16 gprs to 32-bit smram image, causing out-ouf-bound ram access. On 32 bit host, the rsm_load_state_64/enter_smm_save_state_64 is compiled out, thus access overflow can't happen.
CVE-2022-49870 1 Linux 1 Linux Kernel 2025-11-10 7.1 High
In the Linux kernel, the following vulnerability has been resolved: capabilities: fix undefined behavior in bit shift for CAP_TO_MASK Shifting signed 32-bit value by 31 bits is undefined, so changing significant bit to unsigned. The UBSAN warning calltrace like below: UBSAN: shift-out-of-bounds in security/commoncap.c:1252:2 left shift of 1 by 31 places cannot be represented in type 'int' Call Trace: <TASK> dump_stack_lvl+0x7d/0xa5 dump_stack+0x15/0x1b ubsan_epilogue+0xe/0x4e __ubsan_handle_shift_out_of_bounds+0x1e7/0x20c cap_task_prctl+0x561/0x6f0 security_task_prctl+0x5a/0xb0 __x64_sys_prctl+0x61/0x8f0 do_syscall_64+0x58/0x80 entry_SYSCALL_64_after_hwframe+0x63/0xcd </TASK>
CVE-2022-49851 1 Linux 1 Linux Kernel 2025-11-10 7.1 High
In the Linux kernel, the following vulnerability has been resolved: riscv: fix reserved memory setup Currently, RISC-V sets up reserved memory using the "early" copy of the device tree. As a result, when trying to get a reserved memory region using of_reserved_mem_lookup(), the pointer to reserved memory regions is using the early, pre-virtual-memory address which causes a kernel panic when trying to use the buffer's name: Unable to handle kernel paging request at virtual address 00000000401c31ac Oops [#1] Modules linked in: CPU: 0 PID: 0 Comm: swapper Not tainted 6.0.0-rc1-00001-g0d9d6953d834 #1 Hardware name: Microchip PolarFire-SoC Icicle Kit (DT) epc : string+0x4a/0xea ra : vsnprintf+0x1e4/0x336 epc : ffffffff80335ea0 ra : ffffffff80338936 sp : ffffffff81203be0 gp : ffffffff812e0a98 tp : ffffffff8120de40 t0 : 0000000000000000 t1 : ffffffff81203e28 t2 : 7265736572203a46 s0 : ffffffff81203c20 s1 : ffffffff81203e28 a0 : ffffffff81203d22 a1 : 0000000000000000 a2 : ffffffff81203d08 a3 : 0000000081203d21 a4 : ffffffffffffffff a5 : 00000000401c31ac a6 : ffff0a00ffffff04 a7 : ffffffffffffffff s2 : ffffffff81203d08 s3 : ffffffff81203d00 s4 : 0000000000000008 s5 : ffffffff000000ff s6 : 0000000000ffffff s7 : 00000000ffffff00 s8 : ffffffff80d9821a s9 : ffffffff81203d22 s10: 0000000000000002 s11: ffffffff80d9821c t3 : ffffffff812f3617 t4 : ffffffff812f3617 t5 : ffffffff812f3618 t6 : ffffffff81203d08 status: 0000000200000100 badaddr: 00000000401c31ac cause: 000000000000000d [<ffffffff80338936>] vsnprintf+0x1e4/0x336 [<ffffffff80055ae2>] vprintk_store+0xf6/0x344 [<ffffffff80055d86>] vprintk_emit+0x56/0x192 [<ffffffff80055ed8>] vprintk_default+0x16/0x1e [<ffffffff800563d2>] vprintk+0x72/0x80 [<ffffffff806813b2>] _printk+0x36/0x50 [<ffffffff8068af48>] print_reserved_mem+0x1c/0x24 [<ffffffff808057ec>] paging_init+0x528/0x5bc [<ffffffff808031ae>] setup_arch+0xd0/0x592 [<ffffffff8080070e>] start_kernel+0x82/0x73c early_init_fdt_scan_reserved_mem() takes no arguments as it operates on initial_boot_params, which is populated by early_init_dt_verify(). On RISC-V, early_init_dt_verify() is called twice. Once, directly, in setup_arch() if CONFIG_BUILTIN_DTB is not enabled and once indirectly, very early in the boot process, by parse_dtb() when it calls early_init_dt_scan_nodes(). This first call uses dtb_early_va to set initial_boot_params, which is not usable later in the boot process when early_init_fdt_scan_reserved_mem() is called. On arm64 for example, the corresponding call to early_init_dt_scan_nodes() uses fixmap addresses and doesn't suffer the same fate. Move early_init_fdt_scan_reserved_mem() further along the boot sequence, after the direct call to early_init_dt_verify() in setup_arch() so that the names use the correct virtual memory addresses. The above supposed that CONFIG_BUILTIN_DTB was not set, but should work equally in the case where it is - unflatted_and_copy_device_tree() also updates initial_boot_params.
CVE-2023-53112 1 Linux 1 Linux Kernel 2025-11-10 7.1 High
In the Linux kernel, the following vulnerability has been resolved: drm/i915/sseu: fix max_subslices array-index-out-of-bounds access It seems that commit bc3c5e0809ae ("drm/i915/sseu: Don't try to store EU mask internally in UAPI format") exposed a potential out-of-bounds access, reported by UBSAN as following on a laptop with a gen 11 i915 card: UBSAN: array-index-out-of-bounds in drivers/gpu/drm/i915/gt/intel_sseu.c:65:27 index 6 is out of range for type 'u16 [6]' CPU: 2 PID: 165 Comm: systemd-udevd Not tainted 6.2.0-9-generic #9-Ubuntu Hardware name: Dell Inc. XPS 13 9300/077Y9N, BIOS 1.11.0 03/22/2022 Call Trace: <TASK> show_stack+0x4e/0x61 dump_stack_lvl+0x4a/0x6f dump_stack+0x10/0x18 ubsan_epilogue+0x9/0x3a __ubsan_handle_out_of_bounds.cold+0x42/0x47 gen11_compute_sseu_info+0x121/0x130 [i915] intel_sseu_info_init+0x15d/0x2b0 [i915] intel_gt_init_mmio+0x23/0x40 [i915] i915_driver_mmio_probe+0x129/0x400 [i915] ? intel_gt_probe_all+0x91/0x2e0 [i915] i915_driver_probe+0xe1/0x3f0 [i915] ? drm_privacy_screen_get+0x16d/0x190 [drm] ? acpi_dev_found+0x64/0x80 i915_pci_probe+0xac/0x1b0 [i915] ... According to the definition of sseu_dev_info, eu_mask->hsw is limited to a maximum of GEN_MAX_SS_PER_HSW_SLICE (6) sub-slices, but gen11_sseu_info_init() can potentially set 8 sub-slices, in the !IS_JSL_EHL(gt->i915) case. Fix this by reserving up to 8 slots for max_subslices in the eu_mask struct. (cherry picked from commit 3cba09a6ac86ea1d456909626eb2685596c07822)
CVE-2023-53117 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-10 7.1 High
In the Linux kernel, the following vulnerability has been resolved: fs: prevent out-of-bounds array speculation when closing a file descriptor Google-Bug-Id: 114199369
CVE-2023-53135 1 Linux 2 Linux, Linux Kernel 2025-11-10 7.1 High
In the Linux kernel, the following vulnerability has been resolved: riscv: Use READ_ONCE_NOCHECK in imprecise unwinding stack mode When CONFIG_FRAME_POINTER is unset, the stack unwinding function walk_stackframe randomly reads the stack and then, when KASAN is enabled, it can lead to the following backtrace: [ 0.000000] ================================================================== [ 0.000000] BUG: KASAN: stack-out-of-bounds in walk_stackframe+0xa6/0x11a [ 0.000000] Read of size 8 at addr ffffffff81807c40 by task swapper/0 [ 0.000000] [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 6.2.0-12919-g24203e6db61f #43 [ 0.000000] Hardware name: riscv-virtio,qemu (DT) [ 0.000000] Call Trace: [ 0.000000] [<ffffffff80007ba8>] walk_stackframe+0x0/0x11a [ 0.000000] [<ffffffff80099ecc>] init_param_lock+0x26/0x2a [ 0.000000] [<ffffffff80007c4a>] walk_stackframe+0xa2/0x11a [ 0.000000] [<ffffffff80c49c80>] dump_stack_lvl+0x22/0x36 [ 0.000000] [<ffffffff80c3783e>] print_report+0x198/0x4a8 [ 0.000000] [<ffffffff80099ecc>] init_param_lock+0x26/0x2a [ 0.000000] [<ffffffff80007c4a>] walk_stackframe+0xa2/0x11a [ 0.000000] [<ffffffff8015f68a>] kasan_report+0x9a/0xc8 [ 0.000000] [<ffffffff80007c4a>] walk_stackframe+0xa2/0x11a [ 0.000000] [<ffffffff80007c4a>] walk_stackframe+0xa2/0x11a [ 0.000000] [<ffffffff8006e99c>] desc_make_final+0x80/0x84 [ 0.000000] [<ffffffff8009a04e>] stack_trace_save+0x88/0xa6 [ 0.000000] [<ffffffff80099fc2>] filter_irq_stacks+0x72/0x76 [ 0.000000] [<ffffffff8006b95e>] devkmsg_read+0x32a/0x32e [ 0.000000] [<ffffffff8015ec16>] kasan_save_stack+0x28/0x52 [ 0.000000] [<ffffffff8006e998>] desc_make_final+0x7c/0x84 [ 0.000000] [<ffffffff8009a04a>] stack_trace_save+0x84/0xa6 [ 0.000000] [<ffffffff8015ec52>] kasan_set_track+0x12/0x20 [ 0.000000] [<ffffffff8015f22e>] __kasan_slab_alloc+0x58/0x5e [ 0.000000] [<ffffffff8015e7ea>] __kmem_cache_create+0x21e/0x39a [ 0.000000] [<ffffffff80e133ac>] create_boot_cache+0x70/0x9c [ 0.000000] [<ffffffff80e17ab2>] kmem_cache_init+0x6c/0x11e [ 0.000000] [<ffffffff80e00fd6>] mm_init+0xd8/0xfe [ 0.000000] [<ffffffff80e011d8>] start_kernel+0x190/0x3ca [ 0.000000] [ 0.000000] The buggy address belongs to stack of task swapper/0 [ 0.000000] and is located at offset 0 in frame: [ 0.000000] stack_trace_save+0x0/0xa6 [ 0.000000] [ 0.000000] This frame has 1 object: [ 0.000000] [32, 56) 'c' [ 0.000000] [ 0.000000] The buggy address belongs to the physical page: [ 0.000000] page:(____ptrval____) refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x81a07 [ 0.000000] flags: 0x1000(reserved|zone=0) [ 0.000000] raw: 0000000000001000 ff600003f1e3d150 ff600003f1e3d150 0000000000000000 [ 0.000000] raw: 0000000000000000 0000000000000000 00000001ffffffff [ 0.000000] page dumped because: kasan: bad access detected [ 0.000000] [ 0.000000] Memory state around the buggy address: [ 0.000000] ffffffff81807b00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0.000000] ffffffff81807b80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0.000000] >ffffffff81807c00: 00 00 00 00 00 00 00 00 f1 f1 f1 f1 00 00 00 f3 [ 0.000000] ^ [ 0.000000] ffffffff81807c80: f3 f3 f3 f3 00 00 00 00 00 00 00 00 00 00 00 00 [ 0.000000] ffffffff81807d00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0.000000] ================================================================== Fix that by using READ_ONCE_NOCHECK when reading the stack in imprecise mode.
CVE-2023-53136 1 Linux 1 Linux Kernel 2025-11-10 7.1 High
In the Linux kernel, the following vulnerability has been resolved: af_unix: fix struct pid leaks in OOB support syzbot reported struct pid leak [1]. Issue is that queue_oob() calls maybe_add_creds() which potentially holds a reference on a pid. But skb->destructor is not set (either directly or by calling unix_scm_to_skb()) This means that subsequent kfree_skb() or consume_skb() would leak this reference. In this fix, I chose to fully support scm even for the OOB message. [1] BUG: memory leak unreferenced object 0xffff8881053e7f80 (size 128): comm "syz-executor242", pid 5066, jiffies 4294946079 (age 13.220s) hex dump (first 32 bytes): 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffff812ae26a>] alloc_pid+0x6a/0x560 kernel/pid.c:180 [<ffffffff812718df>] copy_process+0x169f/0x26c0 kernel/fork.c:2285 [<ffffffff81272b37>] kernel_clone+0xf7/0x610 kernel/fork.c:2684 [<ffffffff812730cc>] __do_sys_clone+0x7c/0xb0 kernel/fork.c:2825 [<ffffffff849ad699>] do_syscall_x64 arch/x86/entry/common.c:50 [inline] [<ffffffff849ad699>] do_syscall_64+0x39/0xb0 arch/x86/entry/common.c:80 [<ffffffff84a0008b>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
CVE-2020-36791 1 Linux 1 Linux Kernel 2025-11-10 7.1 High
In the Linux kernel, the following vulnerability has been resolved: net_sched: keep alloc_hash updated after hash allocation In commit 599be01ee567 ("net_sched: fix an OOB access in cls_tcindex") I moved cp->hash calculation before the first tcindex_alloc_perfect_hash(), but cp->alloc_hash is left untouched. This difference could lead to another out of bound access. cp->alloc_hash should always be the size allocated, we should update it after this tcindex_alloc_perfect_hash().
CVE-2025-37825 1 Linux 1 Linux Kernel 2025-11-10 7.1 High
In the Linux kernel, the following vulnerability has been resolved: nvmet: fix out-of-bounds access in nvmet_enable_port When trying to enable a port that has no transport configured yet, nvmet_enable_port() uses NVMF_TRTYPE_MAX (255) to query the transports array, causing an out-of-bounds access: [ 106.058694] BUG: KASAN: global-out-of-bounds in nvmet_enable_port+0x42/0x1da [ 106.058719] Read of size 8 at addr ffffffff89dafa58 by task ln/632 [...] [ 106.076026] nvmet: transport type 255 not supported Since commit 200adac75888, NVMF_TRTYPE_MAX is the default state as configured by nvmet_ports_make(). Avoid this by checking for NVMF_TRTYPE_MAX before proceeding.
CVE-2025-49175 1 Redhat 7 Enterprise Linux, Rhel Aus, Rhel E4s and 4 more 2025-11-10 6.1 Medium
A flaw was found in the X Rendering extension's handling of animated cursors. If a client provides no cursors, the server assumes at least one is present, leading to an out-of-bounds read and potential crash.
CVE-2025-50163 1 Microsoft 10 Windows Server, Windows Server 2008, Windows Server 2008 R2 and 7 more 2025-11-10 8.8 High
Heap-based buffer overflow in Windows Routing and Remote Access Service (RRAS) allows an unauthorized attacker to execute code over a network.
CVE-2024-6505 2 Qemu, Redhat 3 Qemu, Advanced Virtualization, Enterprise Linux 2025-11-08 6.8 Medium
A flaw was found in the virtio-net device in QEMU. When enabling the RSS feature on the virtio-net network card, the indirections_table data within RSS becomes controllable. Setting excessively large values may cause an index out-of-bounds issue, potentially resulting in heap overflow access. This flaw allows a privileged user in the guest to crash the QEMU process on the host.
CVE-2023-42755 3 Debian, Linux, Redhat 3 Debian Linux, Linux Kernel, Enterprise Linux 2025-11-08 6.5 Medium
A flaw was found in the IPv4 Resource Reservation Protocol (RSVP) classifier in the Linux kernel. The xprt pointer may go beyond the linear part of the skb, leading to an out-of-bounds read in the `rsvp_classify` function. This issue may allow a local user to crash the system and cause a denial of service.
CVE-2023-39192 3 Fedoraproject, Linux, Redhat 3 Fedora, Linux Kernel, Enterprise Linux 2025-11-08 6.7 Medium
A flaw was found in the Netfilter subsystem in the Linux kernel. The xt_u32 module did not validate the fields in the xt_u32 structure. This flaw allows a local privileged attacker to trigger an out-of-bounds read by setting the size fields with a value beyond the array boundaries, leading to a crash or information disclosure.
CVE-2023-6610 2 Linux, Redhat 5 Linux Kernel, Enterprise Linux, Logging and 2 more 2025-11-08 7.1 High
An out-of-bounds read vulnerability was found in smb2_dump_detail in fs/smb/client/smb2ops.c in the Linux Kernel. This issue could allow a local attacker to crash the system or leak internal kernel information.
CVE-2023-6606 2 Linux, Redhat 8 Linux Kernel, Enterprise Linux, Enterprise Linux Eus and 5 more 2025-11-08 7.1 High
An out-of-bounds read vulnerability was found in smbCalcSize in fs/smb/client/netmisc.c in the Linux Kernel. This issue could allow a local attacker to crash the system or leak internal kernel information.
CVE-2024-11614 1 Redhat 6 Enterprise Linux, Openshift, Rhel Aus and 3 more 2025-11-08 N/A
An out-of-bounds read vulnerability was found in DPDK's Vhost library checksum offload feature. This issue enables an untrusted or compromised guest to crash the hypervisor's vSwitch by forging Virtio descriptors to cause out-of-bounds reads. This flaw allows an attacker with a malicious VM using a virtio driver to cause the vhost-user side to crash by sending a packet with a Tx checksum offload request and an invalid csum_start offset.
CVE-2022-49799 1 Linux 1 Linux Kernel 2025-11-07 7.1 High
In the Linux kernel, the following vulnerability has been resolved: tracing: Fix wild-memory-access in register_synth_event() In register_synth_event(), if set_synth_event_print_fmt() failed, then both trace_remove_event_call() and unregister_trace_event() will be called, which means the trace_event_call will call __unregister_trace_event() twice. As the result, the second unregister will causes the wild-memory-access. register_synth_event set_synth_event_print_fmt failed trace_remove_event_call event_remove if call->event.funcs then __unregister_trace_event (first call) unregister_trace_event __unregister_trace_event (second call) Fix the bug by avoiding to call the second __unregister_trace_event() by checking if the first one is called. general protection fault, probably for non-canonical address 0xfbd59c0000000024: 0000 [#1] SMP KASAN PTI KASAN: maybe wild-memory-access in range [0xdead000000000120-0xdead000000000127] CPU: 0 PID: 3807 Comm: modprobe Not tainted 6.1.0-rc1-00186-g76f33a7eedb4 #299 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.15.0-0-g2dd4b9b3f840-prebuilt.qemu.org 04/01/2014 RIP: 0010:unregister_trace_event+0x6e/0x280 Code: 00 fc ff df 4c 89 ea 48 c1 ea 03 80 3c 02 00 0f 85 0e 02 00 00 48 b8 00 00 00 00 00 fc ff df 4c 8b 63 08 4c 89 e2 48 c1 ea 03 <80> 3c 02 00 0f 85 e2 01 00 00 49 89 2c 24 48 85 ed 74 28 e8 7a 9b RSP: 0018:ffff88810413f370 EFLAGS: 00010a06 RAX: dffffc0000000000 RBX: ffff888105d050b0 RCX: 0000000000000000 RDX: 1bd5a00000000024 RSI: ffff888119e276e0 RDI: ffffffff835a8b20 RBP: dead000000000100 R08: 0000000000000000 R09: fffffbfff0913481 R10: ffffffff8489a407 R11: fffffbfff0913480 R12: dead000000000122 R13: ffff888105d050b8 R14: 0000000000000000 R15: ffff888105d05028 FS: 00007f7823e8d540(0000) GS:ffff888119e00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f7823e7ebec CR3: 000000010a058002 CR4: 0000000000330ef0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> __create_synth_event+0x1e37/0x1eb0 create_or_delete_synth_event+0x110/0x250 synth_event_run_command+0x2f/0x110 test_gen_synth_cmd+0x170/0x2eb [synth_event_gen_test] synth_event_gen_test_init+0x76/0x9bc [synth_event_gen_test] do_one_initcall+0xdb/0x480 do_init_module+0x1cf/0x680 load_module+0x6a50/0x70a0 __do_sys_finit_module+0x12f/0x1c0 do_syscall_64+0x3f/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd