| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A divide-by-zero in VirtIO network device emulation in BitVisor from commit 108df6 (2020-05-20) to commit 480907 (2025-07-06) allows local attackers to cause a denial of service (host hypervisor crash) via a crafted PCI configuration space access. |
| An issue in redoxOS kernel before commit 5d41cd7c allows a local attacker to cause a denial of service via the `setitimer` syscall |
| A security vulnerability has been detected in appneta tcpreplay 4.5.1. Impacted is the function calc_sleep_time of the file send_packets.c. Such manipulation leads to divide by zero. An attack has to be approached locally. The exploit has been disclosed publicly and may be used. Upgrading to version 4.5.3-beta3 is recommended to address this issue. It is advisable to upgrade the affected component. The vendor confirms in a GitHub issue reply: "Was able to reproduce in 6fcbf03 but NOT 4.5.3-beta3." |
| NVIDIA CUDA Toolkit for all platforms contains a vulnerability in nvJPEG where a local authenticated user may cause a divide by zero error by submitting a specially crafted JPEG file. A successful exploit of this vulnerability may lead to denial of service. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: sn-f-ospi: Fix division by zero
When there is no dummy cycle in the spi-nor commands, both dummy bus cycle
bytes and width are zero. Because of the cpu's warning when divided by
zero, the warning should be avoided. Return just zero to avoid such
calculations. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Initialize denominator defaults to 1
[WHAT & HOW]
Variables, used as denominators and maybe not assigned to other values,
should be initialized to non-zero to avoid DIVIDE_BY_ZERO, as reported
by Coverity.
(cherry picked from commit e2c4c6c10542ccfe4a0830bb6c9fd5b177b7bbb7) |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: fix divide error in DM plane scale calcs
dm_get_plane_scale doesn't take into account plane scaled size equal to
zero, leading to a kernel oops due to division by zero. Fix by setting
out-scale size as zero when the dst size is zero, similar to what is
done by drm_calc_scale(). This issue started with the introduction of
cursor ovelay mode that uses this function to assess cursor mode changes
via dm_crtc_get_cursor_mode() before checking plane state.
[Dec17 17:14] Oops: divide error: 0000 [#1] PREEMPT SMP NOPTI
[ +0.000018] CPU: 5 PID: 1660 Comm: surface-DP-1 Not tainted 6.10.0+ #231
[ +0.000007] Hardware name: Valve Jupiter/Jupiter, BIOS F7A0131 01/30/2024
[ +0.000004] RIP: 0010:dm_get_plane_scale+0x3f/0x60 [amdgpu]
[ +0.000553] Code: 44 0f b7 41 3a 44 0f b7 49 3e 83 e0 0f 48 0f a3 c2 73 21 69 41 28 e8 03 00 00 31 d2 41 f7 f1 31 d2 89 06 69 41 2c e8 03 00 00 <41> f7 f0 89 07 e9 d7 d8 7e e9 44 89 c8 45 89 c1 41 89 c0 eb d4 66
[ +0.000005] RSP: 0018:ffffa8df0de6b8a0 EFLAGS: 00010246
[ +0.000006] RAX: 00000000000003e8 RBX: ffff9ac65c1f6e00 RCX: ffff9ac65d055500
[ +0.000003] RDX: 0000000000000000 RSI: ffffa8df0de6b8b0 RDI: ffffa8df0de6b8b4
[ +0.000004] RBP: ffff9ac64e7a5800 R08: 0000000000000000 R09: 0000000000000a00
[ +0.000003] R10: 00000000000000ff R11: 0000000000000054 R12: ffff9ac6d0700010
[ +0.000003] R13: ffff9ac65d054f00 R14: ffff9ac65d055500 R15: ffff9ac64e7a60a0
[ +0.000004] FS: 00007f869ea00640(0000) GS:ffff9ac970080000(0000) knlGS:0000000000000000
[ +0.000004] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ +0.000003] CR2: 000055ca701becd0 CR3: 000000010e7f2000 CR4: 0000000000350ef0
[ +0.000004] Call Trace:
[ +0.000007] <TASK>
[ +0.000006] ? __die_body.cold+0x19/0x27
[ +0.000009] ? die+0x2e/0x50
[ +0.000007] ? do_trap+0xca/0x110
[ +0.000007] ? do_error_trap+0x6a/0x90
[ +0.000006] ? dm_get_plane_scale+0x3f/0x60 [amdgpu]
[ +0.000504] ? exc_divide_error+0x38/0x50
[ +0.000005] ? dm_get_plane_scale+0x3f/0x60 [amdgpu]
[ +0.000488] ? asm_exc_divide_error+0x1a/0x20
[ +0.000011] ? dm_get_plane_scale+0x3f/0x60 [amdgpu]
[ +0.000593] dm_crtc_get_cursor_mode+0x33f/0x430 [amdgpu]
[ +0.000562] amdgpu_dm_atomic_check+0x2ef/0x1770 [amdgpu]
[ +0.000501] drm_atomic_check_only+0x5e1/0xa30 [drm]
[ +0.000047] drm_mode_atomic_ioctl+0x832/0xcb0 [drm]
[ +0.000050] ? __pfx_drm_mode_atomic_ioctl+0x10/0x10 [drm]
[ +0.000047] drm_ioctl_kernel+0xb3/0x100 [drm]
[ +0.000062] drm_ioctl+0x27a/0x4f0 [drm]
[ +0.000049] ? __pfx_drm_mode_atomic_ioctl+0x10/0x10 [drm]
[ +0.000055] amdgpu_drm_ioctl+0x4e/0x90 [amdgpu]
[ +0.000360] __x64_sys_ioctl+0x97/0xd0
[ +0.000010] do_syscall_64+0x82/0x190
[ +0.000008] ? __pfx_drm_mode_createblob_ioctl+0x10/0x10 [drm]
[ +0.000044] ? srso_return_thunk+0x5/0x5f
[ +0.000006] ? drm_ioctl_kernel+0xb3/0x100 [drm]
[ +0.000040] ? srso_return_thunk+0x5/0x5f
[ +0.000005] ? __check_object_size+0x50/0x220
[ +0.000007] ? srso_return_thunk+0x5/0x5f
[ +0.000005] ? srso_return_thunk+0x5/0x5f
[ +0.000005] ? drm_ioctl+0x2a4/0x4f0 [drm]
[ +0.000039] ? __pfx_drm_mode_createblob_ioctl+0x10/0x10 [drm]
[ +0.000043] ? srso_return_thunk+0x5/0x5f
[ +0.000005] ? srso_return_thunk+0x5/0x5f
[ +0.000005] ? __pm_runtime_suspend+0x69/0xc0
[ +0.000006] ? srso_return_thunk+0x5/0x5f
[ +0.000005] ? amdgpu_drm_ioctl+0x71/0x90 [amdgpu]
[ +0.000366] ? srso_return_thunk+0x5/0x5f
[ +0.000006] ? syscall_exit_to_user_mode+0x77/0x210
[ +0.000007] ? srso_return_thunk+0x5/0x5f
[ +0.000005] ? do_syscall_64+0x8e/0x190
[ +0.000006] ? srso_return_thunk+0x5/0x5f
[ +0.000006] ? do_syscall_64+0x8e/0x190
[ +0.000006] ? srso_return_thunk+0x5/0x5f
[ +0.000007] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[ +0.000008] RIP: 0033:0x55bb7cd962bc
[ +0.000007] Code: 4c 89 6c 24 18 4c 89 64 24 20 4c 89 74 24 28 0f 57 c0 0f 11 44 24 30 89 c7 48 8d 54 24 08 b8 10 00 00 00 be bc 64
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
linux/dim: Fix divide by 0 in RDMA DIM
Fix a divide 0 error in rdma_dim_stats_compare() when prev->cpe_ratio ==
0.
CallTrace:
Hardware name: H3C R4900 G3/RS33M2C9S, BIOS 2.00.37P21 03/12/2020
task: ffff880194b78000 task.stack: ffffc90006714000
RIP: 0010:backport_rdma_dim+0x10e/0x240 [mlx_compat]
RSP: 0018:ffff880c10e83ec0 EFLAGS: 00010202
RAX: 0000000000002710 RBX: ffff88096cd7f780 RCX: 0000000000000064
RDX: 0000000000000000 RSI: 0000000000000002 RDI: 0000000000000001
RBP: 0000000000000001 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: 000000001d7c6c09
R13: ffff88096cd7f780 R14: ffff880b174fe800 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff880c10e80000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000a0965b00 CR3: 000000000200a003 CR4: 00000000007606e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<IRQ>
ib_poll_handler+0x43/0x80 [ib_core]
irq_poll_softirq+0xae/0x110
__do_softirq+0xd1/0x28c
irq_exit+0xde/0xf0
do_IRQ+0x54/0xe0
common_interrupt+0x8f/0x8f
</IRQ>
? cpuidle_enter_state+0xd9/0x2a0
? cpuidle_enter_state+0xc7/0x2a0
? do_idle+0x170/0x1d0
? cpu_startup_entry+0x6f/0x80
? start_secondary+0x1b9/0x210
? secondary_startup_64+0xa5/0xb0
Code: 0f 87 e1 00 00 00 8b 4c 24 14 44 8b 43 14 89 c8 4d 63 c8 44 29 c0 99 31 d0 29 d0 31 d2 48 98 48 8d 04 80 48 8d 04 80 48 c1 e0 02 <49> f7 f1 48 83 f8 0a 0f 86 c1 00 00 00 44 39 c1 7f 10 48 89 df
RIP: backport_rdma_dim+0x10e/0x240 [mlx_compat] RSP: ffff880c10e83ec0 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Check if modulo is 0 before dividing.
[How & Why]
If a value of 0 is read, then this will cause a divide-by-0 panic. |
| In the Linux kernel, the following vulnerability has been resolved:
video: fbdev: cirrusfb: check pixclock to avoid divide by zero
Do a sanity check on pixclock value to avoid divide by zero.
If the pixclock value is zero, the cirrusfb driver will round up
pixclock to get the derived frequency as close to maxclock as
possible.
Syzkaller reported a divide error in cirrusfb_check_pixclock.
divide error: 0000 [#1] SMP KASAN PTI
CPU: 0 PID: 14938 Comm: cirrusfb_test Not tainted 5.15.0-rc6 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2
RIP: 0010:cirrusfb_check_var+0x6f1/0x1260
Call Trace:
fb_set_var+0x398/0xf90
do_fb_ioctl+0x4b8/0x6f0
fb_ioctl+0xeb/0x130
__x64_sys_ioctl+0x19d/0x220
do_syscall_64+0x3a/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae |
| CISA Thorium accepts a stream split size of zero then divides by this value. A remote, authenticated attacker could cause the service to crash. Fixed in commit 89101a6. |
| In the Linux kernel, the following vulnerability has been resolved:
usbnet: sanity check for maxpacket
maxpacket of 0 makes no sense and oopses as we need to divide
by it. Give up.
V2: fixed typo in log and stylistic issues |
| In the Linux kernel, the following vulnerability has been resolved:
gve: guard XDP xmit NDO on existence of xdp queues
In GVE, dedicated XDP queues only exist when an XDP program is installed
and the interface is up. As such, the NDO XDP XMIT callback should
return early if either of these conditions are false.
In the case of no loaded XDP program, priv->num_xdp_queues=0 which can
cause a divide-by-zero error, and in the case of interface down,
num_xdp_queues remains untouched to persist XDP queue count for the next
interface up, but the TX pointer itself would be NULL.
The XDP xmit callback also needs to synchronize with a device
transitioning from open to close. This synchronization will happen via
the GVE_PRIV_FLAGS_NAPI_ENABLED bit along with a synchronize_net() call,
which waits for any RCU critical sections at call-time to complete. |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: fix tcp_mtup_probe_success vs wrong snd_cwnd
syzbot got a new report [1] finally pointing to a very old bug,
added in initial support for MTU probing.
tcp_mtu_probe() has checks about starting an MTU probe if
tcp_snd_cwnd(tp) >= 11.
But nothing prevents tcp_snd_cwnd(tp) to be reduced later
and before the MTU probe succeeds.
This bug would lead to potential zero-divides.
Debugging added in commit 40570375356c ("tcp: add accessors
to read/set tp->snd_cwnd") has paid off :)
While we are at it, address potential overflows in this code.
[1]
WARNING: CPU: 1 PID: 14132 at include/net/tcp.h:1219 tcp_mtup_probe_success+0x366/0x570 net/ipv4/tcp_input.c:2712
Modules linked in:
CPU: 1 PID: 14132 Comm: syz-executor.2 Not tainted 5.18.0-syzkaller-07857-gbabf0bb978e3 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:tcp_snd_cwnd_set include/net/tcp.h:1219 [inline]
RIP: 0010:tcp_mtup_probe_success+0x366/0x570 net/ipv4/tcp_input.c:2712
Code: 74 08 48 89 ef e8 da 80 17 f9 48 8b 45 00 65 48 ff 80 80 03 00 00 48 83 c4 30 5b 41 5c 41 5d 41 5e 41 5f 5d c3 e8 aa b0 c5 f8 <0f> 0b e9 16 fe ff ff 48 8b 4c 24 08 80 e1 07 38 c1 0f 8c c7 fc ff
RSP: 0018:ffffc900079e70f8 EFLAGS: 00010287
RAX: ffffffff88c0f7f6 RBX: ffff8880756e7a80 RCX: 0000000000040000
RDX: ffffc9000c6c4000 RSI: 0000000000031f9e RDI: 0000000000031f9f
RBP: 0000000000000000 R08: ffffffff88c0f606 R09: ffffc900079e7520
R10: ffffed101011226d R11: 1ffff1101011226c R12: 1ffff1100eadcf50
R13: ffff8880756e72c0 R14: 1ffff1100eadcf89 R15: dffffc0000000000
FS: 00007f643236e700(0000) GS:ffff8880b9b00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f1ab3f1e2a0 CR3: 0000000064fe7000 CR4: 00000000003506e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
tcp_clean_rtx_queue+0x223a/0x2da0 net/ipv4/tcp_input.c:3356
tcp_ack+0x1962/0x3c90 net/ipv4/tcp_input.c:3861
tcp_rcv_established+0x7c8/0x1ac0 net/ipv4/tcp_input.c:5973
tcp_v6_do_rcv+0x57b/0x1210 net/ipv6/tcp_ipv6.c:1476
sk_backlog_rcv include/net/sock.h:1061 [inline]
__release_sock+0x1d8/0x4c0 net/core/sock.c:2849
release_sock+0x5d/0x1c0 net/core/sock.c:3404
sk_stream_wait_memory+0x700/0xdc0 net/core/stream.c:145
tcp_sendmsg_locked+0x111d/0x3fc0 net/ipv4/tcp.c:1410
tcp_sendmsg+0x2c/0x40 net/ipv4/tcp.c:1448
sock_sendmsg_nosec net/socket.c:714 [inline]
sock_sendmsg net/socket.c:734 [inline]
__sys_sendto+0x439/0x5c0 net/socket.c:2119
__do_sys_sendto net/socket.c:2131 [inline]
__se_sys_sendto net/socket.c:2127 [inline]
__x64_sys_sendto+0xda/0xf0 net/socket.c:2127
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x2b/0x70 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
RIP: 0033:0x7f6431289109
Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007f643236e168 EFLAGS: 00000246 ORIG_RAX: 000000000000002c
RAX: ffffffffffffffda RBX: 00007f643139c100 RCX: 00007f6431289109
RDX: 00000000d0d0c2ac RSI: 0000000020000080 RDI: 000000000000000a
RBP: 00007f64312e308d R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000246 R12: 0000000000000000
R13: 00007fff372533af R14: 00007f643236e300 R15: 0000000000022000 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix the warning division or modulo by zero
Checks the partition mode and returns an error for an invalid mode. |
| BT: Missing Check in LL_CONNECTION_UPDATE_IND Packet Leads to Division by Zero |
| The ProcPutImage function in dix/dispatch.c in X.Org Server (aka xserver and xorg-server) before 1.16.4 allows attackers to cause a denial of service (divide-by-zero and crash) via a zero-height PutImage request. |
| NVIDIA Triton Inference Server for Windows and Linux contains a vulnerability where a user could cause a divide by zero issue by issuing an invalid request. A successful exploit of this vulnerability might lead to denial of service. |
| RISC Zero is a zero-knowledge verifiable general computing platform based on zk-STARKs and the RISC-V microarchitecture. RISC packages risc0-zkvm versions 2.0.0 through 2.1.0 and risc0-circuit-rv32im and risc0-circuit-rv32im-sys versions 2.0.0 through 2.0.4 contain vulnerabilities where signed integer division allows multiple outputs for certain inputs with only one being valid, and division by zero results are underconstrained. This issue is fixed in risc0-zkvm version 2.2.0 and version 3.0.0 for the risc0-circuit-rv32im and risc0-circuit-rv32im-sys packages. |
| vproxy is an HTTP/HTTPS/SOCKS5 proxy server. In versions 2.3.3 and below, untrusted data is extracted from the user-controlled HTTP Proxy-Authorization header and passed to Extension::try_from and flows into parse_ttl_extension where it is parsed as a TTL value. If an attacker supplies a TTL of zero (e.g. by using a username such as 'configuredUser-ttl-0'), the modulo operation 'timestamp % ttl' will cause a division by zero panic, causing the server to crash causing a denial-of-service. This is fixed in version 2.4.0. |