| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: hisilicon/hpre - fix resource leak in remove process
In hpre_remove(), when the disable operation of qm sriov failed,
the following logic should continue to be executed to release the
remaining resources that have been allocated, instead of returning
directly, otherwise there will be resource leakage. |
| In the Linux kernel, the following vulnerability has been resolved:
media: mdp3: Fix resource leaks in of_find_device_by_node
Use put_device to release the object get through of_find_device_by_node,
avoiding resource leaks. |
| In the Linux kernel, the following vulnerability has been resolved:
accel/habanalabs: fix mem leak in capture user mappings
This commit fixes a memory leak caused when clearing the user_mappings
info when a new context is opened immediately after user_mapping is
captured and a hard reset is performed. |
| In the Linux kernel, the following vulnerability has been resolved:
orangefs: Fix kmemleak in orangefs_{kernel,client}_debug_init()
When insert and remove the orangefs module, there are memory leaked
as below:
unreferenced object 0xffff88816b0cc000 (size 2048):
comm "insmod", pid 783, jiffies 4294813439 (age 65.512s)
hex dump (first 32 bytes):
6e 6f 6e 65 0a 00 00 00 00 00 00 00 00 00 00 00 none............
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<0000000031ab7788>] kmalloc_trace+0x27/0xa0
[<000000005b405fee>] orangefs_debugfs_init.cold+0xaf/0x17f
[<00000000e5a0085b>] 0xffffffffa02780f9
[<000000004232d9f7>] do_one_initcall+0x87/0x2a0
[<0000000054f22384>] do_init_module+0xdf/0x320
[<000000003263bdea>] load_module+0x2f98/0x3330
[<0000000052cd4153>] __do_sys_finit_module+0x113/0x1b0
[<00000000250ae02b>] do_syscall_64+0x35/0x80
[<00000000f11c03c7>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
Use the golbal variable as the buffer rather than dynamic allocate to
slove the problem. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: snic: Fix possible memory leak if device_add() fails
If device_add() returns error, the name allocated by dev_set_name() needs
be freed. As the comment of device_add() says, put_device() should be used
to give up the reference in the error path. So fix this by calling
put_device(), then the name can be freed in kobject_cleanp(). |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: Fix memory leak when build ntlmssp negotiate blob failed
There is a memory leak when mount cifs:
unreferenced object 0xffff888166059600 (size 448):
comm "mount.cifs", pid 51391, jiffies 4295596373 (age 330.596s)
hex dump (first 32 bytes):
fe 53 4d 42 40 00 00 00 00 00 00 00 01 00 82 00 .SMB@...........
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<0000000060609a61>] mempool_alloc+0xe1/0x260
[<00000000adfa6c63>] cifs_small_buf_get+0x24/0x60
[<00000000ebb404c7>] __smb2_plain_req_init+0x32/0x460
[<00000000bcf875b4>] SMB2_sess_alloc_buffer+0xa4/0x3f0
[<00000000753a2987>] SMB2_sess_auth_rawntlmssp_negotiate+0xf5/0x480
[<00000000f0c1f4f9>] SMB2_sess_setup+0x253/0x410
[<00000000a8b83303>] cifs_setup_session+0x18f/0x4c0
[<00000000854bd16d>] cifs_get_smb_ses+0xae7/0x13c0
[<000000006cbc43d9>] mount_get_conns+0x7a/0x730
[<000000005922d816>] cifs_mount+0x103/0xd10
[<00000000e33def3b>] cifs_smb3_do_mount+0x1dd/0xc90
[<0000000078034979>] smb3_get_tree+0x1d5/0x300
[<000000004371f980>] vfs_get_tree+0x41/0xf0
[<00000000b670d8a7>] path_mount+0x9b3/0xdd0
[<000000005e839a7d>] __x64_sys_mount+0x190/0x1d0
[<000000009404c3b9>] do_syscall_64+0x35/0x80
When build ntlmssp negotiate blob failed, the session setup request
should be freed. |
| In the Linux kernel, the following vulnerability has been resolved:
cassini: Fix a memory leak in the error handling path of cas_init_one()
cas_saturn_firmware_init() allocates some memory using vmalloc(). This
memory is freed in the .remove() function but not it the error handling
path of the probe.
Add the missing vfree() to avoid a memory leak, should an error occur. |
| In the Linux kernel, the following vulnerability has been resolved:
net/tcp: Fix socket memory leak in TCP-AO failure handling for IPv6
When tcp_ao_copy_all_matching() fails in tcp_v6_syn_recv_sock() it just
exits the function. This ends up causing a memory-leak:
unreferenced object 0xffff0000281a8200 (size 2496):
comm "softirq", pid 0, jiffies 4295174684
hex dump (first 32 bytes):
7f 00 00 06 7f 00 00 06 00 00 00 00 cb a8 88 13 ................
0a 00 03 61 00 00 00 00 00 00 00 00 00 00 00 00 ...a............
backtrace (crc 5ebdbe15):
kmemleak_alloc+0x44/0xe0
kmem_cache_alloc_noprof+0x248/0x470
sk_prot_alloc+0x48/0x120
sk_clone_lock+0x38/0x3b0
inet_csk_clone_lock+0x34/0x150
tcp_create_openreq_child+0x3c/0x4a8
tcp_v6_syn_recv_sock+0x1c0/0x620
tcp_check_req+0x588/0x790
tcp_v6_rcv+0x5d0/0xc18
ip6_protocol_deliver_rcu+0x2d8/0x4c0
ip6_input_finish+0x74/0x148
ip6_input+0x50/0x118
ip6_sublist_rcv+0x2fc/0x3b0
ipv6_list_rcv+0x114/0x170
__netif_receive_skb_list_core+0x16c/0x200
netif_receive_skb_list_internal+0x1f0/0x2d0
This is because in tcp_v6_syn_recv_sock (and the IPv4 counterpart), when
exiting upon error, inet_csk_prepare_forced_close() and tcp_done() need
to be called. They make sure the newsk will end up being correctly
free'd.
tcp_v4_syn_recv_sock() makes this very clear by having the put_and_exit
label that takes care of things. So, this patch here makes sure
tcp_v4_syn_recv_sock and tcp_v6_syn_recv_sock have similar
error-handling and thus fixes the leak for TCP-AO. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: cpumap: Fix memory leak in cpu_map_update_elem
Syzkaller reported a memory leak as follows:
BUG: memory leak
unreferenced object 0xff110001198ef748 (size 192):
comm "syz-executor.3", pid 17672, jiffies 4298118891 (age 9.906s)
hex dump (first 32 bytes):
00 00 00 00 4a 19 00 00 80 ad e3 e4 fe ff c0 00 ....J...........
00 b2 d3 0c 01 00 11 ff 28 f5 8e 19 01 00 11 ff ........(.......
backtrace:
[<ffffffffadd28087>] __cpu_map_entry_alloc+0xf7/0xb00
[<ffffffffadd28d8e>] cpu_map_update_elem+0x2fe/0x3d0
[<ffffffffadc6d0fd>] bpf_map_update_value.isra.0+0x2bd/0x520
[<ffffffffadc7349b>] map_update_elem+0x4cb/0x720
[<ffffffffadc7d983>] __se_sys_bpf+0x8c3/0xb90
[<ffffffffb029cc80>] do_syscall_64+0x30/0x40
[<ffffffffb0400099>] entry_SYSCALL_64_after_hwframe+0x61/0xc6
BUG: memory leak
unreferenced object 0xff110001198ef528 (size 192):
comm "syz-executor.3", pid 17672, jiffies 4298118891 (age 9.906s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<ffffffffadd281f0>] __cpu_map_entry_alloc+0x260/0xb00
[<ffffffffadd28d8e>] cpu_map_update_elem+0x2fe/0x3d0
[<ffffffffadc6d0fd>] bpf_map_update_value.isra.0+0x2bd/0x520
[<ffffffffadc7349b>] map_update_elem+0x4cb/0x720
[<ffffffffadc7d983>] __se_sys_bpf+0x8c3/0xb90
[<ffffffffb029cc80>] do_syscall_64+0x30/0x40
[<ffffffffb0400099>] entry_SYSCALL_64_after_hwframe+0x61/0xc6
BUG: memory leak
unreferenced object 0xff1100010fd93d68 (size 8):
comm "syz-executor.3", pid 17672, jiffies 4298118891 (age 9.906s)
hex dump (first 8 bytes):
00 00 00 00 00 00 00 00 ........
backtrace:
[<ffffffffade5db3e>] kvmalloc_node+0x11e/0x170
[<ffffffffadd28280>] __cpu_map_entry_alloc+0x2f0/0xb00
[<ffffffffadd28d8e>] cpu_map_update_elem+0x2fe/0x3d0
[<ffffffffadc6d0fd>] bpf_map_update_value.isra.0+0x2bd/0x520
[<ffffffffadc7349b>] map_update_elem+0x4cb/0x720
[<ffffffffadc7d983>] __se_sys_bpf+0x8c3/0xb90
[<ffffffffb029cc80>] do_syscall_64+0x30/0x40
[<ffffffffb0400099>] entry_SYSCALL_64_after_hwframe+0x61/0xc6
In the cpu_map_update_elem flow, when kthread_stop is called before
calling the threadfn of rcpu->kthread, since the KTHREAD_SHOULD_STOP bit
of kthread has been set by kthread_stop, the threadfn of rcpu->kthread
will never be executed, and rcpu->refcnt will never be 0, which will
lead to the allocated rcpu, rcpu->queue and rcpu->queue->queue cannot be
released.
Calling kthread_stop before executing kthread's threadfn will return
-EINTR. We can complete the release of memory resources in this state. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: dma: fix memory leak running mt76_dma_tx_cleanup
Fix device unregister memory leak and alway cleanup all configured
rx queues in mt76_dma_tx_cleanup routine. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: fw: fix memory leak in debugfs
Fix a memory leak that occurs when reading the fw_info
file all the way, since we return NULL indicating no
more data, but don't free the status tracking object. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: lpc32xx_udc: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: sl811: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: isp1362: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
fbdev: fbcon: release buffer when fbcon_do_set_font() failed
syzbot is reporting memory leak at fbcon_do_set_font() [1], for
commit a5a923038d70 ("fbdev: fbcon: Properly revert changes when
vc_resize() failed") missed that the buffer might be newly allocated
by fbcon_set_font(). |
| In the Linux kernel, the following vulnerability has been resolved:
USB: dwc3: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
Note, the root dentry for the debugfs directory for the device needs to
be saved so we don't have to keep looking it up, which required a bit
more refactoring to properly create and remove it when needed. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: snic: Fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic at
once. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: isp116x: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: bcm63xx_udc: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
PM: EM: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |