| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A vulnerability in the Day One setup process of Cisco IOS XE Software for Catalyst 9800 Series Wireless Controllers for Cloud (9800-CL) could allow an unauthenticated, remote attacker to access the public-key infrastructure (PKI) server that is running on an affected device.
This vulnerability is due to incomplete cleanup upon completion of the Day One setup process. An attacker could exploit this vulnerability by sending Simple Certificate Enrollment Protocol (SCEP) requests to an affected device. A successful exploit could allow the attacker to request a certificate from the virtual wireless controller and then use the acquired certificate to join an attacker-controlled device to the virtual wireless controller. |
| CMSEasy v7.7.8.0 and before is vulnerable to Arbitrary file deletion in database_admin.php. |
| In the Linux kernel, the following vulnerability has been resolved:
mtd: parsers: qcom: Fix missing free for pparts in cleanup
Mtdpart doesn't free pparts when a cleanup function is declared.
Add missing free for pparts in cleanup function for smem to fix the
leak. |
| In the Linux kernel, the following vulnerability has been resolved:
cxl/region: Do not try to cleanup after cxl_region_setup_targets() fails
Commit 5e42bcbc3fef ("cxl/region: decrement ->nr_targets on error in
cxl_region_attach()") tried to avoid 'eiw' initialization errors when
->nr_targets exceeded 16, by just decrementing ->nr_targets when
cxl_region_setup_targets() failed.
Commit 86987c766276 ("cxl/region: Cleanup target list on attach error")
extended that cleanup to also clear cxled->pos and p->targets[pos]. The
initialization error was incidentally fixed separately by:
Commit 8d4285425714 ("cxl/region: Fix port setup uninitialized variable
warnings") which was merged a few days after 5e42bcbc3fef.
But now the original cleanup when cxl_region_setup_targets() fails
prevents endpoint and switch decoder resources from being reused:
1) the cleanup does not set the decoder's region to NULL, which results
in future dpa_size_store() calls returning -EBUSY
2) the decoder is not properly freed, which results in future commit
errors associated with the upstream switch
Now that the initialization errors were fixed separately, the proper
cleanup for this case is to just return immediately. Then the resources
associated with this target get cleanup up as normal when the failed
region is deleted.
The ->nr_targets decrement in the error case also helped prevent
a p->targets[] array overflow, so add a new check to prevent against
that overflow.
Tested by trying to create an invalid region for a 2 switch * 2 endpoint
topology, and then following up with creating a valid region. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: hda: Do not unset preset when cleaning up codec
Several functions that take part in codec's initialization and removal
are re-used by ASoC codec drivers implementations. Drivers mimic the
behavior of hda_codec_driver_probe/remove() found in
sound/pci/hda/hda_bind.c with their component->probe/remove() instead.
One of the reasons for that is the expectation of
snd_hda_codec_device_new() to receive a valid pointer to an instance of
struct snd_card. This expectation can be met only once sound card
components probing commences.
As ASoC sound card may be unbound without codec device being actually
removed from the system, unsetting ->preset in
snd_hda_codec_cleanup_for_unbind() interferes with module unload -> load
scenario causing null-ptr-deref. Preset is assigned only once, during
device/driver matching whereas ASoC codec driver's module reloading may
occur several times throughout the lifetime of an audio stack. |
| In the Linux kernel, the following vulnerability has been resolved:
ceph: fix inode reference leakage in ceph_get_snapdir()
The ceph_get_inode() will search for or insert a new inode into the
hash for the given vino, and return a reference to it. If new is
non-NULL, its reference is consumed.
We should release the reference when in error handing cases. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Fix mlx5e_priv_init() cleanup flow
When mlx5e_priv_init() fails, the cleanup flow calls mlx5e_selq_cleanup which
calls mlx5e_selq_apply() that assures that the `priv->state_lock` is held using
lockdep_is_held().
Acquire the state_lock in mlx5e_selq_cleanup().
Kernel log:
=============================
WARNING: suspicious RCU usage
6.8.0-rc3_net_next_841a9b5 #1 Not tainted
-----------------------------
drivers/net/ethernet/mellanox/mlx5/core/en/selq.c:124 suspicious rcu_dereference_protected() usage!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
2 locks held by systemd-modules/293:
#0: ffffffffa05067b0 (devices_rwsem){++++}-{3:3}, at: ib_register_client+0x109/0x1b0 [ib_core]
#1: ffff8881096c65c0 (&device->client_data_rwsem){++++}-{3:3}, at: add_client_context+0x104/0x1c0 [ib_core]
stack backtrace:
CPU: 4 PID: 293 Comm: systemd-modules Not tainted 6.8.0-rc3_net_next_841a9b5 #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x8a/0xa0
lockdep_rcu_suspicious+0x154/0x1a0
mlx5e_selq_apply+0x94/0xa0 [mlx5_core]
mlx5e_selq_cleanup+0x3a/0x60 [mlx5_core]
mlx5e_priv_init+0x2be/0x2f0 [mlx5_core]
mlx5_rdma_setup_rn+0x7c/0x1a0 [mlx5_core]
rdma_init_netdev+0x4e/0x80 [ib_core]
? mlx5_rdma_netdev_free+0x70/0x70 [mlx5_core]
ipoib_intf_init+0x64/0x550 [ib_ipoib]
ipoib_intf_alloc+0x4e/0xc0 [ib_ipoib]
ipoib_add_one+0xb0/0x360 [ib_ipoib]
add_client_context+0x112/0x1c0 [ib_core]
ib_register_client+0x166/0x1b0 [ib_core]
? 0xffffffffa0573000
ipoib_init_module+0xeb/0x1a0 [ib_ipoib]
do_one_initcall+0x61/0x250
do_init_module+0x8a/0x270
init_module_from_file+0x8b/0xd0
idempotent_init_module+0x17d/0x230
__x64_sys_finit_module+0x61/0xb0
do_syscall_64+0x71/0x140
entry_SYSCALL_64_after_hwframe+0x46/0x4e
</TASK> |
| Improper cleanup in AMD CPU microcode patch loading could allow an attacker with local administrator privilege to load malicious CPU microcode, potentially resulting in loss of integrity of x86 instruction execution. |
| Incomplete cleanup after loading a CPU microcode patch may allow a privileged attacker to degrade the entropy of the RDRAND instruction, potentially resulting in loss of integrity for SEV-SNP guests. |
| A flaw was found in the grub2-set-bootflag utility of grub2. After the fix of CVE-2019-14865, grub2-set-bootflag will create a temporary file with the new grubenv content and rename it to the original grubenv file. If the program is killed before the rename operation, the temporary file will not be removed and may fill the filesystem when invoked multiple times, resulting in a filesystem out of free inodes or blocks. |
| Incomplete cleanup in Intel(R) Power Gadget software for macOS all versions may allow an authenticated user to potentially enable denial of service via local access. |
|
Improper cleanup in temporary file handling component in Devolutions Remote Desktop Manager 2024.1.12 and
earlier on Windows allows an attacker that compromised a user endpoint, under specific circumstances, to access sensitive information via residual files in the temporary directory.
|
| A vulnerability in the multicast DNS (mDNS) gateway feature of Cisco IOS XE Software for Wireless LAN Controllers (WLCs) could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition.
This vulnerability is due to improper management of mDNS client entries. An attacker could exploit this vulnerability by connecting to the wireless network and sending a continuous stream of specific mDNS packets. A successful exploit could allow the attacker to cause the wireless controller to have high CPU utilization, which could lead to access points (APs) losing their connection to the controller and result in a DoS condition. |
| In NetX HTTP server functionality of Eclipse ThreadX NetX Duo before
version 6.4.2, an attacker can cause a denial of service by specially
crafted packets. The core issue is missing closing of a file in case of
an error condition, resulting in the 404 error for each further file
request. Users can work-around the issue by disabling the PUT request
support. |
| In NetX HTTP server functionality of Eclipse ThreadX NetX Duo before
version 6.4.3, an attacker can cause a denial of service by specially
crafted packets. The core issue is missing closing of a file in case of
an error condition, resulting in the 404 error for each further file
request. Users can work-around the issue by disabling the PUT request
support.
This issue follows an incomplete fix of CVE-2025-0726. |
| An incomplete cleanup vulnerability [CWE-459] in FortiOS 7.2 all versions and before & FortiProxy version 7.2.0 through 7.2.2 and before 7.0.8 allows a VDOM privileged attacker to add SSH key files on the system silently via crafted CLI requests. |
| IBOS v4.5.5 has an arbitrary file deletion vulnerability via \system\modules\dashboard\controllers\LoginController.php. |
| Tunnelblick 3.5beta06 before 7.0, when incompletely uninstalled, allows attackers to execute arbitrary code as root (upon the next boot) by dragging a crafted Tunnelblick.app file into /Applications. |
| In the Linux kernel, the following vulnerability has been resolved:
posix-cpu-timers: Cleanup CPU timers before freeing them during exec
Commit 55e8c8eb2c7b ("posix-cpu-timers: Store a reference to a pid not a
task") started looking up tasks by PID when deleting a CPU timer.
When a non-leader thread calls execve, it will switch PIDs with the leader
process. Then, as it calls exit_itimers, posix_cpu_timer_del cannot find
the task because the timer still points out to the old PID.
That means that armed timers won't be disarmed, that is, they won't be
removed from the timerqueue_list. exit_itimers will still release their
memory, and when that list is later processed, it leads to a
use-after-free.
Clean up the timers from the de-threaded task before freeing them. This
prevents a reported use-after-free. |
|
An Incomplete Cleanup vulnerability in Nonstop active routing (NSR) component of Juniper Networks Junos OS allows an adjacent, unauthenticated attacker to cause memory leak leading to Denial of Service (DoS).
On all Junos OS platforms, when NSR is enabled, a BGP flap will cause memory leak. A manual reboot of the system will restore the services.
Note: NSR is not supported on the SRX Series and is therefore not affected by this vulnerability.
The memory usage can be monitored using the below commands.
user@host> show chassis routing-engine no-forwarding
user@host> show system memory | no-more
This issue affects:
Juniper Networks Junos OS
* 21.2 versions earlier than 21.2R3-S5;
* 21.3 versions earlier than 21.3R3-S4;
* 21.4 versions earlier than 21.4R3-S4;
* 22.1 versions earlier than 22.1R3-S2;
* 22.2 versions earlier than 22.2R3-S2;
* 22.3 versions earlier than 22.3R2-S1, 22.3R3;
* 22.4 versions earlier than 22.4R1-S2, 22.4R2.
This issue does not affect Junos OS versions earlier than 20.4R3-S7.
|