Search Results (70893 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-33212 1 Nvidia 1 Nemo 2025-12-18 7.3 High
NVIDIA NeMo Framework contains a vulnerability in model loading that could allow an attacker to exploit improper control mechanisms if a user loads a maliciously crafted file. A successful exploit of this vulnerability might lead to code execution, escalation of privileges, denial of service, and data tampering.
CVE-2025-33235 2 Linux, Nvidia 2 Linux, Resiliency Extension 2025-12-18 7.8 High
NVIDIA Resiliency Extension for Linux contains a vulnerability in the checkpointing core, where an attacker may cause a race condition. A successful exploit of this vulnerability might lead to information disclosure, data tampering, denial of service, or escalation of privileges.
CVE-2025-68223 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: drm/radeon: delete radeon_fence_process in is_signaled, no deadlock Delete the attempt to progress the queue when checking if fence is signaled. This avoids deadlock. dma-fence_ops::signaled can be called with the fence lock in unknown state. For radeon, the fence lock is also the wait queue lock. This can cause a self deadlock when signaled() tries to make forward progress on the wait queue. But advancing the queue is unneeded because incorrectly returning false from signaled() is perfectly acceptable. (cherry picked from commit 527ba26e50ec2ca2be9c7c82f3ad42998a75d0db)
CVE-2025-68229 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: scsi: target: tcm_loop: Fix segfault in tcm_loop_tpg_address_show() If the allocation of tl_hba->sh fails in tcm_loop_driver_probe() and we attempt to dereference it in tcm_loop_tpg_address_show() we will get a segfault, see below for an example. So, check tl_hba->sh before dereferencing it. Unable to allocate struct scsi_host BUG: kernel NULL pointer dereference, address: 0000000000000194 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 1 PID: 8356 Comm: tokio-runtime-w Not tainted 6.6.104.2-4.azl3 #1 Hardware name: Microsoft Corporation Virtual Machine/Virtual Machine, BIOS Hyper-V UEFI Release v4.1 09/28/2024 RIP: 0010:tcm_loop_tpg_address_show+0x2e/0x50 [tcm_loop] ... Call Trace: <TASK> configfs_read_iter+0x12d/0x1d0 [configfs] vfs_read+0x1b5/0x300 ksys_read+0x6f/0xf0 ...
CVE-2025-68284 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: libceph: prevent potential out-of-bounds writes in handle_auth_session_key() The len field originates from untrusted network packets. Boundary checks have been added to prevent potential out-of-bounds writes when decrypting the connection secret or processing service tickets. [ idryomov: changelog ]
CVE-2025-68285 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: libceph: fix potential use-after-free in have_mon_and_osd_map() The wait loop in __ceph_open_session() can race with the client receiving a new monmap or osdmap shortly after the initial map is received. Both ceph_monc_handle_map() and handle_one_map() install a new map immediately after freeing the old one kfree(monc->monmap); monc->monmap = monmap; ceph_osdmap_destroy(osdc->osdmap); osdc->osdmap = newmap; under client->monc.mutex and client->osdc.lock respectively, but because neither is taken in have_mon_and_osd_map() it's possible for client->monc.monmap->epoch and client->osdc.osdmap->epoch arms in client->monc.monmap && client->monc.monmap->epoch && client->osdc.osdmap && client->osdc.osdmap->epoch; condition to dereference an already freed map. This happens to be reproducible with generic/395 and generic/397 with KASAN enabled: BUG: KASAN: slab-use-after-free in have_mon_and_osd_map+0x56/0x70 Read of size 4 at addr ffff88811012d810 by task mount.ceph/13305 CPU: 2 UID: 0 PID: 13305 Comm: mount.ceph Not tainted 6.14.0-rc2-build2+ #1266 ... Call Trace: <TASK> have_mon_and_osd_map+0x56/0x70 ceph_open_session+0x182/0x290 ceph_get_tree+0x333/0x680 vfs_get_tree+0x49/0x180 do_new_mount+0x1a3/0x2d0 path_mount+0x6dd/0x730 do_mount+0x99/0xe0 __do_sys_mount+0x141/0x180 do_syscall_64+0x9f/0x100 entry_SYSCALL_64_after_hwframe+0x76/0x7e </TASK> Allocated by task 13305: ceph_osdmap_alloc+0x16/0x130 ceph_osdc_init+0x27a/0x4c0 ceph_create_client+0x153/0x190 create_fs_client+0x50/0x2a0 ceph_get_tree+0xff/0x680 vfs_get_tree+0x49/0x180 do_new_mount+0x1a3/0x2d0 path_mount+0x6dd/0x730 do_mount+0x99/0xe0 __do_sys_mount+0x141/0x180 do_syscall_64+0x9f/0x100 entry_SYSCALL_64_after_hwframe+0x76/0x7e Freed by task 9475: kfree+0x212/0x290 handle_one_map+0x23c/0x3b0 ceph_osdc_handle_map+0x3c9/0x590 mon_dispatch+0x655/0x6f0 ceph_con_process_message+0xc3/0xe0 ceph_con_v1_try_read+0x614/0x760 ceph_con_workfn+0x2de/0x650 process_one_work+0x486/0x7c0 process_scheduled_works+0x73/0x90 worker_thread+0x1c8/0x2a0 kthread+0x2ec/0x300 ret_from_fork+0x24/0x40 ret_from_fork_asm+0x1a/0x30 Rewrite the wait loop to check the above condition directly with client->monc.mutex and client->osdc.lock taken as appropriate. While at it, improve the timeout handling (previously mount_timeout could be exceeded in case wait_event_interruptible_timeout() slept more than once) and access client->auth_err under client->monc.mutex to match how it's set in finish_auth(). monmap_show() and osdmap_show() now take the respective lock before accessing the map as well.
CVE-2025-68292 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm/memfd: fix information leak in hugetlb folios When allocating hugetlb folios for memfd, three initialization steps are missing: 1. Folios are not zeroed, leading to kernel memory disclosure to userspace 2. Folios are not marked uptodate before adding to page cache 3. hugetlb_fault_mutex is not taken before hugetlb_add_to_page_cache() The memfd allocation path bypasses the normal page fault handler (hugetlb_no_page) which would handle all of these initialization steps. This is problematic especially for udmabuf use cases where folios are pinned and directly accessed by userspace via DMA. Fix by matching the initialization pattern used in hugetlb_no_page(): - Zero the folio using folio_zero_user() which is optimized for huge pages - Mark it uptodate with folio_mark_uptodate() - Take hugetlb_fault_mutex before adding to page cache to prevent races The folio_zero_user() change also fixes a potential security issue where uninitialized kernel memory could be disclosed to userspace through read() or mmap() operations on the memfd.
CVE-2025-68155 1 Vitejs 1 Plugin-rsc 2025-12-18 7.5 High
@vitejs/plugin-rs provides React Server Components (RSC) support for Vite. Prior to version 0.5.8, the `/__vite_rsc_findSourceMapURL` endpoint in `@vitejs/plugin-rsc` allows unauthenticated arbitrary file read during development mode. An attacker can read any file accessible to the Node.js process by sending a crafted HTTP request with a `file://` URL in the `filename` query parameter. Version 0.5.8 fixes the issue.
CVE-2025-14097 1 Radiometer 5 Abl800 Basic Analyzer, Abl800 Flex Analyzer, Abl90 Flex Analyzer and 2 more 2025-12-18 7.2 High
A vulnerability in the application software of multiple Radiometer products may allow remote code execution and unauthorized device management when specific internal conditions are met. Exploitation requires that a remote connection is established with additional information obtained through other means. The issue is caused by a weakness in the analyzer’s application software.                                                                                                                                                                                                Other related CVE's are CVE-2025-14095 & CVE-2025-14096.                                                                                                      Affected customers have been informed about this vulnerability. This CVE is being published to provide transparency. Required Configuration for Exposure: Affected application software version is in use and remote support feature is enabled in the analyzer.                                                                                                                                                                        Temporary work Around: If the network is not considered secure, please remove the analyzer from the network.                         Permanent solution: Customers should ensure the following: • The network is secure, and access follows best practices. Local Radiometer representatives will contact all affected customers to discuss a permanent solution.                                                      Exploit Status: Researchers have provided working proof-of-concept (PoC). Radiometer is not aware of any publicly available exploits at the time of this publication.
CVE-2025-68291 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mptcp: Initialise rcv_mss before calling tcp_send_active_reset() in mptcp_do_fastclose(). syzbot reported divide-by-zero in __tcp_select_window() by MPTCP socket. [0] We had a similar issue for the bare TCP and fixed in commit 499350a5a6e7 ("tcp: initialize rcv_mss to TCP_MIN_MSS instead of 0"). Let's apply the same fix to mptcp_do_fastclose(). [0]: Oops: divide error: 0000 [#1] SMP KASAN PTI CPU: 0 UID: 0 PID: 6068 Comm: syz.0.17 Not tainted syzkaller #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025 RIP: 0010:__tcp_select_window+0x824/0x1320 net/ipv4/tcp_output.c:3336 Code: ff ff ff 44 89 f1 d3 e0 89 c1 f7 d1 41 01 cc 41 21 c4 e9 a9 00 00 00 e8 ca 49 01 f8 e9 9c 00 00 00 e8 c0 49 01 f8 44 89 e0 99 <f7> 7c 24 1c 41 29 d4 48 bb 00 00 00 00 00 fc ff df e9 80 00 00 00 RSP: 0018:ffffc90003017640 EFLAGS: 00010293 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffff88807b469e40 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffffc90003017730 R08: ffff888033268143 R09: 1ffff1100664d028 R10: dffffc0000000000 R11: ffffed100664d029 R12: 0000000000000000 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 FS: 000055557faa0500(0000) GS:ffff888126135000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f64a1912ff8 CR3: 0000000072122000 CR4: 00000000003526f0 Call Trace: <TASK> tcp_select_window net/ipv4/tcp_output.c:281 [inline] __tcp_transmit_skb+0xbc7/0x3aa0 net/ipv4/tcp_output.c:1568 tcp_transmit_skb net/ipv4/tcp_output.c:1649 [inline] tcp_send_active_reset+0x2d1/0x5b0 net/ipv4/tcp_output.c:3836 mptcp_do_fastclose+0x27e/0x380 net/mptcp/protocol.c:2793 mptcp_disconnect+0x238/0x710 net/mptcp/protocol.c:3253 mptcp_sendmsg_fastopen+0x2f8/0x580 net/mptcp/protocol.c:1776 mptcp_sendmsg+0x1774/0x1980 net/mptcp/protocol.c:1855 sock_sendmsg_nosec net/socket.c:727 [inline] __sock_sendmsg+0xe5/0x270 net/socket.c:742 __sys_sendto+0x3bd/0x520 net/socket.c:2244 __do_sys_sendto net/socket.c:2251 [inline] __se_sys_sendto net/socket.c:2247 [inline] __x64_sys_sendto+0xde/0x100 net/socket.c:2247 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xfa/0xfa0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f66e998f749 Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007ffff9acedb8 EFLAGS: 00000246 ORIG_RAX: 000000000000002c RAX: ffffffffffffffda RBX: 00007f66e9be5fa0 RCX: 00007f66e998f749 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003 RBP: 00007ffff9acee10 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000001 R13: 00007f66e9be5fa0 R14: 00007f66e9be5fa0 R15: 0000000000000006 </TASK>
CVE-2025-33225 2 Linux, Nvidia 2 Linux, Resiliency Extension 2025-12-18 8.4 High
NVIDIA Resiliency Extension for Linux contains a vulnerability in log aggregation, where an attacker could cause predictable log-file names. A successful exploit of this vulnerability may lead to escalation of privileges, code execution, denial of service, information disclosure, and data tampering.
CVE-2025-68221 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mptcp: fix address removal logic in mptcp_pm_nl_rm_addr Fix inverted WARN_ON_ONCE condition that prevented normal address removal counter updates. The current code only executes decrement logic when the counter is already 0 (abnormal state), while normal removals (counter > 0) are ignored.
CVE-2025-33226 1 Nvidia 1 Nemo 2025-12-18 7.8 High
NVIDIA NeMo Framework for all platforms contains a vulnerability where malicious data created by an attacker may cause a code injection. A successful exploit of this vulnerability may lead to code execution, escalation of privileges, information disclosure, and data tampering.
CVE-2025-53524 1 Fujielectric 1 Monitouch V-sft 2025-12-18 7.8 High
Fuji Electric Monitouch V-SFT-6 is vulnerable to an out-of-bounds write while processing a specially crafted project file, which may allow an attacker to execute arbitrary code.
CVE-2023-53896 1 Dlink 1 Dap-1325 2025-12-18 7.5 High
D-Link DAP-1325 firmware version 1.01 contains a broken access control vulnerability that allows unauthenticated attackers to download device configuration settings without authentication. Attackers can exploit the /cgi-bin/ExportSettings.sh endpoint to retrieve sensitive configuration information by directly accessing the export settings script.
CVE-2025-68293 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm/huge_memory: fix NULL pointer deference when splitting folio Commit c010d47f107f ("mm: thp: split huge page to any lower order pages") introduced an early check on the folio's order via mapping->flags before proceeding with the split work. This check introduced a bug: for shmem folios in the swap cache and truncated folios, the mapping pointer can be NULL. Accessing mapping->flags in this state leads directly to a NULL pointer dereference. This commit fixes the issue by moving the check for mapping != NULL before any attempt to access mapping->flags.
CVE-2025-68283 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: libceph: replace BUG_ON with bounds check for map->max_osd OSD indexes come from untrusted network packets. Boundary checks are added to validate these against map->max_osd. [ idryomov: drop BUG_ON in ceph_get_primary_affinity(), minor cosmetic edits ]
CVE-2025-68213 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: idpf: fix possible vport_config NULL pointer deref in remove Attempting to remove the driver will cause a crash in cases where the vport failed to initialize. Following trace is from an instance where the driver failed during an attempt to create a VF: [ 1661.543624] idpf 0000:84:00.7: Device HW Reset initiated [ 1722.923726] idpf 0000:84:00.7: Transaction timed-out (op:1 cookie:2900 vc_op:1 salt:29 timeout:60000ms) [ 1723.353263] BUG: kernel NULL pointer dereference, address: 0000000000000028 ... [ 1723.358472] RIP: 0010:idpf_remove+0x11c/0x200 [idpf] ... [ 1723.364973] Call Trace: [ 1723.365475] <TASK> [ 1723.365972] pci_device_remove+0x42/0xb0 [ 1723.366481] device_release_driver_internal+0x1a9/0x210 [ 1723.366987] pci_stop_bus_device+0x6d/0x90 [ 1723.367488] pci_stop_and_remove_bus_device+0x12/0x20 [ 1723.367971] pci_iov_remove_virtfn+0xbd/0x120 [ 1723.368309] sriov_disable+0x34/0xe0 [ 1723.368643] idpf_sriov_configure+0x58/0x140 [idpf] [ 1723.368982] sriov_numvfs_store+0xda/0x1c0 Avoid the NULL pointer dereference by adding NULL pointer check for vport_config[i], before freeing user_config.q_coalesce.
CVE-2025-52582 1 Grassroots Dicom Project 1 Grassroots Dicom 2025-12-18 7.4 High
An out-of-bounds read vulnerability exists in the Overlay::GrabOverlayFromPixelData functionality of Grassroot DICOM 3.024. A specially crafted DICOM file can lead to an information leak. An attacker can provide a malicious file to trigger this vulnerability.
CVE-2025-68301 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: atlantic: fix fragment overflow handling in RX path The atlantic driver can receive packets with more than MAX_SKB_FRAGS (17) fragments when handling large multi-descriptor packets. This causes an out-of-bounds write in skb_add_rx_frag_netmem() leading to kernel panic. The issue occurs because the driver doesn't check the total number of fragments before calling skb_add_rx_frag(). When a packet requires more than MAX_SKB_FRAGS fragments, the fragment index exceeds the array bounds. Fix by assuming there will be an extra frag if buff->len > AQ_CFG_RX_HDR_SIZE, then all fragments are accounted for. And reusing the existing check to prevent the overflow earlier in the code path. This crash occurred in production with an Aquantia AQC113 10G NIC. Stack trace from production environment: ``` RIP: 0010:skb_add_rx_frag_netmem+0x29/0xd0 Code: 90 f3 0f 1e fa 0f 1f 44 00 00 48 89 f8 41 89 ca 48 89 d7 48 63 ce 8b 90 c0 00 00 00 48 c1 e1 04 48 01 ca 48 03 90 c8 00 00 00 <48> 89 7a 30 44 89 52 3c 44 89 42 38 40 f6 c7 01 75 74 48 89 fa 83 RSP: 0018:ffffa9bec02a8d50 EFLAGS: 00010287 RAX: ffff925b22e80a00 RBX: ffff925ad38d2700 RCX: fffffffe0a0c8000 RDX: ffff9258ea95bac0 RSI: ffff925ae0a0c800 RDI: 0000000000037a40 RBP: 0000000000000024 R08: 0000000000000000 R09: 0000000000000021 R10: 0000000000000848 R11: 0000000000000000 R12: ffffa9bec02a8e24 R13: ffff925ad8615570 R14: 0000000000000000 R15: ffff925b22e80a00 FS: 0000000000000000(0000) GS:ffff925e47880000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffff9258ea95baf0 CR3: 0000000166022004 CR4: 0000000000f72ef0 PKRU: 55555554 Call Trace: <IRQ> aq_ring_rx_clean+0x175/0xe60 [atlantic] ? aq_ring_rx_clean+0x14d/0xe60 [atlantic] ? aq_ring_tx_clean+0xdf/0x190 [atlantic] ? kmem_cache_free+0x348/0x450 ? aq_vec_poll+0x81/0x1d0 [atlantic] ? __napi_poll+0x28/0x1c0 ? net_rx_action+0x337/0x420 ``` Changes in v4: - Add Fixes: tag to satisfy patch validation requirements. Changes in v3: - Fix by assuming there will be an extra frag if buff->len > AQ_CFG_RX_HDR_SIZE, then all fragments are accounted for.