CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
video: fbdev: nvidiafb: Use strscpy() to prevent buffer overflow
Coverity complains of a possible buffer overflow. However,
given the 'static' scope of nvidia_setup_i2c_bus() it looks
like that can't happen after examiniing the call sites.
CID 19036 (#1 of 1): Copy into fixed size buffer (STRING_OVERFLOW)
1. fixed_size_dest: You might overrun the 48-character fixed-size string
chan->adapter.name by copying name without checking the length.
2. parameter_as_source: Note: This defect has an elevated risk because the
source argument is a parameter of the current function.
89 strcpy(chan->adapter.name, name);
Fix this warning by using strscpy() which will silence the warning and
prevent any future buffer overflows should the names used to identify the
channel become much longer. |
In the Linux kernel, the following vulnerability has been resolved:
netfs: Fix the pre-flush when appending to a file in writethrough mode
In netfs_perform_write(), when the file is marked NETFS_ICTX_WRITETHROUGH
or O_*SYNC or RWF_*SYNC was specified, write-through caching is performed
on a buffered file. When setting up for write-through, we flush any
conflicting writes in the region and wait for the write to complete,
failing if there's a write error to return.
The issue arises if we're writing at or above the EOF position because we
skip the flush and - more importantly - the wait. This becomes a problem
if there's a partial folio at the end of the file that is being written out
and we want to make a write to it too. Both the already-running write and
the write we start both want to clear the writeback mark, but whoever is
second causes a warning looking something like:
------------[ cut here ]------------
R=00000012: folio 11 is not under writeback
WARNING: CPU: 34 PID: 654 at fs/netfs/write_collect.c:105
...
CPU: 34 PID: 654 Comm: kworker/u386:27 Tainted: G S ...
...
Workqueue: events_unbound netfs_write_collection_worker
...
RIP: 0010:netfs_writeback_lookup_folio
Fix this by making the flush-and-wait unconditional. It will do nothing if
there are no folios in the pagecache and will return quickly if there are
no folios in the region specified.
Further, move the WBC attachment above the flush call as the flush is going
to attach a WBC and detach it again if it is not present - and since we
need one anyway we might as well share it. |
Tyler Technologies ERP Pro 9 SaaS allows an authenticated user to escape the application and execute limited operating system commands within the remote Microsoft Windows environment with the privileges of the authenticated user. Tyler Technologies deployed hardened remote Windows environment settings to all ERP Pro 9 SaaS customer environments as of 2025-08-01. |
In the Linux kernel, the following vulnerability has been resolved:
ata: sata_dwc_460ex: Fix crash due to OOB write
the driver uses libata's "tag" values from in various arrays.
Since the mentioned patch bumped the ATA_TAG_INTERNAL to 32,
the value of the SATA_DWC_QCMD_MAX needs to account for that.
Otherwise ATA_TAG_INTERNAL usage cause similar crashes like
this as reported by Tice Rex on the OpenWrt Forum and
reproduced (with symbols) here:
| BUG: Kernel NULL pointer dereference at 0x00000000
| Faulting instruction address: 0xc03ed4b8
| Oops: Kernel access of bad area, sig: 11 [#1]
| BE PAGE_SIZE=4K PowerPC 44x Platform
| CPU: 0 PID: 362 Comm: scsi_eh_1 Not tainted 5.4.163 #0
| NIP: c03ed4b8 LR: c03d27e8 CTR: c03ed36c
| REGS: cfa59950 TRAP: 0300 Not tainted (5.4.163)
| MSR: 00021000 <CE,ME> CR: 42000222 XER: 00000000
| DEAR: 00000000 ESR: 00000000
| GPR00: c03d27e8 cfa59a08 cfa55fe0 00000000 0fa46bc0 [...]
| [..]
| NIP [c03ed4b8] sata_dwc_qc_issue+0x14c/0x254
| LR [c03d27e8] ata_qc_issue+0x1c8/0x2dc
| Call Trace:
| [cfa59a08] [c003f4e0] __cancel_work_timer+0x124/0x194 (unreliable)
| [cfa59a78] [c03d27e8] ata_qc_issue+0x1c8/0x2dc
| [cfa59a98] [c03d2b3c] ata_exec_internal_sg+0x240/0x524
| [cfa59b08] [c03d2e98] ata_exec_internal+0x78/0xe0
| [cfa59b58] [c03d30fc] ata_read_log_page.part.38+0x1dc/0x204
| [cfa59bc8] [c03d324c] ata_identify_page_supported+0x68/0x130
| [...]
This is because sata_dwc_dma_xfer_complete() NULLs the
dma_pending's next neighbour "chan" (a *dma_chan struct) in
this '32' case right here (line ~735):
> hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_NONE;
Then the next time, a dma gets issued; dma_dwc_xfer_setup() passes
the NULL'd hsdevp->chan to the dmaengine_slave_config() which then
causes the crash.
With this patch, SATA_DWC_QCMD_MAX is now set to ATA_MAX_QUEUE + 1.
This avoids the OOB. But please note, there was a worthwhile discussion
on what ATA_TAG_INTERNAL and ATA_MAX_QUEUE is. And why there should not
be a "fake" 33 command-long queue size.
Ideally, the dw driver should account for the ATA_TAG_INTERNAL.
In Damien Le Moal's words: "... having looked at the driver, it
is a bigger change than just faking a 33rd "tag" that is in fact
not a command tag at all."
BugLink: https://github.com/openwrt/openwrt/issues/9505 |
A buffer over-read vulnerability in Ivanti Connect Secure before 22.7R2.8 or 22.8R2, Ivanti Policy Secure before 22.7R1.5, Ivanti ZTA Gateway before 2.8R2.3-723 and Ivanti Neurons for Secure Access before 22.8R1.4 (Fix deployed on 02-Aug-2025) allows a remote unauthenticated attacker to trigger a denial of service. CWE-125 |
In the Linux kernel, the following vulnerability has been resolved:
dm integrity: fix memory corruption when tag_size is less than digest size
It is possible to set up dm-integrity in such a way that the
"tag_size" parameter is less than the actual digest size. In this
situation, a part of the digest beyond tag_size is ignored.
In this case, dm-integrity would write beyond the end of the
ic->recalc_tags array and corrupt memory. The corruption happened in
integrity_recalc->integrity_sector_checksum->crypto_shash_final.
Fix this corruption by increasing the tags array so that it has enough
padding at the end to accomodate the loop in integrity_recalc() being
able to write a full digest size for the last member of the tags
array. |
A heap-based buffer overflow in Ivanti Connect Secure before 22.7R2.8 or 22.8R2, Ivanti Policy Secure before 22.7R1.5, Ivanti ZTA Gateway before 22.8R2.3-723 and Ivanti Neurons for Secure Access before 22.8R1.4 (Fix deployed on 02-Aug-2025) allows a remote unauthenticated attacker to trigger a denial of service. |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: RFCOMM: Fix not validating setsockopt user input
syzbot reported rfcomm_sock_setsockopt_old() is copying data without
checking user input length.
BUG: KASAN: slab-out-of-bounds in copy_from_sockptr_offset
include/linux/sockptr.h:49 [inline]
BUG: KASAN: slab-out-of-bounds in copy_from_sockptr
include/linux/sockptr.h:55 [inline]
BUG: KASAN: slab-out-of-bounds in rfcomm_sock_setsockopt_old
net/bluetooth/rfcomm/sock.c:632 [inline]
BUG: KASAN: slab-out-of-bounds in rfcomm_sock_setsockopt+0x893/0xa70
net/bluetooth/rfcomm/sock.c:673
Read of size 4 at addr ffff8880209a8bc3 by task syz-executor632/5064 |
Cross-Site Request Forgery (CSRF) vulnerability in scriptsbundle Nokri allows Cross Site Request Forgery. This issue affects Nokri: from n/a through 1.6.4. |
Out-of-bounds Read, Out-of-bounds Write vulnerability in RTI Connext Professional (Recording Service) allows Overflow Buffers, Overread Buffers.This issue affects Connext Professional: from 7.4.0 before 7.5.0, from 7.0.0 before 7.3.0.7, from 6.1.0 before 6.1.2.23, from 6.0.0 before 6.0.1.42. |
Buffer Copy without Checking Size of Input ('Classic Buffer Overflow'), Stack-based Buffer Overflow vulnerability in RTI Connext Professional (Core Libraries) allows Overflow Variables and Tags.This issue affects Connext Professional: from 7.4.0 before 7.5.0, from 7.0.0 before 7.3.0.7, from 6.1.0 before 6.1.2.23, from 6.0.0 before 6.0.1.42, from 5.3.0 before 5.3.*, from 4.5c before 5.2.*. |
Heap-based Buffer Overflow vulnerability in RTI Connext Professional (Core Libraries) allows Overflow Variables and Tags.This issue affects Connext Professional: from 7.4.0 before 7.5.0, from 7.0.0 before 7.3.0.7, from 6.1.0 before 6.1.2.23, from 6.0.0 before 6.0.1.42, from 5.3.0 before 5.3.*, from 4.4d before 5.2.*. |
ECOVACS lawnmowers and vacuums do not properly validate TLS certificates. An unauthenticated attacker can read or modify TLS traffic, possibly modifying firmware updates. |
ECOVACS robot lawnmowers and vacuums use a deterministic symmetric key to decrypt firmware updates. An attacker can create and encrypt malicious firmware that will be successfully decrypted and installed by the robot. |
ECOVACS robot lawnmowers and vacuums use a deterministic root password generated based on model and serial number. An attacker with shell access can login as root. |
An OS command injection vulnerability exists in multiple D-Link routers—confirmed on DIR-300 rev A (v1.05) and DIR-615 rev D (v4.13)—via the authenticated tools_vct.xgi CGI endpoint. The web interface fails to properly sanitize user-supplied input in the pingIp parameter, allowing attackers with valid credentials to inject arbitrary shell commands. Exploitation enables full device compromise, including spawning a telnet daemon and establishing a root shell. The vulnerability is present in firmware versions that expose tools_vct.xgi and use the Mathopd/1.5p6 web server. No vendor patch is available, and affected models are end-of-life. |
ECOVACS HOME mobile app plugins for specific robots do not properly validate TLS certificates. An unauthenticated attacker can read or modify TLS traffic and obtain authentication tokens. |
ECOVACS vacuum robot base stations do not validate firmware updates, so malicious over-the-air updates can be sent to base station via insecure connection between robot and base station. |
An authenticated OS command injection vulnerability exists in Netgear routers (tested on the DGN2200B model) firmware versions 1.0.0.36 and prior via the pppoe.cgi endpoint. A remote attacker with valid credentials can execute arbitrary commands via crafted input to the pppoe_username parameter. This flaw allows full compromise of the device and may persist across reboots unless configuration is restored. |
The Keras Model.load_model method can be exploited to achieve arbitrary code execution, even with safe_mode=True.
One can create a specially crafted .h5/.hdf5 model archive that, when loaded via Model.load_model, will trigger arbitrary code to be executed.
This is achieved by crafting a special .h5 archive file that uses the Lambda layer feature of keras which allows arbitrary Python code in the form of pickled code. The vulnerability comes from the fact that the safe_mode=True option is not honored when reading .h5 archives.
Note that the .h5/.hdf5 format is a legacy format supported by Keras 3 for backwards compatibility. |