Search

Search Results (313021 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2023-53605 1 Linux 1 Linux Kernel 2025-10-06 N/A
In the Linux kernel, the following vulnerability has been resolved: drm: amd: display: Fix memory leakage This commit fixes memory leakage in dc_construct_ctx() function.
CVE-2023-53608 1 Linux 1 Linux Kernel 2025-10-06 N/A
In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix potential UAF of struct nilfs_sc_info in nilfs_segctor_thread() The finalization of nilfs_segctor_thread() can race with nilfs_segctor_kill_thread() which terminates that thread, potentially causing a use-after-free BUG as KASAN detected. At the end of nilfs_segctor_thread(), it assigns NULL to "sc_task" member of "struct nilfs_sc_info" to indicate the thread has finished, and then notifies nilfs_segctor_kill_thread() of this using waitqueue "sc_wait_task" on the struct nilfs_sc_info. However, here, immediately after the NULL assignment to "sc_task", it is possible that nilfs_segctor_kill_thread() will detect it and return to continue the deallocation, freeing the nilfs_sc_info structure before the thread does the notification. This fixes the issue by protecting the NULL assignment to "sc_task" and its notification, with spinlock "sc_state_lock" of the struct nilfs_sc_info. Since nilfs_segctor_kill_thread() does a final check to see if "sc_task" is NULL with "sc_state_lock" locked, this can eliminate the race.
CVE-2023-53614 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm/ksm: fix race with VMA iteration and mm_struct teardown exit_mmap() will tear down the VMAs and maple tree with the mmap_lock held in write mode. Ensure that the maple tree is still valid by checking ksm_test_exit() after taking the mmap_lock in read mode, but before the for_each_vma() iterator dereferences a destroyed maple tree. Since the maple tree is destroyed, the flags telling lockdep to check an external lock has been cleared. Skip the for_each_vma() iterator to avoid dereferencing a maple tree without the external lock flag, which would create a lockdep warning.
CVE-2022-50496 1 Linux 1 Linux Kernel 2025-10-06 N/A
In the Linux kernel, the following vulnerability has been resolved: dm cache: Fix UAF in destroy() Dm_cache also has the same UAF problem when dm_resume() and dm_destroy() are concurrent. Therefore, cancelling timer again in destroy().
CVE-2022-50508 1 Linux 1 Linux Kernel 2025-10-06 N/A
In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt76x0: fix oob access in mt76x0_phy_get_target_power After 'commit ba45841ca5eb ("wifi: mt76: mt76x02: simplify struct mt76x02_rate_power")', mt76x02 relies on ht[0-7] rate_power data for vht mcs{0,7}, while it uses vth[0-1] rate_power for vht mcs {8,9}. Fix a possible out-of-bound access in mt76x0_phy_get_target_power routine.
CVE-2023-53533 1 Linux 1 Linux Kernel 2025-10-06 N/A
In the Linux kernel, the following vulnerability has been resolved: Input: raspberrypi-ts - fix refcount leak in rpi_ts_probe rpi_firmware_get() take reference, we need to release it in error paths as well. Use devm_rpi_firmware_get() helper to handling the resources. Also remove the existing rpi_firmware_put().
CVE-2023-53536 1 Linux 1 Linux Kernel 2025-10-06 N/A
In the Linux kernel, the following vulnerability has been resolved: blk-crypto: make blk_crypto_evict_key() more robust If blk_crypto_evict_key() sees that the key is still in-use (due to a bug) or that ->keyslot_evict failed, it currently just returns while leaving the key linked into the keyslot management structures. However, blk_crypto_evict_key() is only called in contexts such as inode eviction where failure is not an option. So actually the caller proceeds with freeing the blk_crypto_key regardless of the return value of blk_crypto_evict_key(). These two assumptions don't match, and the result is that there can be a use-after-free in blk_crypto_reprogram_all_keys() after one of these errors occurs. (Note, these errors *shouldn't* happen; we're just talking about what happens if they do anyway.) Fix this by making blk_crypto_evict_key() unlink the key from the keyslot management structures even on failure. Also improve some comments.
CVE-2023-53584 1 Linux 1 Linux Kernel 2025-10-06 N/A
In the Linux kernel, the following vulnerability has been resolved: ubifs: ubifs_releasepage: Remove ubifs_assert(0) to valid this process There are two states for ubifs writing pages: 1. Dirty, Private 2. Not Dirty, Not Private The normal process cannot go to ubifs_releasepage() which means there exists pages being private but not dirty. Reproducer[1] shows that it could occur (which maybe related to [2]) with following process: PA PB PC lock(page)[PA] ubifs_write_end attach_page_private // set Private __set_page_dirty_nobuffers // set Dirty unlock(page) write_cache_pages[PA] lock(page) clear_page_dirty_for_io(page) // clear Dirty ubifs_writepage do_truncation[PB] truncate_setsize i_size_write(inode, newsize) // newsize = 0 i_size = i_size_read(inode) // i_size = 0 end_index = i_size >> PAGE_SHIFT if (page->index > end_index) goto out // jump out: unlock(page) // Private, Not Dirty generic_fadvise[PC] lock(page) invalidate_inode_page try_to_release_page ubifs_releasepage ubifs_assert(c, 0) // bad assertion! unlock(page) truncate_pagecache[PB] Then we may get following assertion failed: UBIFS error (ubi0:0 pid 1683): ubifs_assert_failed [ubifs]: UBIFS assert failed: 0, in fs/ubifs/file.c:1513 UBIFS warning (ubi0:0 pid 1683): ubifs_ro_mode [ubifs]: switched to read-only mode, error -22 CPU: 2 PID: 1683 Comm: aa Not tainted 5.16.0-rc5-00184-g0bca5994cacc-dirty #308 Call Trace: dump_stack+0x13/0x1b ubifs_ro_mode+0x54/0x60 [ubifs] ubifs_assert_failed+0x4b/0x80 [ubifs] ubifs_releasepage+0x67/0x1d0 [ubifs] try_to_release_page+0x57/0xe0 invalidate_inode_page+0xfb/0x130 __invalidate_mapping_pages+0xb9/0x280 invalidate_mapping_pagevec+0x12/0x20 generic_fadvise+0x303/0x3c0 ksys_fadvise64_64+0x4c/0xb0 [1] https://bugzilla.kernel.org/show_bug.cgi?id=215373 [2] https://linux-mtd.infradead.narkive.com/NQoBeT1u/patch-rfc-ubifs-fix-assert-failed-in-ubifs-set-page-dirty
CVE-2023-53616 1 Linux 1 Linux Kernel 2025-10-06 N/A
In the Linux kernel, the following vulnerability has been resolved: jfs: fix invalid free of JFS_IP(ipimap)->i_imap in diUnmount syzbot found an invalid-free in diUnmount: BUG: KASAN: double-free in slab_free mm/slub.c:3661 [inline] BUG: KASAN: double-free in __kmem_cache_free+0x71/0x110 mm/slub.c:3674 Free of addr ffff88806f410000 by task syz-executor131/3632 CPU: 0 PID: 3632 Comm: syz-executor131 Not tainted 6.1.0-rc7-syzkaller-00012-gca57f02295f1 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x1b1/0x28e lib/dump_stack.c:106 print_address_description+0x74/0x340 mm/kasan/report.c:284 print_report+0x107/0x1f0 mm/kasan/report.c:395 kasan_report_invalid_free+0xac/0xd0 mm/kasan/report.c:460 ____kasan_slab_free+0xfb/0x120 kasan_slab_free include/linux/kasan.h:177 [inline] slab_free_hook mm/slub.c:1724 [inline] slab_free_freelist_hook+0x12e/0x1a0 mm/slub.c:1750 slab_free mm/slub.c:3661 [inline] __kmem_cache_free+0x71/0x110 mm/slub.c:3674 diUnmount+0xef/0x100 fs/jfs/jfs_imap.c:195 jfs_umount+0x108/0x370 fs/jfs/jfs_umount.c:63 jfs_put_super+0x86/0x190 fs/jfs/super.c:194 generic_shutdown_super+0x130/0x310 fs/super.c:492 kill_block_super+0x79/0xd0 fs/super.c:1428 deactivate_locked_super+0xa7/0xf0 fs/super.c:332 cleanup_mnt+0x494/0x520 fs/namespace.c:1186 task_work_run+0x243/0x300 kernel/task_work.c:179 exit_task_work include/linux/task_work.h:38 [inline] do_exit+0x664/0x2070 kernel/exit.c:820 do_group_exit+0x1fd/0x2b0 kernel/exit.c:950 __do_sys_exit_group kernel/exit.c:961 [inline] __se_sys_exit_group kernel/exit.c:959 [inline] __x64_sys_exit_group+0x3b/0x40 kernel/exit.c:959 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd [...] JFS_IP(ipimap)->i_imap is not setting to NULL after free in diUnmount. If jfs_remount() free JFS_IP(ipimap)->i_imap but then failed at diMount(). JFS_IP(ipimap)->i_imap will be freed once again. Fix this problem by setting JFS_IP(ipimap)->i_imap to NULL after free.
CVE-2023-53550 1 Linux 1 Linux Kernel 2025-10-06 N/A
In the Linux kernel, the following vulnerability has been resolved: cpufreq: amd-pstate: fix global sysfs attribute type In commit 3666062b87ec ("cpufreq: amd-pstate: move to use bus_get_dev_root()") the "amd_pstate" attributes where moved from a dedicated kobject to the cpu root kobject. While the dedicated kobject expects to contain kobj_attributes the root kobject needs device_attributes. As the changed arguments are not used by the callbacks it works most of the time. However CFI will detect this issue: [ 4947.849350] CFI failure at dev_attr_show+0x24/0x60 (target: show_status+0x0/0x70; expected type: 0x8651b1de) ... [ 4947.849409] Call Trace: [ 4947.849410] <TASK> [ 4947.849411] ? __warn+0xcf/0x1c0 [ 4947.849414] ? dev_attr_show+0x24/0x60 [ 4947.849415] ? report_cfi_failure+0x4e/0x60 [ 4947.849417] ? handle_cfi_failure+0x14c/0x1d0 [ 4947.849419] ? __cfi_show_status+0x10/0x10 [ 4947.849420] ? handle_bug+0x4f/0x90 [ 4947.849421] ? exc_invalid_op+0x1a/0x60 [ 4947.849422] ? asm_exc_invalid_op+0x1a/0x20 [ 4947.849424] ? __cfi_show_status+0x10/0x10 [ 4947.849425] ? dev_attr_show+0x24/0x60 [ 4947.849426] sysfs_kf_seq_show+0xa6/0x110 [ 4947.849433] seq_read_iter+0x16c/0x4b0 [ 4947.849436] vfs_read+0x272/0x2d0 [ 4947.849438] ksys_read+0x72/0xe0 [ 4947.849439] do_syscall_64+0x76/0xb0 [ 4947.849440] ? do_user_addr_fault+0x252/0x650 [ 4947.849442] ? exc_page_fault+0x7a/0x1b0 [ 4947.849443] entry_SYSCALL_64_after_hwframe+0x72/0xdc
CVE-2023-53558 1 Linux 1 Linux Kernel 2025-10-06 N/A
In the Linux kernel, the following vulnerability has been resolved: rcu-tasks: Avoid pr_info() with spin lock in cblist_init_generic() pr_info() is called with rtp->cbs_gbl_lock spin lock locked. Because pr_info() calls printk() that might sleep, this will result in BUG like below: [ 0.206455] cblist_init_generic: Setting adjustable number of callback queues. [ 0.206463] [ 0.206464] ============================= [ 0.206464] [ BUG: Invalid wait context ] [ 0.206465] 5.19.0-00428-g9de1f9c8ca51 #5 Not tainted [ 0.206466] ----------------------------- [ 0.206466] swapper/0/1 is trying to lock: [ 0.206467] ffffffffa0167a58 (&port_lock_key){....}-{3:3}, at: serial8250_console_write+0x327/0x4a0 [ 0.206473] other info that might help us debug this: [ 0.206473] context-{5:5} [ 0.206474] 3 locks held by swapper/0/1: [ 0.206474] #0: ffffffff9eb597e0 (rcu_tasks.cbs_gbl_lock){....}-{2:2}, at: cblist_init_generic.constprop.0+0x14/0x1f0 [ 0.206478] #1: ffffffff9eb579c0 (console_lock){+.+.}-{0:0}, at: _printk+0x63/0x7e [ 0.206482] #2: ffffffff9ea77780 (console_owner){....}-{0:0}, at: console_emit_next_record.constprop.0+0x111/0x330 [ 0.206485] stack backtrace: [ 0.206486] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.19.0-00428-g9de1f9c8ca51 #5 [ 0.206488] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-1.fc36 04/01/2014 [ 0.206489] Call Trace: [ 0.206490] <TASK> [ 0.206491] dump_stack_lvl+0x6a/0x9f [ 0.206493] __lock_acquire.cold+0x2d7/0x2fe [ 0.206496] ? stack_trace_save+0x46/0x70 [ 0.206497] lock_acquire+0xd1/0x2f0 [ 0.206499] ? serial8250_console_write+0x327/0x4a0 [ 0.206500] ? __lock_acquire+0x5c7/0x2720 [ 0.206502] _raw_spin_lock_irqsave+0x3d/0x90 [ 0.206504] ? serial8250_console_write+0x327/0x4a0 [ 0.206506] serial8250_console_write+0x327/0x4a0 [ 0.206508] console_emit_next_record.constprop.0+0x180/0x330 [ 0.206511] console_unlock+0xf7/0x1f0 [ 0.206512] vprintk_emit+0xf7/0x330 [ 0.206514] _printk+0x63/0x7e [ 0.206516] cblist_init_generic.constprop.0.cold+0x24/0x32 [ 0.206518] rcu_init_tasks_generic+0x5/0xd9 [ 0.206522] kernel_init_freeable+0x15b/0x2a2 [ 0.206523] ? rest_init+0x160/0x160 [ 0.206526] kernel_init+0x11/0x120 [ 0.206527] ret_from_fork+0x1f/0x30 [ 0.206530] </TASK> [ 0.207018] cblist_init_generic: Setting shift to 1 and lim to 1. This patch moves pr_info() so that it is called without rtp->cbs_gbl_lock locked.
CVE-2023-53585 1 Linux 1 Linux Kernel 2025-10-06 N/A
In the Linux kernel, the following vulnerability has been resolved: bpf: reject unhashed sockets in bpf_sk_assign The semantics for bpf_sk_assign are as follows: sk = some_lookup_func() bpf_sk_assign(skb, sk) bpf_sk_release(sk) That is, the sk is not consumed by bpf_sk_assign. The function therefore needs to make sure that sk lives long enough to be consumed from __inet_lookup_skb. The path through the stack for a TCPv4 packet is roughly: netif_receive_skb_core: takes RCU read lock __netif_receive_skb_core: sch_handle_ingress: tcf_classify: bpf_sk_assign() deliver_ptype_list_skb: deliver_skb: ip_packet_type->func == ip_rcv: ip_rcv_core: ip_rcv_finish_core: dst_input: ip_local_deliver: ip_local_deliver_finish: ip_protocol_deliver_rcu: tcp_v4_rcv: __inet_lookup_skb: skb_steal_sock The existing helper takes advantage of the fact that everything happens in the same RCU critical section: for sockets with SOCK_RCU_FREE set bpf_sk_assign never takes a reference. skb_steal_sock then checks SOCK_RCU_FREE again and does sock_put if necessary. This approach assumes that SOCK_RCU_FREE is never set on a sk between bpf_sk_assign and skb_steal_sock, but this invariant is violated by unhashed UDP sockets. A new UDP socket is created in TCP_CLOSE state but without SOCK_RCU_FREE set. That flag is only added in udp_lib_get_port() which happens when a socket is bound. When bpf_sk_assign was added it wasn't possible to access unhashed UDP sockets from BPF, so this wasn't a problem. This changed in commit 0c48eefae712 ("sock_map: Lift socket state restriction for datagram sockets"), but the helper wasn't adjusted accordingly. The following sequence of events will therefore lead to a refcount leak: 1. Add socket(AF_INET, SOCK_DGRAM) to a sockmap. 2. Pull socket out of sockmap and bpf_sk_assign it. Since SOCK_RCU_FREE is not set we increment the refcount. 3. bind() or connect() the socket, setting SOCK_RCU_FREE. 4. skb_steal_sock will now set refcounted = false due to SOCK_RCU_FREE. 5. tcp_v4_rcv() skips sock_put(). Fix the problem by rejecting unhashed sockets in bpf_sk_assign(). This matches the behaviour of __inet_lookup_skb which is ultimately the goal of bpf_sk_assign().
CVE-2023-53606 1 Linux 1 Linux Kernel 2025-10-06 N/A
In the Linux kernel, the following vulnerability has been resolved: nfsd: clean up potential nfsd_file refcount leaks in COPY codepath There are two different flavors of the nfsd4_copy struct. One is embedded in the compound and is used directly in synchronous copies. The other is dynamically allocated, refcounted and tracked in the client struture. For the embedded one, the cleanup just involves releasing any nfsd_files held on its behalf. For the async one, the cleanup is a bit more involved, and we need to dequeue it from lists, unhash it, etc. There is at least one potential refcount leak in this code now. If the kthread_create call fails, then both the src and dst nfsd_files in the original nfsd4_copy object are leaked. The cleanup in this codepath is also sort of weird. In the async copy case, we'll have up to four nfsd_file references (src and dst for both flavors of copy structure). They are both put at the end of nfsd4_do_async_copy, even though the ones held on behalf of the embedded one outlive that structure. Change it so that we always clean up the nfsd_file refs held by the embedded copy structure before nfsd4_copy returns. Rework cleanup_async_copy to handle both inter and intra copies. Eliminate nfsd4_cleanup_intra_ssc since it now becomes a no-op.
CVE-2025-11280 1 Frappe 1 Frappe Lms 2025-10-06 3.7 Low
A flaw has been found in Frappe LMS 2.35.0. Impacted is an unknown function of the file /files/ of the component Assignment Picture Handler. This manipulation causes direct request. The attack may be initiated remotely. The attack's complexity is rated as high. The exploitability is considered difficult. The exploit has been published and may be used. It is advisable to upgrade the affected component. The vendor was informed early about a total of four security issues and confirmed that those have been fixed. However, the release notes on GitHub do not mention them.
CVE-2025-11290 1 Crmeb 1 Crmeb 2025-10-06 5.6 Medium
A vulnerability was identified in CRMEB up to 5.6.1. This affects an unknown function of the component JWT HMAC Secret Handler. Such manipulation of the argument secret with the input default leads to use of hard-coded cryptographic key . It is possible to launch the attack remotely. Attacks of this nature are highly complex. The exploitability is reported as difficult. The exploit is publicly available and might be used. The vendor was contacted early about this disclosure but did not respond in any way.
CVE-2025-11330 1 Phpgurukul 1 Beauty Parlour Management System 2025-10-06 6.3 Medium
A vulnerability has been found in PHPGurukul Beauty Parlour Management System 1.1. The affected element is an unknown function of the file /admin/sales-reports-detail.php. Such manipulation of the argument fromdate/todate leads to sql injection. The attack can be launched remotely. The exploit has been disclosed to the public and may be used.
CVE-2025-11332 1 Cmseasy 1 Cmseasy 2025-10-06 3.5 Low
A vulnerability was determined in CmsEasy up to 7.7.7. This affects an unknown function in the library lib/inc/view.php of the component URL Handler. Executing manipulation of the argument PHP_SELF can lead to cross site scripting. The attack may be launched remotely. The exploit has been publicly disclosed and may be utilized. The vendor was contacted early about this disclosure but did not respond in any way.
CVE-2025-11337 2025-10-06 5.3 Medium
A vulnerability was detected in Four-Faith Water Conservancy Informatization Platform up to 2.2. This affects an unknown part of the file /aloneReport/index.do/../../aloneReport/download.do;othersusrlogout.do. Performing manipulation of the argument fileName results in path traversal. It is possible to initiate the attack remotely. The exploit is now public and may be used. The vendor was contacted early about this disclosure but did not respond in any way.
CVE-2025-23255 1 Nvidia 1 Cuda Toolkit 2025-10-06 3.3 Low
NVIDIA CUDA Toolkit for all platforms contains a vulnerability in the cuobjdump binary where a user may cause an out-of-bounds read by passing a malformed ELF file to cuobjdump. A successful exploit of this vulnerability may lead to a partial denial of service.
CVE-2025-23273 3 Linux, Microsoft, Nvidia 6 Linux Kernel, Windows, Cuda Toolkit and 3 more 2025-10-06 2.5 Low
NVIDIA CUDA Toolkit for all platforms contains a vulnerability in nvJPEG where a local authenticated user may cause a divide by zero error by submitting a specially crafted JPEG file. A successful exploit of this vulnerability may lead to denial of service.