Search Results (70893 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-68301 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: atlantic: fix fragment overflow handling in RX path The atlantic driver can receive packets with more than MAX_SKB_FRAGS (17) fragments when handling large multi-descriptor packets. This causes an out-of-bounds write in skb_add_rx_frag_netmem() leading to kernel panic. The issue occurs because the driver doesn't check the total number of fragments before calling skb_add_rx_frag(). When a packet requires more than MAX_SKB_FRAGS fragments, the fragment index exceeds the array bounds. Fix by assuming there will be an extra frag if buff->len > AQ_CFG_RX_HDR_SIZE, then all fragments are accounted for. And reusing the existing check to prevent the overflow earlier in the code path. This crash occurred in production with an Aquantia AQC113 10G NIC. Stack trace from production environment: ``` RIP: 0010:skb_add_rx_frag_netmem+0x29/0xd0 Code: 90 f3 0f 1e fa 0f 1f 44 00 00 48 89 f8 41 89 ca 48 89 d7 48 63 ce 8b 90 c0 00 00 00 48 c1 e1 04 48 01 ca 48 03 90 c8 00 00 00 <48> 89 7a 30 44 89 52 3c 44 89 42 38 40 f6 c7 01 75 74 48 89 fa 83 RSP: 0018:ffffa9bec02a8d50 EFLAGS: 00010287 RAX: ffff925b22e80a00 RBX: ffff925ad38d2700 RCX: fffffffe0a0c8000 RDX: ffff9258ea95bac0 RSI: ffff925ae0a0c800 RDI: 0000000000037a40 RBP: 0000000000000024 R08: 0000000000000000 R09: 0000000000000021 R10: 0000000000000848 R11: 0000000000000000 R12: ffffa9bec02a8e24 R13: ffff925ad8615570 R14: 0000000000000000 R15: ffff925b22e80a00 FS: 0000000000000000(0000) GS:ffff925e47880000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffff9258ea95baf0 CR3: 0000000166022004 CR4: 0000000000f72ef0 PKRU: 55555554 Call Trace: <IRQ> aq_ring_rx_clean+0x175/0xe60 [atlantic] ? aq_ring_rx_clean+0x14d/0xe60 [atlantic] ? aq_ring_tx_clean+0xdf/0x190 [atlantic] ? kmem_cache_free+0x348/0x450 ? aq_vec_poll+0x81/0x1d0 [atlantic] ? __napi_poll+0x28/0x1c0 ? net_rx_action+0x337/0x420 ``` Changes in v4: - Add Fixes: tag to satisfy patch validation requirements. Changes in v3: - Fix by assuming there will be an extra frag if buff->len > AQ_CFG_RX_HDR_SIZE, then all fragments are accounted for.
CVE-2025-68239 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: binfmt_misc: restore write access before closing files opened by open_exec() bm_register_write() opens an executable file using open_exec(), which internally calls do_open_execat() and denies write access on the file to avoid modification while it is being executed. However, when an error occurs, bm_register_write() closes the file using filp_close() directly. This does not restore the write permission, which may cause subsequent write operations on the same file to fail. Fix this by calling exe_file_allow_write_access() before filp_close() to restore the write permission properly.
CVE-2025-53619 1 Grassroots Dicom Project 1 Grassroots Dicom 2025-12-18 7.4 High
An out-of-bounds read vulnerability exists in the JPEGBITSCodec::InternalCode functionality of Grassroot DICOM 3.024. A specially crafted DICOM file can lead to an information leak. An attacker can provide a malicious file to trigger this vulnerability.The function `null_convert` is called based of the value of the malicious DICOM file specifying the intended interpretation of the image pixel data
CVE-2025-68305 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_sock: Prevent race in socket write iter and sock bind There is a potential race condition between sock bind and socket write iter. bind may free the same cmd via mgmt_pending before write iter sends the cmd, just as syzbot reported in UAF[1]. Here we use hci_dev_lock to synchronize the two, thereby avoiding the UAF mentioned in [1]. [1] syzbot reported: BUG: KASAN: slab-use-after-free in mgmt_pending_remove+0x3b/0x210 net/bluetooth/mgmt_util.c:316 Read of size 8 at addr ffff888077164818 by task syz.0.17/5989 Call Trace: mgmt_pending_remove+0x3b/0x210 net/bluetooth/mgmt_util.c:316 set_link_security+0x5c2/0x710 net/bluetooth/mgmt.c:1918 hci_mgmt_cmd+0x9c9/0xef0 net/bluetooth/hci_sock.c:1719 hci_sock_sendmsg+0x6ca/0xef0 net/bluetooth/hci_sock.c:1839 sock_sendmsg_nosec net/socket.c:727 [inline] __sock_sendmsg+0x21c/0x270 net/socket.c:742 sock_write_iter+0x279/0x360 net/socket.c:1195 Allocated by task 5989: mgmt_pending_add+0x35/0x140 net/bluetooth/mgmt_util.c:296 set_link_security+0x557/0x710 net/bluetooth/mgmt.c:1910 hci_mgmt_cmd+0x9c9/0xef0 net/bluetooth/hci_sock.c:1719 hci_sock_sendmsg+0x6ca/0xef0 net/bluetooth/hci_sock.c:1839 sock_sendmsg_nosec net/socket.c:727 [inline] __sock_sendmsg+0x21c/0x270 net/socket.c:742 sock_write_iter+0x279/0x360 net/socket.c:1195 Freed by task 5991: mgmt_pending_free net/bluetooth/mgmt_util.c:311 [inline] mgmt_pending_foreach+0x30d/0x380 net/bluetooth/mgmt_util.c:257 mgmt_index_removed+0x112/0x2f0 net/bluetooth/mgmt.c:9477 hci_sock_bind+0xbe9/0x1000 net/bluetooth/hci_sock.c:1314
CVE-2025-68253 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm: don't spin in add_stack_record when gfp flags don't allow syzbot was able to find the following path: add_stack_record_to_list mm/page_owner.c:182 [inline] inc_stack_record_count mm/page_owner.c:214 [inline] __set_page_owner+0x2c3/0x4a0 mm/page_owner.c:333 set_page_owner include/linux/page_owner.h:32 [inline] post_alloc_hook+0x240/0x2a0 mm/page_alloc.c:1851 prep_new_page mm/page_alloc.c:1859 [inline] get_page_from_freelist+0x21e4/0x22c0 mm/page_alloc.c:3858 alloc_pages_nolock_noprof+0x94/0x120 mm/page_alloc.c:7554 Don't spin in add_stack_record_to_list() when it is called from *_nolock() context.
CVE-2025-33225 2 Linux, Nvidia 2 Linux, Resiliency Extension 2025-12-18 8.4 High
NVIDIA Resiliency Extension for Linux contains a vulnerability in log aggregation, where an attacker could cause predictable log-file names. A successful exploit of this vulnerability may lead to escalation of privileges, code execution, denial of service, information disclosure, and data tampering.
CVE-2025-68154 2 Microsoft, Systeminformation 2 Windows, Systeminformation 2025-12-18 8.1 High
systeminformation is a System and OS information library for node.js. In versions prior to 5.27.14, the `fsSize()` function in systeminformation is vulnerable to OS command injection on Windows systems. The optional `drive` parameter is directly concatenated into a PowerShell command without sanitization, allowing arbitrary command execution when user-controlled input reaches this function. The actual exploitability depends on how applications use this function. If an application does not pass user-controlled input to `fsSize()`, it is not vulnerable. Version 5.27.14 contains a patch.
CVE-2025-33235 2 Linux, Nvidia 2 Linux, Resiliency Extension 2025-12-18 7.8 High
NVIDIA Resiliency Extension for Linux contains a vulnerability in the checkpointing core, where an attacker may cause a race condition. A successful exploit of this vulnerability might lead to information disclosure, data tampering, denial of service, or escalation of privileges.
CVE-2025-68156 2025-12-18 7.5 High
Expr is an expression language and expression evaluation for Go. Prior to version 1.17.7, several builtin functions in Expr, including `flatten`, `min`, `max`, `mean`, and `median`, perform recursive traversal over user-provided data structures without enforcing a maximum recursion depth. If the evaluation environment contains deeply nested or cyclic data structures, these functions may recurse indefinitely until exceed the Go runtime stack limit. This results in a stack overflow panic, causing the host application to crash. While exploitability depends on whether an attacker can influence or inject cyclic or pathologically deep data into the evaluation environment, this behavior represents a denial-of-service (DoS) risk and affects overall library robustness. Instead of returning a recoverable evaluation error, the process may terminate unexpectedly. In affected versions, evaluation of expressions that invoke certain builtin functions on untrusted or insufficiently validated data structures can lead to a process-level crash due to stack exhaustion. This issue is most relevant in scenarios where Expr is used to evaluate expressions against externally supplied or dynamically constructed environments; cyclic references (directly or indirectly) can be introduced into arrays, maps, or structs; and there are no application-level safeguards preventing deeply nested input data. In typical use cases with controlled, acyclic data, the issue may not manifest. However, when present, the resulting panic can be used to reliably crash the application, constituting a denial of service. The issue has been fixed in the v1.17.7 versions of Expr. The patch introduces a maximum recursion depth limit for affected builtin functions. When this limit is exceeded, evaluation aborts gracefully and returns a descriptive error instead of panicking. Additionally, the maximum depth can be customized by users via `builtin.MaxDepth`, allowing applications with legitimate deep structures to raise the limit in a controlled manner. Users are strongly encouraged to upgrade to the patched release, which includes both the recursion guard and comprehensive test coverage to prevent regressions. For users who cannot immediately upgrade, some mitigations are recommended. Ensure that evaluation environments cannot contain cyclic references, validate or sanitize externally supplied data structures before passing them to Expr, and/or wrap expression evaluation with panic recovery to prevent a full process crash (as a last-resort defensive measure). These workarounds reduce risk but do not fully eliminate the issue without the patch.
CVE-2025-33212 1 Nvidia 1 Nemo 2025-12-18 7.3 High
NVIDIA NeMo Framework contains a vulnerability in model loading that could allow an attacker to exploit improper control mechanisms if a user loads a maliciously crafted file. A successful exploit of this vulnerability might lead to code execution, escalation of privileges, denial of service, and data tampering.
CVE-2025-68304 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_core: lookup hci_conn on RX path on protocol side The hdev lock/lookup/unlock/use pattern in the packet RX path doesn't ensure hci_conn* is not concurrently modified/deleted. This locking appears to be leftover from before conn_hash started using RCU commit bf4c63252490b ("Bluetooth: convert conn hash to RCU") and not clear if it had purpose since then. Currently, there are code paths that delete hci_conn* from elsewhere than the ordered hdev->workqueue where the RX work runs in. E.g. commit 5af1f84ed13a ("Bluetooth: hci_sync: Fix UAF on hci_abort_conn_sync") introduced some of these, and there probably were a few others before it. It's better to do the locking so that even if these run concurrently no UAF is possible. Move the lookup of hci_conn and associated socket-specific conn to protocol recv handlers, and do them within a single critical section to cover hci_conn* usage and lookup. syzkaller has reported a crash that appears to be this issue: [Task hdev->workqueue] [Task 2] hci_disconnect_all_sync l2cap_recv_acldata(hcon) hci_conn_get(hcon) hci_abort_conn_sync(hcon) hci_dev_lock hci_dev_lock hci_conn_del(hcon) v-------------------------------- hci_dev_unlock hci_conn_put(hcon) conn = hcon->l2cap_data (UAF)
CVE-2025-68155 1 Vitejs 1 Plugin-rsc 2025-12-18 7.5 High
@vitejs/plugin-rs provides React Server Components (RSC) support for Vite. Prior to version 0.5.8, the `/__vite_rsc_findSourceMapURL` endpoint in `@vitejs/plugin-rsc` allows unauthenticated arbitrary file read during development mode. An attacker can read any file accessible to the Node.js process by sending a crafted HTTP request with a `file://` URL in the `filename` query parameter. Version 0.5.8 fixes the issue.
CVE-2025-33226 1 Nvidia 1 Nemo 2025-12-18 7.8 High
NVIDIA NeMo Framework for all platforms contains a vulnerability where malicious data created by an attacker may cause a code injection. A successful exploit of this vulnerability may lead to code execution, escalation of privileges, information disclosure, and data tampering.
CVE-2025-68223 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: drm/radeon: delete radeon_fence_process in is_signaled, no deadlock Delete the attempt to progress the queue when checking if fence is signaled. This avoids deadlock. dma-fence_ops::signaled can be called with the fence lock in unknown state. For radeon, the fence lock is also the wait queue lock. This can cause a self deadlock when signaled() tries to make forward progress on the wait queue. But advancing the queue is unneeded because incorrectly returning false from signaled() is perfectly acceptable. (cherry picked from commit 527ba26e50ec2ca2be9c7c82f3ad42998a75d0db)
CVE-2025-68297 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ceph: fix crash in process_v2_sparse_read() for encrypted directories The crash in process_v2_sparse_read() for fscrypt-encrypted directories has been reported. Issue takes place for Ceph msgr2 protocol in secure mode. It can be reproduced by the steps: sudo mount -t ceph :/ /mnt/cephfs/ -o name=admin,fs=cephfs,ms_mode=secure (1) mkdir /mnt/cephfs/fscrypt-test-3 (2) cp area_decrypted.tar /mnt/cephfs/fscrypt-test-3 (3) fscrypt encrypt --source=raw_key --key=./my.key /mnt/cephfs/fscrypt-test-3 (4) fscrypt lock /mnt/cephfs/fscrypt-test-3 (5) fscrypt unlock --key=my.key /mnt/cephfs/fscrypt-test-3 (6) cat /mnt/cephfs/fscrypt-test-3/area_decrypted.tar (7) Issue has been triggered [ 408.072247] ------------[ cut here ]------------ [ 408.072251] WARNING: CPU: 1 PID: 392 at net/ceph/messenger_v2.c:865 ceph_con_v2_try_read+0x4b39/0x72f0 [ 408.072267] Modules linked in: intel_rapl_msr intel_rapl_common intel_uncore_frequency_common intel_pmc_core pmt_telemetry pmt_discovery pmt_class intel_pmc_ssram_telemetry intel_vsec kvm_intel joydev kvm irqbypass polyval_clmulni ghash_clmulni_intel aesni_intel rapl input_leds psmouse serio_raw i2c_piix4 vga16fb bochs vgastate i2c_smbus floppy mac_hid qemu_fw_cfg pata_acpi sch_fq_codel rbd msr parport_pc ppdev lp parport efi_pstore [ 408.072304] CPU: 1 UID: 0 PID: 392 Comm: kworker/1:3 Not tainted 6.17.0-rc7+ [ 408.072307] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.17.0-5.fc42 04/01/2014 [ 408.072310] Workqueue: ceph-msgr ceph_con_workfn [ 408.072314] RIP: 0010:ceph_con_v2_try_read+0x4b39/0x72f0 [ 408.072317] Code: c7 c1 20 f0 d4 ae 50 31 d2 48 c7 c6 60 27 d5 ae 48 c7 c7 f8 8e 6f b0 68 60 38 d5 ae e8 00 47 61 fe 48 83 c4 18 e9 ac fc ff ff <0f> 0b e9 06 fe ff ff 4c 8b 9d 98 fd ff ff 0f 84 64 e7 ff ff 89 85 [ 408.072319] RSP: 0018:ffff88811c3e7a30 EFLAGS: 00010246 [ 408.072322] RAX: ffffed1024874c6f RBX: ffffea00042c2b40 RCX: 0000000000000f38 [ 408.072324] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 [ 408.072325] RBP: ffff88811c3e7ca8 R08: 0000000000000000 R09: 00000000000000c8 [ 408.072326] R10: 00000000000000c8 R11: 0000000000000000 R12: 00000000000000c8 [ 408.072327] R13: dffffc0000000000 R14: ffff8881243a6030 R15: 0000000000003000 [ 408.072329] FS: 0000000000000000(0000) GS:ffff88823eadf000(0000) knlGS:0000000000000000 [ 408.072331] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 408.072332] CR2: 000000c0003c6000 CR3: 000000010c106005 CR4: 0000000000772ef0 [ 408.072336] PKRU: 55555554 [ 408.072337] Call Trace: [ 408.072338] <TASK> [ 408.072340] ? sched_clock_noinstr+0x9/0x10 [ 408.072344] ? __pfx_ceph_con_v2_try_read+0x10/0x10 [ 408.072347] ? _raw_spin_unlock+0xe/0x40 [ 408.072349] ? finish_task_switch.isra.0+0x15d/0x830 [ 408.072353] ? __kasan_check_write+0x14/0x30 [ 408.072357] ? mutex_lock+0x84/0xe0 [ 408.072359] ? __pfx_mutex_lock+0x10/0x10 [ 408.072361] ceph_con_workfn+0x27e/0x10e0 [ 408.072364] ? metric_delayed_work+0x311/0x2c50 [ 408.072367] process_one_work+0x611/0xe20 [ 408.072371] ? __kasan_check_write+0x14/0x30 [ 408.072373] worker_thread+0x7e3/0x1580 [ 408.072375] ? __pfx__raw_spin_lock_irqsave+0x10/0x10 [ 408.072378] ? __pfx_worker_thread+0x10/0x10 [ 408.072381] kthread+0x381/0x7a0 [ 408.072383] ? __pfx__raw_spin_lock_irq+0x10/0x10 [ 408.072385] ? __pfx_kthread+0x10/0x10 [ 408.072387] ? __kasan_check_write+0x14/0x30 [ 408.072389] ? recalc_sigpending+0x160/0x220 [ 408.072392] ? _raw_spin_unlock_irq+0xe/0x50 [ 408.072394] ? calculate_sigpending+0x78/0xb0 [ 408.072395] ? __pfx_kthread+0x10/0x10 [ 408.072397] ret_from_fork+0x2b6/0x380 [ 408.072400] ? __pfx_kthread+0x10/0x10 [ 408.072402] ret_from_fork_asm+0x1a/0x30 [ 408.072406] </TASK> [ 408.072407] ---[ end trace 0000000000000000 ]--- [ 408.072418] Oops: general protection fault, probably for non-canonical address 0xdffffc00000000 ---truncated---
CVE-2025-68229 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: scsi: target: tcm_loop: Fix segfault in tcm_loop_tpg_address_show() If the allocation of tl_hba->sh fails in tcm_loop_driver_probe() and we attempt to dereference it in tcm_loop_tpg_address_show() we will get a segfault, see below for an example. So, check tl_hba->sh before dereferencing it. Unable to allocate struct scsi_host BUG: kernel NULL pointer dereference, address: 0000000000000194 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 1 PID: 8356 Comm: tokio-runtime-w Not tainted 6.6.104.2-4.azl3 #1 Hardware name: Microsoft Corporation Virtual Machine/Virtual Machine, BIOS Hyper-V UEFI Release v4.1 09/28/2024 RIP: 0010:tcm_loop_tpg_address_show+0x2e/0x50 [tcm_loop] ... Call Trace: <TASK> configfs_read_iter+0x12d/0x1d0 [configfs] vfs_read+0x1b5/0x300 ksys_read+0x6f/0xf0 ...
CVE-2025-68116 1 Filerise 1 Filerise 2025-12-18 8.9 High
FileRise is a self-hosted web file manager / WebDAV server. Versions prior to 2.7.1 are vulnerable to Stored Cross-Site Scripting (XSS) due to unsafe handling of browser-renderable user uploads when served through the sharing and download endpoints. An attacker who can get a crafted SVG (primary) or HTML (secondary) file stored in a FileRise instance can cause JavaScript execution when a victim opens a generated share link (and in some cases via the direct download endpoint). This impacts share links (`/api/file/share.php`) and direct file access / download path (`/api/file/download.php`), depending on browser/content-type behavior. Version 2.7.1 fixes the issue.
CVE-2025-68307 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: can: gs_usb: gs_usb_xmit_callback(): fix handling of failed transmitted URBs The driver lacks the cleanup of failed transfers of URBs. This reduces the number of available URBs per error by 1. This leads to reduced performance and ultimately to a complete stop of the transmission. If the sending of a bulk URB fails do proper cleanup: - increase netdev stats - mark the echo_sbk as free - free the driver's context and do accounting - wake the send queue
CVE-2025-14097 1 Radiometer 5 Abl800 Basic Analyzer, Abl800 Flex Analyzer, Abl90 Flex Analyzer and 2 more 2025-12-18 7.2 High
A vulnerability in the application software of multiple Radiometer products may allow remote code execution and unauthorized device management when specific internal conditions are met. Exploitation requires that a remote connection is established with additional information obtained through other means. The issue is caused by a weakness in the analyzer’s application software.                                                                                                                                                                                                Other related CVE's are CVE-2025-14095 & CVE-2025-14096.                                                                                                      Affected customers have been informed about this vulnerability. This CVE is being published to provide transparency. Required Configuration for Exposure: Affected application software version is in use and remote support feature is enabled in the analyzer.                                                                                                                                                                        Temporary work Around: If the network is not considered secure, please remove the analyzer from the network.                         Permanent solution: Customers should ensure the following: • The network is secure, and access follows best practices. Local Radiometer representatives will contact all affected customers to discuss a permanent solution.                                                      Exploit Status: Researchers have provided working proof-of-concept (PoC). Radiometer is not aware of any publicly available exploits at the time of this publication.
CVE-2025-14096 1 Radiometer 5 Abl800 Basic Analyzer, Abl800 Flex Analyzer, Abl90 Flex Analyzer and 2 more 2025-12-18 8.4 High
A vulnerability exists in multiple Radiometer products that allow an attacker with physical access to the analyzer possibility to extract credential information. The vulnerability is due to a weakness in the design and insufficient credential protection in operating system. Other related CVE's are CVE-2025-14095 & CVE-2025-14097. Affected customers have been informed about this vulnerability. This CVE is being published to provide transparency. Required Configuration for Exposure: Attacker requires physical access to the analyzer. Temporary work Around: Only authorized people can physically access the analyzer. Permanent solution: Local Radiometer representatives will contact all affected customers to discuss a permanent solution. Exploit Status: Researchers have provided a working proof-of-concept (PoC). Radiometer is not aware of any public exploit code at the time of this publication.