CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
thermal/drivers/hisi: Drop second sensor hi3660
The commit 74c8e6bffbe1 ("driver core: Add __alloc_size hint to devm
allocators") exposes a panic "BRK handler: Fatal exception" on the
hi3660_thermal_probe funciton.
This is because the function allocates memory for only one
sensors array entry, but tries to fill up a second one.
Fix this by removing the unneeded second access. |
In the Linux kernel, the following vulnerability has been resolved:
media: pci: tw68: Fix null-ptr-deref bug in buf prepare and finish
When the driver calls tw68_risc_buffer() to prepare the buffer, the
function call dma_alloc_coherent may fail, resulting in a empty buffer
buf->cpu. Later when we free the buffer or access the buffer, null ptr
deref is triggered.
This bug is similar to the following one:
https://git.linuxtv.org/media_stage.git/commit/?id=2b064d91440b33fba5b452f2d1b31f13ae911d71.
We believe the bug can be also dynamically triggered from user side.
Similarly, we fix this by checking the return value of tw68_risc_buffer()
and the value of buf->cpu before buffer free. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: storvsc: Fix handling of virtual Fibre Channel timeouts
Hyper-V provides the ability to connect Fibre Channel LUNs to the host
system and present them in a guest VM as a SCSI device. I/O to the vFC
device is handled by the storvsc driver. The storvsc driver includes a
partial integration with the FC transport implemented in the generic
portion of the Linux SCSI subsystem so that FC attributes can be displayed
in /sys. However, the partial integration means that some aspects of vFC
don't work properly. Unfortunately, a full and correct integration isn't
practical because of limitations in what Hyper-V provides to the guest.
In particular, in the context of Hyper-V storvsc, the FC transport timeout
function fc_eh_timed_out() causes a kernel panic because it can't find the
rport and dereferences a NULL pointer. The original patch that added the
call from storvsc_eh_timed_out() to fc_eh_timed_out() is faulty in this
regard.
In many cases a timeout is due to a transient condition, so the situation
can be improved by just continuing to wait like with other I/O requests
issued by storvsc, and avoiding the guaranteed panic. For a permanent
failure, continuing to wait may result in a hung thread instead of a panic,
which again may be better.
So fix the panic by removing the storvsc call to fc_eh_timed_out(). This
allows storvsc to keep waiting for a response. The change has been tested
by users who experienced a panic in fc_eh_timed_out() due to transient
timeouts, and it solves their problem.
In the future we may want to deprecate the vFC functionality in storvsc
since it can't be fully fixed. But it has current users for whom it is
working well enough, so it should probably stay for a while longer. |
In the Linux kernel, the following vulnerability has been resolved:
cifs: fix DFS traversal oops without CONFIG_CIFS_DFS_UPCALL
When compiled with CONFIG_CIFS_DFS_UPCALL disabled, cifs_dfs_d_automount
is NULL. cifs.ko logic for mapping CIFS_FATTR_DFS_REFERRAL attributes to
S_AUTOMOUNT and corresponding dentry flags is retained regardless of
CONFIG_CIFS_DFS_UPCALL, leading to a NULL pointer dereference in
VFS follow_automount() when traversing a DFS referral link:
BUG: kernel NULL pointer dereference, address: 0000000000000000
...
Call Trace:
<TASK>
__traverse_mounts+0xb5/0x220
? cifs_revalidate_mapping+0x65/0xc0 [cifs]
step_into+0x195/0x610
? lookup_fast+0xe2/0xf0
path_lookupat+0x64/0x140
filename_lookup+0xc2/0x140
? __create_object+0x299/0x380
? kmem_cache_alloc+0x119/0x220
? user_path_at_empty+0x31/0x50
user_path_at_empty+0x31/0x50
__x64_sys_chdir+0x2a/0xd0
? exit_to_user_mode_prepare+0xca/0x100
do_syscall_64+0x42/0x90
entry_SYSCALL_64_after_hwframe+0x72/0xdc
This fix adds an inline cifs_dfs_d_automount() {return -EREMOTE} handler
when CONFIG_CIFS_DFS_UPCALL is disabled. An alternative would be to
avoid flagging S_AUTOMOUNT, etc. without CONFIG_CIFS_DFS_UPCALL. This
approach was chosen as it provides more control over the error path. |
In the Linux kernel, the following vulnerability has been resolved:
clk: imx: clk-imx8mn: fix memory leak in imx8mn_clocks_probe
Use devm_of_iomap() instead of of_iomap() to automatically handle
the unused ioremap region.
If any error occurs, regions allocated by kzalloc() will leak,
but using devm_kzalloc() instead will automatically free the memory
using devm_kfree(). |
In the Linux kernel, the following vulnerability has been resolved:
firmware: dmi-sysfs: Fix null-ptr-deref in dmi_sysfs_register_handle
KASAN reported a null-ptr-deref error:
KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f]
CPU: 0 PID: 1373 Comm: modprobe
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
RIP: 0010:dmi_sysfs_entry_release
...
Call Trace:
<TASK>
kobject_put
dmi_sysfs_register_handle (drivers/firmware/dmi-sysfs.c:540) dmi_sysfs
dmi_decode_table (drivers/firmware/dmi_scan.c:133)
dmi_walk (drivers/firmware/dmi_scan.c:1115)
dmi_sysfs_init (drivers/firmware/dmi-sysfs.c:149) dmi_sysfs
do_one_initcall (init/main.c:1296)
...
Kernel panic - not syncing: Fatal exception
Kernel Offset: 0x4000000 from 0xffffffff81000000
---[ end Kernel panic - not syncing: Fatal exception ]---
It is because previous patch added kobject_put() to release the memory
which will call dmi_sysfs_entry_release() and list_del().
However, list_add_tail(entry->list) is called after the error block,
so the list_head is uninitialized and cannot be deleted.
Move error handling to after list_add_tail to fix this. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: pcie: fix NULL pointer dereference in iwl_pcie_irq_rx_msix_handler()
rxq can be NULL only when trans_pcie->rxq is NULL and entry->entry
is zero. For the case when entry->entry is not equal to 0, rxq
won't be NULL even if trans_pcie->rxq is NULL. Modify checker to
check for trans_pcie->rxq. |
In the Linux kernel, the following vulnerability has been resolved:
HID: nvidia-shield: Reference hid_device devm allocation of input_dev name
Use hid_device for devm allocation of the input_dev name to avoid a
use-after-free. input_unregister_device would trigger devres cleanup of all
resources associated with the input_dev, free-ing the name. The name would
subsequently be used in a uevent fired at the end of unregistering the
input_dev. |
In the Linux kernel, the following vulnerability has been resolved:
firmware: arm_ffa: Fix FFA device names for logical partitions
Each physical partition can provide multiple services each with UUID.
Each such service can be presented as logical partition with a unique
combination of VM ID and UUID. The number of distinct UUID in a system
will be less than or equal to the number of logical partitions.
However, currently it fails to register more than one logical partition
or service within a physical partition as the device name contains only
VM ID while both VM ID and UUID are maintained in the partition information.
The kernel complains with the below message:
| sysfs: cannot create duplicate filename '/devices/arm-ffa-8001'
| CPU: 1 PID: 1 Comm: swapper/0 Not tainted 6.3.0-rc7 #8
| Hardware name: FVP Base RevC (DT)
| Call trace:
| dump_backtrace+0xf8/0x118
| show_stack+0x18/0x24
| dump_stack_lvl+0x50/0x68
| dump_stack+0x18/0x24
| sysfs_create_dir_ns+0xe0/0x13c
| kobject_add_internal+0x220/0x3d4
| kobject_add+0x94/0x100
| device_add+0x144/0x5d8
| device_register+0x20/0x30
| ffa_device_register+0x88/0xd8
| ffa_setup_partitions+0x108/0x1b8
| ffa_init+0x2ec/0x3a4
| do_one_initcall+0xcc/0x240
| do_initcall_level+0x8c/0xac
| do_initcalls+0x54/0x94
| do_basic_setup+0x1c/0x28
| kernel_init_freeable+0x100/0x16c
| kernel_init+0x20/0x1a0
| ret_from_fork+0x10/0x20
| kobject_add_internal failed for arm-ffa-8001 with -EEXIST, don't try to
| register things with the same name in the same directory.
| arm_ffa arm-ffa: unable to register device arm-ffa-8001 err=-17
| ARM FF-A: ffa_setup_partitions: failed to register partition ID 0x8001
By virtue of being random enough to avoid collisions when generated in a
distributed system, there is no way to compress UUID keys to the number
of bits required to identify each. We can eliminate '-' in the name but
it is not worth eliminating 4 bytes and add unnecessary logic for doing
that. Also v1.0 doesn't provide the UUID of the partitions which makes
it hard to use the same for the device name.
So to keep it simple, let us alloc an ID using ida_alloc() and append the
same to "arm-ffa" to make up a unique device name. Also stash the id value
in ffa_dev to help freeing the ID later when the device is destroyed. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: check S1G action frame size
Before checking the action code, check that it even
exists in the frame. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix possible underflow for displays with large vblank
[Why]
Underflow observed when using a display with a large vblank region
and low refresh rate
[How]
Simplify calculation of vblank_nom
Increase value for VBlankNomDefaultUS to 800us |
In the Linux kernel, the following vulnerability has been resolved:
VMCI: check context->notify_page after call to get_user_pages_fast() to avoid GPF
The call to get_user_pages_fast() in vmci_host_setup_notify() can return
NULL context->notify_page causing a GPF. To avoid GPF check if
context->notify_page == NULL and return error if so.
general protection fault, probably for non-canonical address
0xe0009d1000000060: 0000 [#1] PREEMPT SMP KASAN NOPTI
KASAN: maybe wild-memory-access in range [0x0005088000000300-
0x0005088000000307]
CPU: 2 PID: 26180 Comm: repro_34802241 Not tainted 6.1.0-rc4 #1
Hardware name: Red Hat KVM, BIOS 1.15.0-2.module+el8.6.0 04/01/2014
RIP: 0010:vmci_ctx_check_signal_notify+0x91/0xe0
Call Trace:
<TASK>
vmci_host_unlocked_ioctl+0x362/0x1f40
__x64_sys_ioctl+0x1a1/0x230
do_syscall_64+0x3a/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd |
In the Linux kernel, the following vulnerability has been resolved:
coresight: Fix memory leak in acpi_buffer->pointer
There are memory leaks reported by kmemleak:
...
unreferenced object 0xffff00213c141000 (size 1024):
comm "systemd-udevd", pid 2123, jiffies 4294909467 (age 6062.160s)
hex dump (first 32 bytes):
04 00 00 00 02 00 00 00 18 10 14 3c 21 00 ff ff ...........<!...
00 00 00 00 00 00 00 00 03 00 00 00 10 00 00 00 ................
backtrace:
[<000000004b7c9001>] __kmem_cache_alloc_node+0x2f8/0x348
[<00000000b0fc7ceb>] __kmalloc+0x58/0x108
[<0000000064ff4695>] acpi_os_allocate+0x2c/0x68
[<000000007d57d116>] acpi_ut_initialize_buffer+0x54/0xe0
[<0000000024583908>] acpi_evaluate_object+0x388/0x438
[<0000000017b2e72b>] acpi_evaluate_object_typed+0xe8/0x240
[<000000005df0eac2>] coresight_get_platform_data+0x1b4/0x988 [coresight]
...
The ACPI buffer memory (buf.pointer) should be freed. But the buffer
is also used after returning from acpi_get_dsd_graph().
Move the temporary variables buf to acpi_coresight_parse_graph(),
and free it before the function return to prevent memory leak. |
In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix scheduling while atomic in decompression path
[ 16.945668][ C0] Call trace:
[ 16.945678][ C0] dump_backtrace+0x110/0x204
[ 16.945706][ C0] dump_stack_lvl+0x84/0xbc
[ 16.945735][ C0] __schedule_bug+0xb8/0x1ac
[ 16.945756][ C0] __schedule+0x724/0xbdc
[ 16.945778][ C0] schedule+0x154/0x258
[ 16.945793][ C0] bit_wait_io+0x48/0xa4
[ 16.945808][ C0] out_of_line_wait_on_bit+0x114/0x198
[ 16.945824][ C0] __sync_dirty_buffer+0x1f8/0x2e8
[ 16.945853][ C0] __f2fs_commit_super+0x140/0x1f4
[ 16.945881][ C0] f2fs_commit_super+0x110/0x28c
[ 16.945898][ C0] f2fs_handle_error+0x1f4/0x2f4
[ 16.945917][ C0] f2fs_decompress_cluster+0xc4/0x450
[ 16.945942][ C0] f2fs_end_read_compressed_page+0xc0/0xfc
[ 16.945959][ C0] f2fs_handle_step_decompress+0x118/0x1cc
[ 16.945978][ C0] f2fs_read_end_io+0x168/0x2b0
[ 16.945993][ C0] bio_endio+0x25c/0x2c8
[ 16.946015][ C0] dm_io_dec_pending+0x3e8/0x57c
[ 16.946052][ C0] clone_endio+0x134/0x254
[ 16.946069][ C0] bio_endio+0x25c/0x2c8
[ 16.946084][ C0] blk_update_request+0x1d4/0x478
[ 16.946103][ C0] scsi_end_request+0x38/0x4cc
[ 16.946129][ C0] scsi_io_completion+0x94/0x184
[ 16.946147][ C0] scsi_finish_command+0xe8/0x154
[ 16.946164][ C0] scsi_complete+0x90/0x1d8
[ 16.946181][ C0] blk_done_softirq+0xa4/0x11c
[ 16.946198][ C0] _stext+0x184/0x614
[ 16.946214][ C0] __irq_exit_rcu+0x78/0x144
[ 16.946234][ C0] handle_domain_irq+0xd4/0x154
[ 16.946260][ C0] gic_handle_irq.33881+0x5c/0x27c
[ 16.946281][ C0] call_on_irq_stack+0x40/0x70
[ 16.946298][ C0] do_interrupt_handler+0x48/0xa4
[ 16.946313][ C0] el1_interrupt+0x38/0x68
[ 16.946346][ C0] el1h_64_irq_handler+0x20/0x30
[ 16.946362][ C0] el1h_64_irq+0x78/0x7c
[ 16.946377][ C0] finish_task_switch+0xc8/0x3d8
[ 16.946394][ C0] __schedule+0x600/0xbdc
[ 16.946408][ C0] preempt_schedule_common+0x34/0x5c
[ 16.946423][ C0] preempt_schedule+0x44/0x48
[ 16.946438][ C0] process_one_work+0x30c/0x550
[ 16.946456][ C0] worker_thread+0x414/0x8bc
[ 16.946472][ C0] kthread+0x16c/0x1e0
[ 16.946486][ C0] ret_from_fork+0x10/0x20 |
Insufficiently specific bounds checking on authorization header could lead to denial of service in the Temporal server on all platforms due to excessive memory allocation.This issue affects all platforms and versions of OSS Server prior to 1.26.3, 1.27.3, and 1.28.1 (i.e., fixed in 1.26.3, 1.27.3, and 1.28.1 and later). Temporal Cloud services are not impacted. |
DNN (formerly DotNetNuke) is an open-source web content management platform (CMS) in the Microsoft ecosystem. In versions 6.0.0 to before 10.0.1, DNN.PLATFORM allows a specially crafted series of malicious interaction to potentially expose NTLM hashes to a third party SMB server. This issue has been patched in version 10.0.1. |
Out-of-bounds write in libimagecodec.quram.so prior to SMR Apr-2025 Release 1 allows remote attackers to execute arbitrary code. |
Out-of-bounds write in libimagecodec.quram.so prior to SMR Sep-2025 Release 1 allows remote attackers to execute arbitrary code. |
The The Hack Repair Guy's Plugin Archiver plugin for WordPress is vulnerable to arbitrary file deletion due to insufficient file path validation in the prepare_items function in all versions up to, and including, 2.0.4. This makes it possible for authenticated attackers, with Administrator-level access and above, to delete arbitrary files on the server, which can easily lead to remote code execution when the right file is deleted (such as wp-config.php). |
A Regular Expression Denial of Service (ReDoS) vulnerability was discovered in the Hugging Face Transformers library, specifically affecting the MarianTokenizer's `remove_language_code()` method. This vulnerability is present in version 4.52.4 and has been fixed in version 4.53.0. The issue arises from inefficient regex processing, which can be exploited by crafted input strings containing malformed language code patterns, leading to excessive CPU consumption and potential denial of service. |