| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Avoid field-overflowing memcpy()
In preparation for FORTIFY_SOURCE performing compile-time and run-time
field bounds checking for memcpy(), memmove(), and memset(), avoid
intentionally writing across neighboring fields.
Use flexible arrays instead of zero-element arrays (which look like they
are always overflowing) and split the cross-field memcpy() into two halves
that can be appropriately bounds-checked by the compiler.
We were doing:
#define ETH_HLEN 14
#define VLAN_HLEN 4
...
#define MLX5E_XDP_MIN_INLINE (ETH_HLEN + VLAN_HLEN)
...
struct mlx5e_tx_wqe *wqe = mlx5_wq_cyc_get_wqe(wq, pi);
...
struct mlx5_wqe_eth_seg *eseg = &wqe->eth;
struct mlx5_wqe_data_seg *dseg = wqe->data;
...
memcpy(eseg->inline_hdr.start, xdptxd->data, MLX5E_XDP_MIN_INLINE);
target is wqe->eth.inline_hdr.start (which the compiler sees as being
2 bytes in size), but copying 18, intending to write across start
(really vlan_tci, 2 bytes). The remaining 16 bytes get written into
wqe->data[0], covering byte_count (4 bytes), lkey (4 bytes), and addr
(8 bytes).
struct mlx5e_tx_wqe {
struct mlx5_wqe_ctrl_seg ctrl; /* 0 16 */
struct mlx5_wqe_eth_seg eth; /* 16 16 */
struct mlx5_wqe_data_seg data[]; /* 32 0 */
/* size: 32, cachelines: 1, members: 3 */
/* last cacheline: 32 bytes */
};
struct mlx5_wqe_eth_seg {
u8 swp_outer_l4_offset; /* 0 1 */
u8 swp_outer_l3_offset; /* 1 1 */
u8 swp_inner_l4_offset; /* 2 1 */
u8 swp_inner_l3_offset; /* 3 1 */
u8 cs_flags; /* 4 1 */
u8 swp_flags; /* 5 1 */
__be16 mss; /* 6 2 */
__be32 flow_table_metadata; /* 8 4 */
union {
struct {
__be16 sz; /* 12 2 */
u8 start[2]; /* 14 2 */
} inline_hdr; /* 12 4 */
struct {
__be16 type; /* 12 2 */
__be16 vlan_tci; /* 14 2 */
} insert; /* 12 4 */
__be32 trailer; /* 12 4 */
}; /* 12 4 */
/* size: 16, cachelines: 1, members: 9 */
/* last cacheline: 16 bytes */
};
struct mlx5_wqe_data_seg {
__be32 byte_count; /* 0 4 */
__be32 lkey; /* 4 4 */
__be64 addr; /* 8 8 */
/* size: 16, cachelines: 1, members: 3 */
/* last cacheline: 16 bytes */
};
So, split the memcpy() so the compiler can reason about the buffer
sizes.
"pahole" shows no size nor member offset changes to struct mlx5e_tx_wqe
nor struct mlx5e_umr_wqe. "objdump -d" shows no meaningful object
code changes (i.e. only source line number induced differences and
optimizations). |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Use del_timer_sync in fw reset flow of halting poll
Substitute del_timer() with del_timer_sync() in fw reset polling
deactivation flow, in order to prevent a race condition which occurs
when del_timer() is called and timer is deactivated while another
process is handling the timer interrupt. A situation that led to
the following call trace:
RIP: 0010:run_timer_softirq+0x137/0x420
<IRQ>
recalibrate_cpu_khz+0x10/0x10
ktime_get+0x3e/0xa0
? sched_clock_cpu+0xb/0xc0
__do_softirq+0xf5/0x2ea
irq_exit_rcu+0xc1/0xf0
sysvec_apic_timer_interrupt+0x9e/0xc0
asm_sysvec_apic_timer_interrupt+0x12/0x20
</IRQ> |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/perf: Fix power_pmu_disable to call clear_pmi_irq_pending only if PMI is pending
Running selftest with CONFIG_PPC_IRQ_SOFT_MASK_DEBUG enabled in kernel
triggered below warning:
[ 172.851380] ------------[ cut here ]------------
[ 172.851391] WARNING: CPU: 8 PID: 2901 at arch/powerpc/include/asm/hw_irq.h:246 power_pmu_disable+0x270/0x280
[ 172.851402] Modules linked in: dm_mod bonding nft_ct nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set nf_tables rfkill nfnetlink sunrpc xfs libcrc32c pseries_rng xts vmx_crypto uio_pdrv_genirq uio sch_fq_codel ip_tables ext4 mbcache jbd2 sd_mod t10_pi sg ibmvscsi ibmveth scsi_transport_srp fuse
[ 172.851442] CPU: 8 PID: 2901 Comm: lost_exception_ Not tainted 5.16.0-rc5-03218-g798527287598 #2
[ 172.851451] NIP: c00000000013d600 LR: c00000000013d5a4 CTR: c00000000013b180
[ 172.851458] REGS: c000000017687860 TRAP: 0700 Not tainted (5.16.0-rc5-03218-g798527287598)
[ 172.851465] MSR: 8000000000029033 <SF,EE,ME,IR,DR,RI,LE> CR: 48004884 XER: 20040000
[ 172.851482] CFAR: c00000000013d5b4 IRQMASK: 1
[ 172.851482] GPR00: c00000000013d5a4 c000000017687b00 c000000002a10600 0000000000000004
[ 172.851482] GPR04: 0000000082004000 c0000008ba08f0a8 0000000000000000 00000008b7ed0000
[ 172.851482] GPR08: 00000000446194f6 0000000000008000 c00000000013b118 c000000000d58e68
[ 172.851482] GPR12: c00000000013d390 c00000001ec54a80 0000000000000000 0000000000000000
[ 172.851482] GPR16: 0000000000000000 0000000000000000 c000000015d5c708 c0000000025396d0
[ 172.851482] GPR20: 0000000000000000 0000000000000000 c00000000a3bbf40 0000000000000003
[ 172.851482] GPR24: 0000000000000000 c0000008ba097400 c0000000161e0d00 c00000000a3bb600
[ 172.851482] GPR28: c000000015d5c700 0000000000000001 0000000082384090 c0000008ba0020d8
[ 172.851549] NIP [c00000000013d600] power_pmu_disable+0x270/0x280
[ 172.851557] LR [c00000000013d5a4] power_pmu_disable+0x214/0x280
[ 172.851565] Call Trace:
[ 172.851568] [c000000017687b00] [c00000000013d5a4] power_pmu_disable+0x214/0x280 (unreliable)
[ 172.851579] [c000000017687b40] [c0000000003403ac] perf_pmu_disable+0x4c/0x60
[ 172.851588] [c000000017687b60] [c0000000003445e4] __perf_event_task_sched_out+0x1d4/0x660
[ 172.851596] [c000000017687c50] [c000000000d1175c] __schedule+0xbcc/0x12a0
[ 172.851602] [c000000017687d60] [c000000000d11ea8] schedule+0x78/0x140
[ 172.851608] [c000000017687d90] [c0000000001a8080] sys_sched_yield+0x20/0x40
[ 172.851615] [c000000017687db0] [c0000000000334dc] system_call_exception+0x18c/0x380
[ 172.851622] [c000000017687e10] [c00000000000c74c] system_call_common+0xec/0x268
The warning indicates that MSR_EE being set(interrupt enabled) when
there was an overflown PMC detected. This could happen in
power_pmu_disable since it runs under interrupt soft disable
condition ( local_irq_save ) and not with interrupts hard disabled.
commit 2c9ac51b850d ("powerpc/perf: Fix PMU callbacks to clear
pending PMI before resetting an overflown PMC") intended to clear
PMI pending bit in Paca when disabling the PMU. It could happen
that PMC gets overflown while code is in power_pmu_disable
callback function. Hence add a check to see if PMI pending bit
is set in Paca before clearing it via clear_pmi_pending. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: bnx2fc: Flush destroy_work queue before calling bnx2fc_interface_put()
The bnx2fc_destroy() functions are removing the interface before calling
destroy_work. This results multiple WARNings from sysfs_remove_group() as
the controller rport device attributes are removed too early.
Replace the fcoe_port's destroy_work queue. It's not needed.
The problem is easily reproducible with the following steps.
Example:
$ dmesg -w &
$ systemctl enable --now fcoe
$ fipvlan -s -c ens2f1
$ fcoeadm -d ens2f1.802
[ 583.464488] host2: libfc: Link down on port (7500a1)
[ 583.472651] bnx2fc: 7500a1 - rport not created Yet!!
[ 583.490468] ------------[ cut here ]------------
[ 583.538725] sysfs group 'power' not found for kobject 'rport-2:0-0'
[ 583.568814] WARNING: CPU: 3 PID: 192 at fs/sysfs/group.c:279 sysfs_remove_group+0x6f/0x80
[ 583.607130] Modules linked in: dm_service_time 8021q garp mrp stp llc bnx2fc cnic uio rpcsec_gss_krb5 auth_rpcgss nfsv4 ...
[ 583.942994] CPU: 3 PID: 192 Comm: kworker/3:2 Kdump: loaded Not tainted 5.14.0-39.el9.x86_64 #1
[ 583.984105] Hardware name: HP ProLiant DL120 G7, BIOS J01 07/01/2013
[ 584.016535] Workqueue: fc_wq_2 fc_rport_final_delete [scsi_transport_fc]
[ 584.050691] RIP: 0010:sysfs_remove_group+0x6f/0x80
[ 584.074725] Code: ff 5b 48 89 ef 5d 41 5c e9 ee c0 ff ff 48 89 ef e8 f6 b8 ff ff eb d1 49 8b 14 24 48 8b 33 48 c7 c7 ...
[ 584.162586] RSP: 0018:ffffb567c15afdc0 EFLAGS: 00010282
[ 584.188225] RAX: 0000000000000000 RBX: ffffffff8eec4220 RCX: 0000000000000000
[ 584.221053] RDX: ffff8c1586ce84c0 RSI: ffff8c1586cd7cc0 RDI: ffff8c1586cd7cc0
[ 584.255089] RBP: 0000000000000000 R08: 0000000000000000 R09: ffffb567c15afc00
[ 584.287954] R10: ffffb567c15afbf8 R11: ffffffff8fbe7f28 R12: ffff8c1486326400
[ 584.322356] R13: ffff8c1486326480 R14: ffff8c1483a4a000 R15: 0000000000000004
[ 584.355379] FS: 0000000000000000(0000) GS:ffff8c1586cc0000(0000) knlGS:0000000000000000
[ 584.394419] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 584.421123] CR2: 00007fe95a6f7840 CR3: 0000000107674002 CR4: 00000000000606e0
[ 584.454888] Call Trace:
[ 584.466108] device_del+0xb2/0x3e0
[ 584.481701] device_unregister+0x13/0x60
[ 584.501306] bsg_unregister_queue+0x5b/0x80
[ 584.522029] bsg_remove_queue+0x1c/0x40
[ 584.541884] fc_rport_final_delete+0xf3/0x1d0 [scsi_transport_fc]
[ 584.573823] process_one_work+0x1e3/0x3b0
[ 584.592396] worker_thread+0x50/0x3b0
[ 584.609256] ? rescuer_thread+0x370/0x370
[ 584.628877] kthread+0x149/0x170
[ 584.643673] ? set_kthread_struct+0x40/0x40
[ 584.662909] ret_from_fork+0x22/0x30
[ 584.680002] ---[ end trace 53575ecefa942ece ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
usb: xhci-plat: fix crash when suspend if remote wake enable
Crashed at i.mx8qm platform when suspend if enable remote wakeup
Internal error: synchronous external abort: 96000210 [#1] PREEMPT SMP
Modules linked in:
CPU: 2 PID: 244 Comm: kworker/u12:6 Not tainted 5.15.5-dirty #12
Hardware name: Freescale i.MX8QM MEK (DT)
Workqueue: events_unbound async_run_entry_fn
pstate: 600000c5 (nZCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : xhci_disable_hub_port_wake.isra.62+0x60/0xf8
lr : xhci_disable_hub_port_wake.isra.62+0x34/0xf8
sp : ffff80001394bbf0
x29: ffff80001394bbf0 x28: 0000000000000000 x27: ffff00081193b578
x26: ffff00081193b570 x25: 0000000000000000 x24: 0000000000000000
x23: ffff00081193a29c x22: 0000000000020001 x21: 0000000000000001
x20: 0000000000000000 x19: ffff800014e90490 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000
x14: 0000000000000000 x13: 0000000000000002 x12: 0000000000000000
x11: 0000000000000000 x10: 0000000000000960 x9 : ffff80001394baa0
x8 : ffff0008145d1780 x7 : ffff0008f95b8e80 x6 : 000000001853b453
x5 : 0000000000000496 x4 : 0000000000000000 x3 : ffff00081193a29c
x2 : 0000000000000001 x1 : 0000000000000000 x0 : ffff000814591620
Call trace:
xhci_disable_hub_port_wake.isra.62+0x60/0xf8
xhci_suspend+0x58/0x510
xhci_plat_suspend+0x50/0x78
platform_pm_suspend+0x2c/0x78
dpm_run_callback.isra.25+0x50/0xe8
__device_suspend+0x108/0x3c0
The basic flow:
1. run time suspend call xhci_suspend, xhci parent devices gate the clock.
2. echo mem >/sys/power/state, system _device_suspend call xhci_suspend
3. xhci_suspend call xhci_disable_hub_port_wake, which access register,
but clock already gated by run time suspend.
This problem was hidden by power domain driver, which call run time resume before it.
But the below commit remove it and make this issue happen.
commit c1df456d0f06e ("PM: domains: Don't runtime resume devices at genpd_prepare()")
This patch call run time resume before suspend to make sure clock is on
before access register.
Testeb-by: Abel Vesa <abel.vesa@nxp.com> |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix re-dirty process of tree-log nodes
There is a report of a transaction abort of -EAGAIN with the following
script.
#!/bin/sh
for d in sda sdb; do
mkfs.btrfs -d single -m single -f /dev/\${d}
done
mount /dev/sda /mnt/test
mount /dev/sdb /mnt/scratch
for dir in test scratch; do
echo 3 >/proc/sys/vm/drop_caches
fio --directory=/mnt/\${dir} --name=fio.\${dir} --rw=read --size=50G --bs=64m \
--numjobs=$(nproc) --time_based --ramp_time=5 --runtime=480 \
--group_reporting |& tee /dev/shm/fio.\${dir}
echo 3 >/proc/sys/vm/drop_caches
done
for d in sda sdb; do
umount /dev/\${d}
done
The stack trace is shown in below.
[3310.967991] BTRFS: error (device sda) in btrfs_commit_transaction:2341: errno=-11 unknown (Error while writing out transaction)
[3310.968060] BTRFS info (device sda): forced readonly
[3310.968064] BTRFS warning (device sda): Skipping commit of aborted transaction.
[3310.968065] ------------[ cut here ]------------
[3310.968066] BTRFS: Transaction aborted (error -11)
[3310.968074] WARNING: CPU: 14 PID: 1684 at fs/btrfs/transaction.c:1946 btrfs_commit_transaction.cold+0x209/0x2c8
[3310.968131] CPU: 14 PID: 1684 Comm: fio Not tainted 5.14.10-300.fc35.x86_64 #1
[3310.968135] Hardware name: DIAWAY Tartu/Tartu, BIOS V2.01.B10 04/08/2021
[3310.968137] RIP: 0010:btrfs_commit_transaction.cold+0x209/0x2c8
[3310.968144] RSP: 0018:ffffb284ce393e10 EFLAGS: 00010282
[3310.968147] RAX: 0000000000000026 RBX: ffff973f147b0f60 RCX: 0000000000000027
[3310.968149] RDX: ffff974ecf098a08 RSI: 0000000000000001 RDI: ffff974ecf098a00
[3310.968150] RBP: ffff973f147b0f08 R08: 0000000000000000 R09: ffffb284ce393c48
[3310.968151] R10: ffffb284ce393c40 R11: ffffffff84f47468 R12: ffff973f101bfc00
[3310.968153] R13: ffff971f20cf2000 R14: 00000000fffffff5 R15: ffff973f147b0e58
[3310.968154] FS: 00007efe65468740(0000) GS:ffff974ecf080000(0000) knlGS:0000000000000000
[3310.968157] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[3310.968158] CR2: 000055691bcbe260 CR3: 000000105cfa4001 CR4: 0000000000770ee0
[3310.968160] PKRU: 55555554
[3310.968161] Call Trace:
[3310.968167] ? dput+0xd4/0x300
[3310.968174] btrfs_sync_file+0x3f1/0x490
[3310.968180] __x64_sys_fsync+0x33/0x60
[3310.968185] do_syscall_64+0x3b/0x90
[3310.968190] entry_SYSCALL_64_after_hwframe+0x44/0xae
[3310.968194] RIP: 0033:0x7efe6557329b
[3310.968200] RSP: 002b:00007ffe0236ebc0 EFLAGS: 00000293 ORIG_RAX: 000000000000004a
[3310.968203] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007efe6557329b
[3310.968204] RDX: 0000000000000000 RSI: 00007efe58d77010 RDI: 0000000000000006
[3310.968205] RBP: 0000000004000000 R08: 0000000000000000 R09: 00007efe58d77010
[3310.968207] R10: 0000000016cacc0c R11: 0000000000000293 R12: 00007efe5ce95980
[3310.968208] R13: 0000000000000000 R14: 00007efe6447c790 R15: 0000000c80000000
[3310.968212] ---[ end trace 1a346f4d3c0d96ba ]---
[3310.968214] BTRFS: error (device sda) in cleanup_transaction:1946: errno=-11 unknown
The abort occurs because of a write hole while writing out freeing tree
nodes of a tree-log tree. For zoned btrfs, we re-dirty a freed tree
node to ensure btrfs can write the region and does not leave a hole on
write on a zoned device. The current code fails to re-dirty a node
when the tree-log tree's depth is greater or equal to 2. That leads to
a transaction abort with -EAGAIN.
Fix the issue by properly re-dirtying a node on walking up the tree. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm: Fix wait_fence submitqueue leak
We weren't dropping the submitqueue reference in all paths. In
particular, when the fence has already been signalled. Split out
a helper to simplify handling this in the various different return
paths. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring: fail cancellation for EXITING tasks
WARNING: CPU: 1 PID: 20 at fs/io_uring.c:6269 io_try_cancel_userdata+0x3c5/0x640 fs/io_uring.c:6269
CPU: 1 PID: 20 Comm: kworker/1:0 Not tainted 5.16.0-rc1-syzkaller #0
Workqueue: events io_fallback_req_func
RIP: 0010:io_try_cancel_userdata+0x3c5/0x640 fs/io_uring.c:6269
Call Trace:
<TASK>
io_req_task_link_timeout+0x6b/0x1e0 fs/io_uring.c:6886
io_fallback_req_func+0xf9/0x1ae fs/io_uring.c:1334
process_one_work+0x9b2/0x1690 kernel/workqueue.c:2298
worker_thread+0x658/0x11f0 kernel/workqueue.c:2445
kthread+0x405/0x4f0 kernel/kthread.c:327
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295
</TASK>
We need original task's context to do cancellations, so if it's dying
and the callback is executed in a fallback mode, fail the cancellation
attempt. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm: Fix mmap to include VM_IO and VM_DONTDUMP
In commit 510410bfc034 ("drm/msm: Implement mmap as GEM object
function") we switched to a new/cleaner method of doing things. That's
good, but we missed a little bit.
Before that commit, we used to _first_ run through the
drm_gem_mmap_obj() case where `obj->funcs->mmap()` was NULL. That meant
that we ran:
vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
vma->vm_page_prot = pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
...and _then_ we modified those mappings with our own. Now that
`obj->funcs->mmap()` is no longer NULL we don't run the default
code. It looks like the fact that the vm_flags got VM_IO / VM_DONTDUMP
was important because we're now getting crashes on Chromebooks that
use ARC++ while logging out. Specifically a crash that looks like this
(this is on a 5.10 kernel w/ relevant backports but also seen on a
5.15 kernel):
Unable to handle kernel paging request at virtual address ffffffc008000000
Mem abort info:
ESR = 0x96000006
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
Data abort info:
ISV = 0, ISS = 0x00000006
CM = 0, WnR = 0
swapper pgtable: 4k pages, 39-bit VAs, pgdp=000000008293d000
[ffffffc008000000] pgd=00000001002b3003, p4d=00000001002b3003,
pud=00000001002b3003, pmd=0000000000000000
Internal error: Oops: 96000006 [#1] PREEMPT SMP
[...]
CPU: 7 PID: 15734 Comm: crash_dump64 Tainted: G W 5.10.67 #1 [...]
Hardware name: Qualcomm Technologies, Inc. sc7280 IDP SKU2 platform (DT)
pstate: 80400009 (Nzcv daif +PAN -UAO -TCO BTYPE=--)
pc : __arch_copy_to_user+0xc0/0x30c
lr : copyout+0xac/0x14c
[...]
Call trace:
__arch_copy_to_user+0xc0/0x30c
copy_page_to_iter+0x1a0/0x294
process_vm_rw_core+0x240/0x408
process_vm_rw+0x110/0x16c
__arm64_sys_process_vm_readv+0x30/0x3c
el0_svc_common+0xf8/0x250
do_el0_svc+0x30/0x80
el0_svc+0x10/0x1c
el0_sync_handler+0x78/0x108
el0_sync+0x184/0x1c0
Code: f8408423 f80008c3 910020c6 36100082 (b8404423)
Let's add the two flags back in.
While we're at it, the fact that we aren't running the default means
that we _don't_ need to clear out VM_PFNMAP, so remove that and save
an instruction.
NOTE: it was confirmed that VM_IO was the important flag to fix the
problem I was seeing, but adding back VM_DONTDUMP seems like a sane
thing to do so I'm doing that too. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/smp: do not decrement idle task preempt count in CPU offline
With PREEMPT_COUNT=y, when a CPU is offlined and then onlined again, we
get:
BUG: scheduling while atomic: swapper/1/0/0x00000000
no locks held by swapper/1/0.
CPU: 1 PID: 0 Comm: swapper/1 Not tainted 5.15.0-rc2+ #100
Call Trace:
dump_stack_lvl+0xac/0x108
__schedule_bug+0xac/0xe0
__schedule+0xcf8/0x10d0
schedule_idle+0x3c/0x70
do_idle+0x2d8/0x4a0
cpu_startup_entry+0x38/0x40
start_secondary+0x2ec/0x3a0
start_secondary_prolog+0x10/0x14
This is because powerpc's arch_cpu_idle_dead() decrements the idle task's
preempt count, for reasons explained in commit a7c2bb8279d2 ("powerpc:
Re-enable preemption before cpu_die()"), specifically "start_secondary()
expects a preempt_count() of 0."
However, since commit 2c669ef6979c ("powerpc/preempt: Don't touch the idle
task's preempt_count during hotplug") and commit f1a0a376ca0c ("sched/core:
Initialize the idle task with preemption disabled"), that justification no
longer holds.
The idle task isn't supposed to re-enable preemption, so remove the
vestigial preempt_enable() from the CPU offline path.
Tested with pseries and powernv in qemu, and pseries on PowerVM. |
| In the Linux kernel, the following vulnerability has been resolved:
can: isotp: isotp_sendmsg(): add result check for wait_event_interruptible()
Using wait_event_interruptible() to wait for complete transmission,
but do not check the result of wait_event_interruptible() which can be
interrupted. It will result in TX buffer has multiple accessors and
the later process interferes with the previous process.
Following is one of the problems reported by syzbot.
=============================================================
WARNING: CPU: 0 PID: 0 at net/can/isotp.c:840 isotp_tx_timer_handler+0x2e0/0x4c0
CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.13.0-rc7+ #68
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1 04/01/2014
RIP: 0010:isotp_tx_timer_handler+0x2e0/0x4c0
Call Trace:
<IRQ>
? isotp_setsockopt+0x390/0x390
__hrtimer_run_queues+0xb8/0x610
hrtimer_run_softirq+0x91/0xd0
? rcu_read_lock_sched_held+0x4d/0x80
__do_softirq+0xe8/0x553
irq_exit_rcu+0xf8/0x100
sysvec_apic_timer_interrupt+0x9e/0xc0
</IRQ>
asm_sysvec_apic_timer_interrupt+0x12/0x20
Add result check for wait_event_interruptible() in isotp_sendmsg()
to avoid multiple accessers for tx buffer. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/mlx5: Initialize the ODP xarray when creating an ODP MR
Normally the zero fill would hide the missing initialization, but an
errant set to desc_size in reg_create() causes a crash:
BUG: unable to handle page fault for address: 0000000800000000
PGD 0 P4D 0
Oops: 0000 [#1] SMP PTI
CPU: 5 PID: 890 Comm: ib_write_bw Not tainted 5.15.0-rc4+ #47
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:mlx5_ib_dereg_mr+0x14/0x3b0 [mlx5_ib]
Code: 48 63 cd 4c 89 f7 48 89 0c 24 e8 37 30 03 e1 48 8b 0c 24 eb a0 90 0f 1f 44 00 00 41 56 41 55 41 54 55 53 48 89 fb 48 83 ec 30 <48> 8b 2f 65 48 8b 04 25 28 00 00 00 48 89 44 24 28 31 c0 8b 87 c8
RSP: 0018:ffff88811afa3a60 EFLAGS: 00010286
RAX: 000000000000001c RBX: 0000000800000000 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000800000000
RBP: 0000000800000000 R08: 0000000000000000 R09: c0000000fffff7ff
R10: ffff88811afa38f8 R11: ffff88811afa38f0 R12: ffffffffa02c7ac0
R13: 0000000000000000 R14: ffff88811afa3cd8 R15: ffff88810772fa00
FS: 00007f47b9080740(0000) GS:ffff88852cd40000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000800000000 CR3: 000000010761e003 CR4: 0000000000370ea0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
mlx5_ib_free_odp_mr+0x95/0xc0 [mlx5_ib]
mlx5_ib_dereg_mr+0x128/0x3b0 [mlx5_ib]
ib_dereg_mr_user+0x45/0xb0 [ib_core]
? xas_load+0x8/0x80
destroy_hw_idr_uobject+0x1a/0x50 [ib_uverbs]
uverbs_destroy_uobject+0x2f/0x150 [ib_uverbs]
uobj_destroy+0x3c/0x70 [ib_uverbs]
ib_uverbs_cmd_verbs+0x467/0xb00 [ib_uverbs]
? uverbs_finalize_object+0x60/0x60 [ib_uverbs]
? ttwu_queue_wakelist+0xa9/0xe0
? pty_write+0x85/0x90
? file_tty_write.isra.33+0x214/0x330
? process_echoes+0x60/0x60
ib_uverbs_ioctl+0xa7/0x110 [ib_uverbs]
__x64_sys_ioctl+0x10d/0x8e0
? vfs_write+0x17f/0x260
do_syscall_64+0x3c/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae
Add the missing xarray initialization and remove the desc_size set. |
| In the Linux kernel, the following vulnerability has been resolved:
mm: khugepaged: skip huge page collapse for special files
The read-only THP for filesystems will collapse THP for files opened
readonly and mapped with VM_EXEC. The intended usecase is to avoid TLB
misses for large text segments. But it doesn't restrict the file types
so a THP could be collapsed for a non-regular file, for example, block
device, if it is opened readonly and mapped with EXEC permission. This
may cause bugs, like [1] and [2].
This is definitely not the intended usecase, so just collapse THP for
regular files in order to close the attack surface.
[shy828301@gmail.com: fix vm_file check [3]] |
| In the Linux kernel, the following vulnerability has been resolved:
mm, thp: bail out early in collapse_file for writeback page
Currently collapse_file does not explicitly check PG_writeback, instead,
page_has_private and try_to_release_page are used to filter writeback
pages. This does not work for xfs with blocksize equal to or larger
than pagesize, because in such case xfs has no page->private.
This makes collapse_file bail out early for writeback page. Otherwise,
xfs end_page_writeback will panic as follows.
page:fffffe00201bcc80 refcount:0 mapcount:0 mapping:ffff0003f88c86a8 index:0x0 pfn:0x84ef32
aops:xfs_address_space_operations [xfs] ino:30000b7 dentry name:"libtest.so"
flags: 0x57fffe0000008027(locked|referenced|uptodate|active|writeback)
raw: 57fffe0000008027 ffff80001b48bc28 ffff80001b48bc28 ffff0003f88c86a8
raw: 0000000000000000 0000000000000000 00000000ffffffff ffff0000c3e9a000
page dumped because: VM_BUG_ON_PAGE(((unsigned int) page_ref_count(page) + 127u <= 127u))
page->mem_cgroup:ffff0000c3e9a000
------------[ cut here ]------------
kernel BUG at include/linux/mm.h:1212!
Internal error: Oops - BUG: 0 [#1] SMP
Modules linked in:
BUG: Bad page state in process khugepaged pfn:84ef32
xfs(E)
page:fffffe00201bcc80 refcount:0 mapcount:0 mapping:0 index:0x0 pfn:0x84ef32
libcrc32c(E) rfkill(E) aes_ce_blk(E) crypto_simd(E) ...
CPU: 25 PID: 0 Comm: swapper/25 Kdump: loaded Tainted: ...
pstate: 60400005 (nZCv daif +PAN -UAO -TCO BTYPE=--)
Call trace:
end_page_writeback+0x1c0/0x214
iomap_finish_page_writeback+0x13c/0x204
iomap_finish_ioend+0xe8/0x19c
iomap_writepage_end_bio+0x38/0x50
bio_endio+0x168/0x1ec
blk_update_request+0x278/0x3f0
blk_mq_end_request+0x34/0x15c
virtblk_request_done+0x38/0x74 [virtio_blk]
blk_done_softirq+0xc4/0x110
__do_softirq+0x128/0x38c
__irq_exit_rcu+0x118/0x150
irq_exit+0x1c/0x30
__handle_domain_irq+0x8c/0xf0
gic_handle_irq+0x84/0x108
el1_irq+0xcc/0x180
arch_cpu_idle+0x18/0x40
default_idle_call+0x4c/0x1a0
cpuidle_idle_call+0x168/0x1e0
do_idle+0xb4/0x104
cpu_startup_entry+0x30/0x9c
secondary_start_kernel+0x104/0x180
Code: d4210000 b0006161 910c8021 94013f4d (d4210000)
---[ end trace 4a88c6a074082f8c ]---
Kernel panic - not syncing: Oops - BUG: Fatal exception in interrupt |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: codecs: wcd934x: handle channel mappping list correctly
Currently each channel is added as list to dai channel list, however
there is danger of adding same channel to multiple dai channel list
which endups corrupting the other list where its already added.
This patch ensures that the channel is actually free before adding to
the dai channel list and also ensures that the channel is on the list
before deleting it.
This check was missing previously, and we did not hit this issue as
we were testing very simple usecases with sequence of amixer commands. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring: ensure task_work gets run as part of cancelations
If we successfully cancel a work item but that work item needs to be
processed through task_work, then we can be sleeping uninterruptibly
in io_uring_cancel_generic() and never process it. Hence we don't
make forward progress and we end up with an uninterruptible sleep
warning.
While in there, correct a comment that should be IFF, not IIF. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: skip netdev events generated on netns removal
syzbot reported following (harmless) WARN:
WARNING: CPU: 1 PID: 2648 at net/netfilter/core.c:468
nft_netdev_unregister_hooks net/netfilter/nf_tables_api.c:230 [inline]
nf_tables_unregister_hook include/net/netfilter/nf_tables.h:1090 [inline]
__nft_release_basechain+0x138/0x640 net/netfilter/nf_tables_api.c:9524
nft_netdev_event net/netfilter/nft_chain_filter.c:351 [inline]
nf_tables_netdev_event+0x521/0x8a0 net/netfilter/nft_chain_filter.c:382
reproducer:
unshare -n bash -c 'ip link add br0 type bridge; nft add table netdev t ; \
nft add chain netdev t ingress \{ type filter hook ingress device "br0" \
priority 0\; policy drop\; \}'
Problem is that when netns device exit hooks create the UNREGISTER
event, the .pre_exit hook for nf_tables core has already removed the
base hook. Notifier attempts to do this again.
The need to do base hook unregister unconditionally was needed in the past,
because notifier was last stage where reg->dev dereference was safe.
Now that nf_tables does the hook removal in .pre_exit, this isn't
needed anymore. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Fix CT entry update leaks of modify header context
The cited commit allocates a new modify header to replace the old
one when updating CT entry. But if failed to allocate a new one, eg.
exceed the max number firmware can support, modify header will be
an error pointer that will trigger a panic when deallocating it. And
the old modify header point is copied to old attr. When the old
attr is freed, the old modify header is lost.
Fix it by restoring the old attr to attr when failed to allocate a
new modify header context. So when the CT entry is freed, the right
modify header context will be freed. And the panic of accessing
error pointer is also fixed. |
| IBM Personal Communications v14 and v15 include a Windows service that is vulnerable to local privilege escalation (LPE). The vulnerability allows any interactively logged in users on the target computer to run commands with full privileges in the context of NT AUTHORITY\SYSTEM. This allows for a low privileged attacker to escalate their privileges. This vulnerability is due to an incomplete fix for CVE-2024-25029. |
| IBM Db2 for Linux, UNIX and Windows 12.1.0 and 12.1.1 is vulnerable to a denial of service as the server may crash under certain conditions with a specially crafted query. |