| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A crafted NTFS image can cause out-of-bounds reads in ntfs_attr_find and ntfs_external_attr_find in NTFS-3G < 2021.8.22. |
| A crafted NTFS image can cause a heap-based buffer overflow in ntfs_inode_lookup_by_name in NTFS-3G < 2021.8.22. |
| A crafted NTFS image can trigger an out-of-bounds read, caused by an invalid attribute in ntfs_attr_find_in_attrdef, in NTFS-3G < 2021.8.22. |
| A crafted NTFS image can cause an integer overflow in memmove, leading to a heap-based buffer overflow in the function ntfs_attr_record_resize, in NTFS-3G < 2021.8.22. |
| A crafted NTFS image can cause an out-of-bounds read in ntfs_runlists_merge_i in NTFS-3G < 2021.8.22. |
| A crafted NTFS image can cause an out-of-bounds read in ntfs_ie_lookup in NTFS-3G < 2021.8.22. |
| A crafted NTFS image can cause a NULL pointer dereference in ntfs_extent_inode_open in NTFS-3G < 2021.8.22. |
| In NTFS-3G versions < 2021.8.22, when a specially crafted NTFS inode is loaded in the function ntfs_inode_real_open, a heap buffer overflow can occur allowing for code execution and escalation of privileges. |
| The code that processes control channel messages sent to `named` calls certain functions recursively during packet parsing. Recursion depth is only limited by the maximum accepted packet size; depending on the environment, this may cause the packet-parsing code to run out of available stack memory, causing `named` to terminate unexpectedly. Since each incoming control channel message is fully parsed before its contents are authenticated, exploiting this flaw does not require the attacker to hold a valid RNDC key; only network access to the control channel's configured TCP port is necessary.
This issue affects BIND 9 versions 9.2.0 through 9.16.43, 9.18.0 through 9.18.18, 9.19.0 through 9.19.16, 9.9.3-S1 through 9.16.43-S1, and 9.18.0-S1 through 9.18.18-S1. |
| A vulnerability was found in libcap. This issue occurs in the _libcap_strdup() function and can lead to an integer overflow if the input string is close to 4GiB. |
| A flaw was found in the c-ares package. The ares_set_sortlist is missing checks about the validity of the input string, which allows a possible arbitrary length stack overflow. This issue may cause a denial of service or a limited impact on confidentiality and integrity. |
| A crafted NTFS image can cause a heap-based buffer overflow in ntfs_check_log_client_array in NTFS-3G through 2021.8.22. |
| A crafted NTFS image can cause a heap-based buffer overflow in ntfs_mft_rec_alloc in NTFS-3G through 2021.8.22. |
| A crafted NTFS image can cause a heap-based buffer overflow in ntfs_names_full_collate in NTFS-3G through 2021.8.22. |
| A crafted NTFS image can cause heap exhaustion in ntfs_get_attribute_value in NTFS-3G through 2021.8.22. |
| A vulnerability found in gnutls. This security flaw happens because of a double free error occurs during verification of pkcs7 signatures in gnutls_pkcs7_verify function. |
| A flaw was found in glibc. An off-by-one buffer overflow and underflow in getcwd() may lead to memory corruption when the size of the buffer is exactly 1. A local attacker who can control the input buffer and size passed to getcwd() in a setuid program could use this flaw to potentially execute arbitrary code and escalate their privileges on the system. |
| A crafted NTFS image can trigger a heap-based buffer overflow, caused by an unsanitized attribute in ntfs_get_attribute_value, in NTFS-3G < 2021.8.22. |
| A crafted NTFS image can cause an out-of-bounds access in ntfs_decompress in NTFS-3G < 2021.8.22. |
| Issue summary: Generating excessively long X9.42 DH keys or checking
excessively long X9.42 DH keys or parameters may be very slow.
Impact summary: Applications that use the functions DH_generate_key() to
generate an X9.42 DH key may experience long delays. Likewise, applications
that use DH_check_pub_key(), DH_check_pub_key_ex() or EVP_PKEY_public_check()
to check an X9.42 DH key or X9.42 DH parameters may experience long delays.
Where the key or parameters that are being checked have been obtained from
an untrusted source this may lead to a Denial of Service.
While DH_check() performs all the necessary checks (as of CVE-2023-3817),
DH_check_pub_key() doesn't make any of these checks, and is therefore
vulnerable for excessively large P and Q parameters.
Likewise, while DH_generate_key() performs a check for an excessively large
P, it doesn't check for an excessively large Q.
An application that calls DH_generate_key() or DH_check_pub_key() and
supplies a key or parameters obtained from an untrusted source could be
vulnerable to a Denial of Service attack.
DH_generate_key() and DH_check_pub_key() are also called by a number of
other OpenSSL functions. An application calling any of those other
functions may similarly be affected. The other functions affected by this
are DH_check_pub_key_ex(), EVP_PKEY_public_check(), and EVP_PKEY_generate().
Also vulnerable are the OpenSSL pkey command line application when using the
"-pubcheck" option, as well as the OpenSSL genpkey command line application.
The OpenSSL SSL/TLS implementation is not affected by this issue.
The OpenSSL 3.0 and 3.1 FIPS providers are not affected by this issue. |