| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Mitigation bypass in the DOM: Core & HTML component. This vulnerability affects Firefox < 145, Firefox ESR < 140.5, Firefox ESR < 115.30, Thunderbird < 145, and Thunderbird < 140.5. |
| Race condition in the Graphics component. This vulnerability affects Firefox < 145, Firefox ESR < 140.5, Firefox ESR < 115.30, Thunderbird < 145, and Thunderbird < 140.5. |
| A vulnerability has been identified in the GRUB2 bootloader's normal command that poses an immediate Denial of Service (DoS) risk. This flaw is a Use-after-Free issue, caused because the normal command is not properly unregistered when the module is unloaded. An attacker who can execute this command can force the system to access memory locations that are no longer valid. Successful exploitation leads directly to system instability, which can result in a complete crash and halt system availability. Impact on the data integrity and confidentiality is also not discarded. |
| A vulnerability has been identified in the GRUB (Grand Unified Bootloader) component. This flaw occurs because the bootloader mishandles string conversion when reading information from a USB device, allowing an attacker to exploit inconsistent length values. A local attacker can connect a maliciously configured USB device during the boot sequence to trigger this issue. A successful exploitation may lead GRUB to crash, leading to a Denial of Service. Data corruption may be also possible, although given the complexity of the exploit the impact is most likely limited. |
| In the Linux kernel, the following vulnerability has been resolved:
block: don't use submit_bio_noacct_nocheck in blk_zone_wplug_bio_work
Bios queued up in the zone write plug have already gone through all all
preparation in the submit_bio path, including the freeze protection.
Submitting them through submit_bio_noacct_nocheck duplicates the work
and can can cause deadlocks when freezing a queue with pending bio
write plugs.
Go straight to ->submit_bio or blk_mq_submit_bio to bypass the
superfluous extra freeze protection and checks. |
| In the Linux kernel, the following vulnerability has been resolved:
nvmem: zynqmp_nvmem: unbreak driver after cleanup
Commit 29be47fcd6a0 ("nvmem: zynqmp_nvmem: zynqmp_nvmem_probe cleanup")
changed the driver to expect the device pointer to be passed as the
"context", but in nvmem the context parameter comes from nvmem_config.priv
which is never set - Leading to null pointer exceptions when the device is
accessed. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: mediatek: mt8195: Set ETDM1/2 IN/OUT to COMP_DUMMY()
ETDM2_IN_BE and ETDM1_OUT_BE are defined as COMP_EMPTY(),
in the case the codec dai_name will be null.
Avoid a crash if the device tree is not assigning a codec
to these links.
[ 1.179936] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
[ 1.181065] Mem abort info:
[ 1.181420] ESR = 0x0000000096000004
[ 1.181892] EC = 0x25: DABT (current EL), IL = 32 bits
[ 1.182576] SET = 0, FnV = 0
[ 1.182964] EA = 0, S1PTW = 0
[ 1.183367] FSC = 0x04: level 0 translation fault
[ 1.183983] Data abort info:
[ 1.184406] ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000
[ 1.185097] CM = 0, WnR = 0, TnD = 0, TagAccess = 0
[ 1.185766] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[ 1.186439] [0000000000000000] user address but active_mm is swapper
[ 1.187239] Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP
[ 1.188029] Modules linked in:
[ 1.188420] CPU: 7 UID: 0 PID: 70 Comm: kworker/u32:1 Not tainted 6.14.0-rc4-next-20250226+ #85
[ 1.189515] Hardware name: Radxa NIO 12L (DT)
[ 1.190065] Workqueue: events_unbound deferred_probe_work_func
[ 1.190808] pstate: 40400009 (nZcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 1.191683] pc : __pi_strcmp+0x24/0x140
[ 1.192170] lr : mt8195_mt6359_soc_card_probe+0x224/0x7b0
[ 1.192854] sp : ffff800083473970
[ 1.193271] x29: ffff800083473a10 x28: 0000000000001008 x27: 0000000000000002
[ 1.194168] x26: ffff800082408960 x25: ffff800082417db0 x24: ffff800082417d88
[ 1.195065] x23: 000000000000001e x22: ffff800082dbf480 x21: ffff800082dc07b8
[ 1.195961] x20: 0000000000000000 x19: 0000000000000013 x18: 00000000ffffffff
[ 1.196858] x17: 000000040044ffff x16: 005000f2b5503510 x15: 0000000000000006
[ 1.197755] x14: ffff800082407af0 x13: 6e6f69737265766e x12: 692d6b636f6c6374
[ 1.198651] x11: 0000000000000002 x10: ffff80008240b920 x9 : 0000000000000018
[ 1.199547] x8 : 0101010101010101 x7 : 0000000000000000 x6 : 0000000000000000
[ 1.200443] x5 : 0000000000000000 x4 : 8080808080000000 x3 : 303933383978616d
[ 1.201339] x2 : 0000000000000000 x1 : ffff80008240b920 x0 : 0000000000000000
[ 1.202236] Call trace:
[ 1.202545] __pi_strcmp+0x24/0x140 (P)
[ 1.203029] mtk_soundcard_common_probe+0x3bc/0x5b8
[ 1.203644] platform_probe+0x70/0xe8
[ 1.204106] really_probe+0xc8/0x3a0
[ 1.204556] __driver_probe_device+0x84/0x160
[ 1.205104] driver_probe_device+0x44/0x130
[ 1.205630] __device_attach_driver+0xc4/0x170
[ 1.206189] bus_for_each_drv+0x8c/0xf8
[ 1.206672] __device_attach+0xa8/0x1c8
[ 1.207155] device_initial_probe+0x1c/0x30
[ 1.207681] bus_probe_device+0xb0/0xc0
[ 1.208165] deferred_probe_work_func+0xa4/0x100
[ 1.208747] process_one_work+0x158/0x3e0
[ 1.209254] worker_thread+0x2c4/0x3e8
[ 1.209727] kthread+0x134/0x1f0
[ 1.210136] ret_from_fork+0x10/0x20
[ 1.210589] Code: 54000401 b50002c6 d503201f f86a6803 (f8408402)
[ 1.211355] ---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
PM: EM: Fix potential division-by-zero error in em_compute_costs()
When the device is of a non-CPU type, table[i].performance won't be
initialized in the previous em_init_performance(), resulting in division
by zero when calculating costs in em_compute_costs().
Since the 'cost' algorithm is only used for EAS energy efficiency
calculations and is currently not utilized by other device drivers, we
should add the _is_cpu_device(dev) check to prevent this division-by-zero
issue. |
| The Booking Plugin for WordPress Appointments – Time Slot plugin for WordPress is vulnerable to unauthorized email sending in versions up to, and including, 1.4.7 due to missing validation on the tslot_appt_email AJAX action. This makes it possible for unauthenticated attackers to send appointment notification emails to arbitrary recipients with attacker-controlled text content in certain email fields, potentially enabling the site to be abused for phishing campaigns or spam distribution. |
| In the Linux kernel, the following vulnerability has been resolved:
idpf: convert control queue mutex to a spinlock
With VIRTCHNL2_CAP_MACFILTER enabled, the following warning is generated
on module load:
[ 324.701677] BUG: sleeping function called from invalid context at kernel/locking/mutex.c:578
[ 324.701684] in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 1582, name: NetworkManager
[ 324.701689] preempt_count: 201, expected: 0
[ 324.701693] RCU nest depth: 0, expected: 0
[ 324.701697] 2 locks held by NetworkManager/1582:
[ 324.701702] #0: ffffffff9f7be770 (rtnl_mutex){....}-{3:3}, at: rtnl_newlink+0x791/0x21e0
[ 324.701730] #1: ff1100216c380368 (_xmit_ETHER){....}-{2:2}, at: __dev_open+0x3f0/0x870
[ 324.701749] Preemption disabled at:
[ 324.701752] [<ffffffff9cd23b9d>] __dev_open+0x3dd/0x870
[ 324.701765] CPU: 30 UID: 0 PID: 1582 Comm: NetworkManager Not tainted 6.15.0-rc5+ #2 PREEMPT(voluntary)
[ 324.701771] Hardware name: Intel Corporation M50FCP2SBSTD/M50FCP2SBSTD, BIOS SE5C741.86B.01.01.0001.2211140926 11/14/2022
[ 324.701774] Call Trace:
[ 324.701777] <TASK>
[ 324.701779] dump_stack_lvl+0x5d/0x80
[ 324.701788] ? __dev_open+0x3dd/0x870
[ 324.701793] __might_resched.cold+0x1ef/0x23d
<..>
[ 324.701818] __mutex_lock+0x113/0x1b80
<..>
[ 324.701917] idpf_ctlq_clean_sq+0xad/0x4b0 [idpf]
[ 324.701935] ? kasan_save_track+0x14/0x30
[ 324.701941] idpf_mb_clean+0x143/0x380 [idpf]
<..>
[ 324.701991] idpf_send_mb_msg+0x111/0x720 [idpf]
[ 324.702009] idpf_vc_xn_exec+0x4cc/0x990 [idpf]
[ 324.702021] ? rcu_is_watching+0x12/0xc0
[ 324.702035] idpf_add_del_mac_filters+0x3ed/0xb50 [idpf]
<..>
[ 324.702122] __hw_addr_sync_dev+0x1cf/0x300
[ 324.702126] ? find_held_lock+0x32/0x90
[ 324.702134] idpf_set_rx_mode+0x317/0x390 [idpf]
[ 324.702152] __dev_open+0x3f8/0x870
[ 324.702159] ? __pfx___dev_open+0x10/0x10
[ 324.702174] __dev_change_flags+0x443/0x650
<..>
[ 324.702208] netif_change_flags+0x80/0x160
[ 324.702218] do_setlink.isra.0+0x16a0/0x3960
<..>
[ 324.702349] rtnl_newlink+0x12fd/0x21e0
The sequence is as follows:
rtnl_newlink()->
__dev_change_flags()->
__dev_open()->
dev_set_rx_mode() - > # disables BH and grabs "dev->addr_list_lock"
idpf_set_rx_mode() -> # proceed only if VIRTCHNL2_CAP_MACFILTER is ON
__dev_uc_sync() ->
idpf_add_mac_filter ->
idpf_add_del_mac_filters ->
idpf_send_mb_msg() ->
idpf_mb_clean() ->
idpf_ctlq_clean_sq() # mutex_lock(cq_lock)
Fix by converting cq_lock to a spinlock. All operations under the new
lock are safe except freeing the DMA memory, which may use vunmap(). Fix
by requesting a contiguous physical memory for the DMA mapping. |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: arm_ffa: Fix memory leak by freeing notifier callback node
Commit e0573444edbf ("firmware: arm_ffa: Add interfaces to request
notification callbacks") adds support for notifier callbacks by allocating
and inserting a callback node into a hashtable during registration of
notifiers. However, during unregistration, the code only removes the
node from the hashtable without freeing the associated memory, resulting
in a memory leak.
Resolve the memory leak issue by ensuring the allocated notifier callback
node is properly freed after it is removed from the hashtable entry. |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: arm_ffa: Replace mutex with rwlock to avoid sleep in atomic context
The current use of a mutex to protect the notifier hashtable accesses
can lead to issues in the atomic context. It results in the below
kernel warnings:
| BUG: sleeping function called from invalid context at kernel/locking/mutex.c:258
| in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 9, name: kworker/0:0
| preempt_count: 1, expected: 0
| RCU nest depth: 0, expected: 0
| CPU: 0 UID: 0 PID: 9 Comm: kworker/0:0 Not tainted 6.14.0 #4
| Workqueue: ffa_pcpu_irq_notification notif_pcpu_irq_work_fn
| Call trace:
| show_stack+0x18/0x24 (C)
| dump_stack_lvl+0x78/0x90
| dump_stack+0x18/0x24
| __might_resched+0x114/0x170
| __might_sleep+0x48/0x98
| mutex_lock+0x24/0x80
| handle_notif_callbacks+0x54/0xe0
| notif_get_and_handle+0x40/0x88
| generic_exec_single+0x80/0xc0
| smp_call_function_single+0xfc/0x1a0
| notif_pcpu_irq_work_fn+0x2c/0x38
| process_one_work+0x14c/0x2b4
| worker_thread+0x2e4/0x3e0
| kthread+0x13c/0x210
| ret_from_fork+0x10/0x20
To address this, replace the mutex with an rwlock to protect the notifier
hashtable accesses. This ensures that read-side locking does not sleep and
multiple readers can acquire the lock concurrently, avoiding unnecessary
contention and potential deadlocks. Writer access remains exclusive,
preserving correctness.
This change resolves warnings from lockdep about potential sleep in
atomic context. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/vmalloc: fix data race in show_numa_info()
The following data-race was found in show_numa_info():
==================================================================
BUG: KCSAN: data-race in vmalloc_info_show / vmalloc_info_show
read to 0xffff88800971fe30 of 4 bytes by task 8289 on cpu 0:
show_numa_info mm/vmalloc.c:4936 [inline]
vmalloc_info_show+0x5a8/0x7e0 mm/vmalloc.c:5016
seq_read_iter+0x373/0xb40 fs/seq_file.c:230
proc_reg_read_iter+0x11e/0x170 fs/proc/inode.c:299
....
write to 0xffff88800971fe30 of 4 bytes by task 8287 on cpu 1:
show_numa_info mm/vmalloc.c:4934 [inline]
vmalloc_info_show+0x38f/0x7e0 mm/vmalloc.c:5016
seq_read_iter+0x373/0xb40 fs/seq_file.c:230
proc_reg_read_iter+0x11e/0x170 fs/proc/inode.c:299
....
value changed: 0x0000008f -> 0x00000000
==================================================================
According to this report,there is a read/write data-race because
m->private is accessible to multiple CPUs. To fix this, instead of
allocating the heap in proc_vmalloc_init() and passing the heap address to
m->private, vmalloc_info_show() should allocate the heap. |
| In the Linux kernel, the following vulnerability has been resolved:
Input: cs40l50-vibra - fix potential NULL dereference in cs40l50_upload_owt()
The cs40l50_upload_owt() function allocates memory via kmalloc()
without checking for allocation failure, which could lead to a
NULL pointer dereference.
Return -ENOMEM in case allocation fails. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix warning when reconnecting channel
When reconnecting a channel in smb2_reconnect_server(), a dummy tcon
is passed down to smb2_reconnect() with ->query_interface
uninitialized, so we can't call queue_delayed_work() on it.
Fix the following warning by ensuring that we're queueing the delayed
worker from correct tcon.
WARNING: CPU: 4 PID: 1126 at kernel/workqueue.c:2498 __queue_delayed_work+0x1d2/0x200
Modules linked in: cifs cifs_arc4 nls_ucs2_utils cifs_md4 [last unloaded: cifs]
CPU: 4 UID: 0 PID: 1126 Comm: kworker/4:0 Not tainted 6.16.0-rc3 #5 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-4.fc42 04/01/2014
Workqueue: cifsiod smb2_reconnect_server [cifs]
RIP: 0010:__queue_delayed_work+0x1d2/0x200
Code: 41 5e 41 5f e9 7f ee ff ff 90 0f 0b 90 e9 5d ff ff ff bf 02 00
00 00 e8 6c f3 07 00 89 c3 eb bd 90 0f 0b 90 e9 57 f> 0b 90 e9 65 fe
ff ff 90 0f 0b 90 e9 72 fe ff ff 90 0f 0b 90 e9
RSP: 0018:ffffc900014afad8 EFLAGS: 00010003
RAX: 0000000000000000 RBX: ffff888124d99988 RCX: ffffffff81399cc1
RDX: dffffc0000000000 RSI: ffff888114326e00 RDI: ffff888124d999f0
RBP: 000000000000ea60 R08: 0000000000000001 R09: ffffed10249b3331
R10: ffff888124d9998f R11: 0000000000000004 R12: 0000000000000040
R13: ffff888114326e00 R14: ffff888124d999d8 R15: ffff888114939020
FS: 0000000000000000(0000) GS:ffff88829f7fe000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007ffe7a2b4038 CR3: 0000000120a6f000 CR4: 0000000000750ef0
PKRU: 55555554
Call Trace:
<TASK>
queue_delayed_work_on+0xb4/0xc0
smb2_reconnect+0xb22/0xf50 [cifs]
smb2_reconnect_server+0x413/0xd40 [cifs]
? __pfx_smb2_reconnect_server+0x10/0x10 [cifs]
? local_clock_noinstr+0xd/0xd0
? local_clock+0x15/0x30
? lock_release+0x29b/0x390
process_one_work+0x4c5/0xa10
? __pfx_process_one_work+0x10/0x10
? __list_add_valid_or_report+0x37/0x120
worker_thread+0x2f1/0x5a0
? __kthread_parkme+0xde/0x100
? __pfx_worker_thread+0x10/0x10
kthread+0x1fe/0x380
? kthread+0x10f/0x380
? __pfx_kthread+0x10/0x10
? local_clock_noinstr+0xd/0xd0
? ret_from_fork+0x1b/0x1f0
? local_clock+0x15/0x30
? lock_release+0x29b/0x390
? rcu_is_watching+0x20/0x50
? __pfx_kthread+0x10/0x10
ret_from_fork+0x15b/0x1f0
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
irq event stamp: 1116206
hardirqs last enabled at (1116205): [<ffffffff8143af42>] __up_console_sem+0x52/0x60
hardirqs last disabled at (1116206): [<ffffffff81399f0e>] queue_delayed_work_on+0x6e/0xc0
softirqs last enabled at (1116138): [<ffffffffc04562fd>] __smb_send_rqst+0x42d/0x950 [cifs]
softirqs last disabled at (1116136): [<ffffffff823d35e1>] release_sock+0x21/0xf0 |
| In the Linux kernel, the following vulnerability has been resolved:
HID: appletb-kbd: fix slab use-after-free bug in appletb_kbd_probe
In probe appletb_kbd_probe() a "struct appletb_kbd *kbd" is allocated
via devm_kzalloc() to store touch bar keyboard related data.
Later on if backlight_device_get_by_name() finds a backlight device
with name "appletb_backlight" a timer (kbd->inactivity_timer) is setup
with appletb_inactivity_timer() and the timer is armed to run after
appletb_tb_dim_timeout (60) seconds.
A use-after-free is triggered when failure occurs after the timer is
armed. This ultimately means probe failure occurs and as a result the
"struct appletb_kbd *kbd" which is device managed memory is freed.
After 60 seconds the timer will have expired and __run_timers will
attempt to access the timer (kbd->inactivity_timer) however the kdb
structure has been freed causing a use-after free.
[ 71.636938] ==================================================================
[ 71.637915] BUG: KASAN: slab-use-after-free in __run_timers+0x7ad/0x890
[ 71.637915] Write of size 8 at addr ffff8881178c5958 by task swapper/1/0
[ 71.637915]
[ 71.637915] CPU: 1 UID: 0 PID: 0 Comm: swapper/1 Not tainted 6.16.0-rc2-00318-g739a6c93cc75-dirty #12 PREEMPT(voluntary)
[ 71.637915] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
[ 71.637915] Call Trace:
[ 71.637915] <IRQ>
[ 71.637915] dump_stack_lvl+0x53/0x70
[ 71.637915] print_report+0xce/0x670
[ 71.637915] ? __run_timers+0x7ad/0x890
[ 71.637915] kasan_report+0xce/0x100
[ 71.637915] ? __run_timers+0x7ad/0x890
[ 71.637915] __run_timers+0x7ad/0x890
[ 71.637915] ? __pfx___run_timers+0x10/0x10
[ 71.637915] ? update_process_times+0xfc/0x190
[ 71.637915] ? __pfx_update_process_times+0x10/0x10
[ 71.637915] ? _raw_spin_lock_irq+0x80/0xe0
[ 71.637915] ? _raw_spin_lock_irq+0x80/0xe0
[ 71.637915] ? __pfx__raw_spin_lock_irq+0x10/0x10
[ 71.637915] run_timer_softirq+0x141/0x240
[ 71.637915] ? __pfx_run_timer_softirq+0x10/0x10
[ 71.637915] ? __pfx___hrtimer_run_queues+0x10/0x10
[ 71.637915] ? kvm_clock_get_cycles+0x18/0x30
[ 71.637915] ? ktime_get+0x60/0x140
[ 71.637915] handle_softirqs+0x1b8/0x5c0
[ 71.637915] ? __pfx_handle_softirqs+0x10/0x10
[ 71.637915] irq_exit_rcu+0xaf/0xe0
[ 71.637915] sysvec_apic_timer_interrupt+0x6c/0x80
[ 71.637915] </IRQ>
[ 71.637915]
[ 71.637915] Allocated by task 39:
[ 71.637915] kasan_save_stack+0x33/0x60
[ 71.637915] kasan_save_track+0x14/0x30
[ 71.637915] __kasan_kmalloc+0x8f/0xa0
[ 71.637915] __kmalloc_node_track_caller_noprof+0x195/0x420
[ 71.637915] devm_kmalloc+0x74/0x1e0
[ 71.637915] appletb_kbd_probe+0x37/0x3c0
[ 71.637915] hid_device_probe+0x2d1/0x680
[ 71.637915] really_probe+0x1c3/0x690
[ 71.637915] __driver_probe_device+0x247/0x300
[ 71.637915] driver_probe_device+0x49/0x210
[...]
[ 71.637915]
[ 71.637915] Freed by task 39:
[ 71.637915] kasan_save_stack+0x33/0x60
[ 71.637915] kasan_save_track+0x14/0x30
[ 71.637915] kasan_save_free_info+0x3b/0x60
[ 71.637915] __kasan_slab_free+0x37/0x50
[ 71.637915] kfree+0xcf/0x360
[ 71.637915] devres_release_group+0x1f8/0x3c0
[ 71.637915] hid_device_probe+0x315/0x680
[ 71.637915] really_probe+0x1c3/0x690
[ 71.637915] __driver_probe_device+0x247/0x300
[ 71.637915] driver_probe_device+0x49/0x210
[...]
The root cause of the issue is that the timer is not disarmed
on failure paths leading to it remaining active and accessing
freed memory. To fix this call timer_delete_sync() to deactivate
the timer.
Another small issue is that timer_delete_sync is called
unconditionally in appletb_kbd_remove(), fix this by checking
for a valid kbd->backlight_dev before calling timer_delete_sync. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: chipidea: udc: disconnect/reconnect from host when do suspend/resume
Shawn and John reported a hang issue during system suspend as below:
- USB gadget is enabled as Ethernet
- There is data transfer over USB Ethernet (scp a big file between host
and device)
- Device is going in/out suspend (echo mem > /sys/power/state)
The root cause is the USB device controller is suspended but the USB bus
is still active which caused the USB host continues to transfer data with
device and the device continues to queue USB requests (in this case, a
delayed TCP ACK packet trigger the issue) after controller is suspended,
however the USB controller clock is already gated off. Then if udc driver
access registers after that point, the system will hang.
The correct way to avoid such issue is to disconnect device from host when
the USB bus is not at suspend state. Then the host will receive disconnect
event and stop data transfer in time. To continue make USB gadget device
work after system resume, this will reconnect device automatically.
To make usb wakeup work if USB bus is already at suspend state, this will
keep connection for it only when USB device controller has enabled wakeup
capability. |
| In the Linux kernel, the following vulnerability has been resolved:
optee: ffa: fix sleep in atomic context
The OP-TEE driver registers the function notif_callback() for FF-A
notifications. However, this function is called in an atomic context
leading to errors like this when processing asynchronous notifications:
| BUG: sleeping function called from invalid context at kernel/locking/mutex.c:258
| in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 9, name: kworker/0:0
| preempt_count: 1, expected: 0
| RCU nest depth: 0, expected: 0
| CPU: 0 UID: 0 PID: 9 Comm: kworker/0:0 Not tainted 6.14.0-00019-g657536ebe0aa #13
| Hardware name: linux,dummy-virt (DT)
| Workqueue: ffa_pcpu_irq_notification notif_pcpu_irq_work_fn
| Call trace:
| show_stack+0x18/0x24 (C)
| dump_stack_lvl+0x78/0x90
| dump_stack+0x18/0x24
| __might_resched+0x114/0x170
| __might_sleep+0x48/0x98
| mutex_lock+0x24/0x80
| optee_get_msg_arg+0x7c/0x21c
| simple_call_with_arg+0x50/0xc0
| optee_do_bottom_half+0x14/0x20
| notif_callback+0x3c/0x48
| handle_notif_callbacks+0x9c/0xe0
| notif_get_and_handle+0x40/0x88
| generic_exec_single+0x80/0xc0
| smp_call_function_single+0xfc/0x1a0
| notif_pcpu_irq_work_fn+0x2c/0x38
| process_one_work+0x14c/0x2b4
| worker_thread+0x2e4/0x3e0
| kthread+0x13c/0x210
| ret_from_fork+0x10/0x20
Fix this by adding work queue to process the notification in a
non-atomic context. |
| A vulnerability was detected in SourceCodester Train Station Ticketing System 1.0. This affects an unknown part of the file /ajax.php?action=save_station. Performing manipulation of the argument id/station results in sql injection. The attack may be initiated remotely. The exploit is now public and may be used. |
| A flaw has been found in SourceCodester Train Station Ticketing System 1.0. This vulnerability affects unknown code of the file /ajax.php?action=save_user. Executing manipulation of the argument Username can lead to sql injection. The attack may be launched remotely. The exploit has been published and may be used. |