Search Results (15919 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2024-35792 1 Linux 1 Linux Kernel 2025-07-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: crypto: rk3288 - Fix use after free in unprepare The unprepare call must be carried out before the finalize call as the latter can free the request.
CVE-2024-26856 1 Linux 1 Linux Kernel 2025-07-12 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: net: sparx5: Fix use after free inside sparx5_del_mact_entry Based on the static analyzis of the code it looks like when an entry from the MAC table was removed, the entry was still used after being freed. More precise the vid of the mac_entry was used after calling devm_kfree on the mac_entry. The fix consists in first using the vid of the mac_entry to delete the entry from the HW and after that to free it.
CVE-2024-26876 1 Linux 1 Linux Kernel 2025-07-12 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/bridge: adv7511: fix crash on irq during probe Moved IRQ registration down to end of adv7511_probe(). If an IRQ already is pending during adv7511_probe (before adv7511_cec_init) then cec_received_msg_ts could crash using uninitialized data: Unable to handle kernel read from unreadable memory at virtual address 00000000000003d5 Internal error: Oops: 96000004 [#1] PREEMPT_RT SMP Call trace: cec_received_msg_ts+0x48/0x990 [cec] adv7511_cec_irq_process+0x1cc/0x308 [adv7511] adv7511_irq_process+0xd8/0x120 [adv7511] adv7511_irq_handler+0x1c/0x30 [adv7511] irq_thread_fn+0x30/0xa0 irq_thread+0x14c/0x238 kthread+0x190/0x1a8
CVE-2024-26955 1 Linux 1 Linux Kernel 2025-07-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nilfs2: prevent kernel bug at submit_bh_wbc() Fix a bug where nilfs_get_block() returns a successful status when searching and inserting the specified block both fail inconsistently. If this inconsistent behavior is not due to a previously fixed bug, then an unexpected race is occurring, so return a temporary error -EAGAIN instead. This prevents callers such as __block_write_begin_int() from requesting a read into a buffer that is not mapped, which would cause the BUG_ON check for the BH_Mapped flag in submit_bh_wbc() to fail.
CVE-2024-35871 1 Linux 1 Linux Kernel 2025-07-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: riscv: process: Fix kernel gp leakage childregs represents the registers which are active for the new thread in user context. For a kernel thread, childregs->gp is never used since the kernel gp is not touched by switch_to. For a user mode helper, the gp value can be observed in user space after execve or possibly by other means. [From the email thread] The /* Kernel thread */ comment is somewhat inaccurate in that it is also used for user_mode_helper threads, which exec a user process, e.g. /sbin/init or when /proc/sys/kernel/core_pattern is a pipe. Such threads do not have PF_KTHREAD set and are valid targets for ptrace etc. even before they exec. childregs is the *user* context during syscall execution and it is observable from userspace in at least five ways: 1. kernel_execve does not currently clear integer registers, so the starting register state for PID 1 and other user processes started by the kernel has sp = user stack, gp = kernel __global_pointer$, all other integer registers zeroed by the memset in the patch comment. This is a bug in its own right, but I'm unwilling to bet that it is the only way to exploit the issue addressed by this patch. 2. ptrace(PTRACE_GETREGSET): you can PTRACE_ATTACH to a user_mode_helper thread before it execs, but ptrace requires SIGSTOP to be delivered which can only happen at user/kernel boundaries. 3. /proc/*/task/*/syscall: this is perfectly happy to read pt_regs for user_mode_helpers before the exec completes, but gp is not one of the registers it returns. 4. PERF_SAMPLE_REGS_USER: LOCKDOWN_PERF normally prevents access to kernel addresses via PERF_SAMPLE_REGS_INTR, but due to this bug kernel addresses are also exposed via PERF_SAMPLE_REGS_USER which is permitted under LOCKDOWN_PERF. I have not attempted to write exploit code. 5. Much of the tracing infrastructure allows access to user registers. I have not attempted to determine which forms of tracing allow access to user registers without already allowing access to kernel registers.
CVE-2022-49509 1 Linux 1 Linux Kernel 2025-07-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: i2c: max9286: fix kernel oops when removing module When removing the max9286 module we get a kernel oops: Unable to handle kernel paging request at virtual address 000000aa00000094 Mem abort info: ESR = 0x96000004 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x04: level 0 translation fault Data abort info: ISV = 0, ISS = 0x00000004 CM = 0, WnR = 0 user pgtable: 4k pages, 48-bit VAs, pgdp=0000000880d85000 [000000aa00000094] pgd=0000000000000000, p4d=0000000000000000 Internal error: Oops: 96000004 [#1] PREEMPT SMP Modules linked in: fsl_jr_uio caam_jr rng_core libdes caamkeyblob_desc caamhash_desc caamalg_desc crypto_engine max9271 authenc crct10dif_ce mxc_jpeg_encdec CPU: 2 PID: 713 Comm: rmmod Tainted: G C 5.15.5-00057-gaebcd29c8ed7-dirty #5 Hardware name: Freescale i.MX8QXP MEK (DT) pstate: 80000005 (Nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : i2c_mux_del_adapters+0x24/0xf0 lr : max9286_remove+0x28/0xd0 [max9286] sp : ffff800013a9bbf0 x29: ffff800013a9bbf0 x28: ffff00080b6da940 x27: 0000000000000000 x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000 x23: ffff000801a5b970 x22: ffff0008048b0890 x21: ffff800009297000 x20: ffff0008048b0f70 x19: 000000aa00000064 x18: 0000000000000000 x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000 x14: 0000000000000014 x13: 0000000000000000 x12: ffff000802da49e8 x11: ffff000802051918 x10: ffff000802da4920 x9 : ffff000800030098 x8 : 0101010101010101 x7 : 7f7f7f7f7f7f7f7f x6 : fefefeff6364626d x5 : 8080808000000000 x4 : 0000000000000000 x3 : 0000000000000000 x2 : ffffffffffffffff x1 : ffff00080b6da940 x0 : 0000000000000000 Call trace: i2c_mux_del_adapters+0x24/0xf0 max9286_remove+0x28/0xd0 [max9286] i2c_device_remove+0x40/0x110 __device_release_driver+0x188/0x234 driver_detach+0xc4/0x150 bus_remove_driver+0x60/0xe0 driver_unregister+0x34/0x64 i2c_del_driver+0x58/0xa0 max9286_i2c_driver_exit+0x1c/0x490 [max9286] __arm64_sys_delete_module+0x194/0x260 invoke_syscall+0x48/0x114 el0_svc_common.constprop.0+0xd4/0xfc do_el0_svc+0x2c/0x94 el0_svc+0x28/0x80 el0t_64_sync_handler+0xa8/0x130 el0t_64_sync+0x1a0/0x1a4 The Oops happens because the I2C client data does not point to max9286_priv anymore but to v4l2_subdev. The change happened in max9286_init() which calls v4l2_i2c_subdev_init() later on... Besides fixing the max9286_remove() function, remove the call to i2c_set_clientdata() in max9286_probe(), to avoid confusion, and make the necessary changes to max9286_init() so that it doesn't have to use i2c_get_clientdata() in order to fetch the pointer to priv.
CVE-2022-48717 1 Linux 1 Linux Kernel 2025-07-12 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: ASoC: max9759: fix underflow in speaker_gain_control_put() Check for negative values of "priv->gain" to prevent an out of bounds access. The concern is that these might come from the user via: -> snd_ctl_elem_write_user() -> snd_ctl_elem_write() -> kctl->put()
CVE-2024-26997 1 Linux 1 Linux Kernel 2025-07-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: usb: dwc2: host: Fix dereference issue in DDMA completion flow. Fixed variable dereference issue in DDMA completion flow.
CVE-2024-35949 1 Linux 1 Linux Kernel 2025-07-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: make sure that WRITTEN is set on all metadata blocks We previously would call btrfs_check_leaf() if we had the check integrity code enabled, which meant that we could only run the extended leaf checks if we had WRITTEN set on the header flags. This leaves a gap in our checking, because we could end up with corruption on disk where WRITTEN isn't set on the leaf, and then the extended leaf checks don't get run which we rely on to validate all of the item pointers to make sure we don't access memory outside of the extent buffer. However, since 732fab95abe2 ("btrfs: check-integrity: remove CONFIG_BTRFS_FS_CHECK_INTEGRITY option") we no longer call btrfs_check_leaf() from btrfs_mark_buffer_dirty(), which means we only ever call it on blocks that are being written out, and thus have WRITTEN set, or that are being read in, which should have WRITTEN set. Add checks to make sure we have WRITTEN set appropriately, and then make sure __btrfs_check_leaf() always does the item checking. This will protect us from file systems that have been corrupted and no longer have WRITTEN set on some of the blocks. This was hit on a crafted image tweaking the WRITTEN bit and reported by KASAN as out-of-bound access in the eb accessors. The example is a dir item at the end of an eb. [2.042] BTRFS warning (device loop1): bad eb member start: ptr 0x3fff start 30572544 member offset 16410 size 2 [2.040] general protection fault, probably for non-canonical address 0xe0009d1000000003: 0000 [#1] PREEMPT SMP KASAN NOPTI [2.537] KASAN: maybe wild-memory-access in range [0x0005088000000018-0x000508800000001f] [2.729] CPU: 0 PID: 2587 Comm: mount Not tainted 6.8.2 #1 [2.729] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 [2.621] RIP: 0010:btrfs_get_16+0x34b/0x6d0 [2.621] RSP: 0018:ffff88810871fab8 EFLAGS: 00000206 [2.621] RAX: 0000a11000000003 RBX: ffff888104ff8720 RCX: ffff88811b2288c0 [2.621] RDX: dffffc0000000000 RSI: ffffffff81dd8aca RDI: ffff88810871f748 [2.621] RBP: 000000000000401a R08: 0000000000000001 R09: ffffed10210e3ee9 [2.621] R10: ffff88810871f74f R11: 205d323430333737 R12: 000000000000001a [2.621] R13: 000508800000001a R14: 1ffff110210e3f5d R15: ffffffff850011e8 [2.621] FS: 00007f56ea275840(0000) GS:ffff88811b200000(0000) knlGS:0000000000000000 [2.621] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [2.621] CR2: 00007febd13b75c0 CR3: 000000010bb50000 CR4: 00000000000006f0 [2.621] Call Trace: [2.621] <TASK> [2.621] ? show_regs+0x74/0x80 [2.621] ? die_addr+0x46/0xc0 [2.621] ? exc_general_protection+0x161/0x2a0 [2.621] ? asm_exc_general_protection+0x26/0x30 [2.621] ? btrfs_get_16+0x33a/0x6d0 [2.621] ? btrfs_get_16+0x34b/0x6d0 [2.621] ? btrfs_get_16+0x33a/0x6d0 [2.621] ? __pfx_btrfs_get_16+0x10/0x10 [2.621] ? __pfx_mutex_unlock+0x10/0x10 [2.621] btrfs_match_dir_item_name+0x101/0x1a0 [2.621] btrfs_lookup_dir_item+0x1f3/0x280 [2.621] ? __pfx_btrfs_lookup_dir_item+0x10/0x10 [2.621] btrfs_get_tree+0xd25/0x1910 [ copy more details from report ]
CVE-2023-52882 1 Linux 1 Linux Kernel 2025-07-12 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: clk: sunxi-ng: h6: Reparent CPUX during PLL CPUX rate change While PLL CPUX clock rate change when CPU is running from it works in vast majority of cases, now and then it causes instability. This leads to system crashes and other undefined behaviour. After a lot of testing (30+ hours) while also doing a lot of frequency switches, we can't observe any instability issues anymore when doing reparenting to stable clock like 24 MHz oscillator.
CVE-2024-35879 1 Linux 1 Linux Kernel 2025-07-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: of: dynamic: Synchronize of_changeset_destroy() with the devlink removals In the following sequence: 1) of_platform_depopulate() 2) of_overlay_remove() During the step 1, devices are destroyed and devlinks are removed. During the step 2, OF nodes are destroyed but __of_changeset_entry_destroy() can raise warnings related to missing of_node_put(): ERROR: memory leak, expected refcount 1 instead of 2 ... Indeed, during the devlink removals performed at step 1, the removal itself releasing the device (and the attached of_node) is done by a job queued in a workqueue and so, it is done asynchronously with respect to function calls. When the warning is present, of_node_put() will be called but wrongly too late from the workqueue job. In order to be sure that any ongoing devlink removals are done before the of_node destruction, synchronize the of_changeset_destroy() with the devlink removals.
CVE-2024-36934 1 Linux 1 Linux Kernel 2025-07-12 6.1 Medium
In the Linux kernel, the following vulnerability has been resolved: bna: ensure the copied buf is NUL terminated Currently, we allocate a nbytes-sized kernel buffer and copy nbytes from userspace to that buffer. Later, we use sscanf on this buffer but we don't ensure that the string is terminated inside the buffer, this can lead to OOB read when using sscanf. Fix this issue by using memdup_user_nul instead of memdup_user.
CVE-2024-26943 1 Linux 1 Linux Kernel 2025-07-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nouveau/dmem: handle kcalloc() allocation failure The kcalloc() in nouveau_dmem_evict_chunk() will return null if the physical memory has run out. As a result, if we dereference src_pfns, dst_pfns or dma_addrs, the null pointer dereference bugs will happen. Moreover, the GPU is going away. If the kcalloc() fails, we could not evict all pages mapping a chunk. So this patch adds a __GFP_NOFAIL flag in kcalloc(). Finally, as there is no need to have physically contiguous memory, this patch switches kcalloc() to kvcalloc() in order to avoid failing allocations.
CVE-2024-35785 1 Linux 1 Linux Kernel 2025-07-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tee: optee: Fix kernel panic caused by incorrect error handling The error path while failing to register devices on the TEE bus has a bug leading to kernel panic as follows: [ 15.398930] Unable to handle kernel paging request at virtual address ffff07ed00626d7c [ 15.406913] Mem abort info: [ 15.409722] ESR = 0x0000000096000005 [ 15.413490] EC = 0x25: DABT (current EL), IL = 32 bits [ 15.418814] SET = 0, FnV = 0 [ 15.421878] EA = 0, S1PTW = 0 [ 15.425031] FSC = 0x05: level 1 translation fault [ 15.429922] Data abort info: [ 15.432813] ISV = 0, ISS = 0x00000005, ISS2 = 0x00000000 [ 15.438310] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 15.443372] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 15.448697] swapper pgtable: 4k pages, 48-bit VAs, pgdp=00000000d9e3e000 [ 15.455413] [ffff07ed00626d7c] pgd=1800000bffdf9003, p4d=1800000bffdf9003, pud=0000000000000000 [ 15.464146] Internal error: Oops: 0000000096000005 [#1] PREEMPT SMP Commit 7269cba53d90 ("tee: optee: Fix supplicant based device enumeration") lead to the introduction of this bug. So fix it appropriately.
CVE-2024-27419 1 Linux 1 Linux Kernel 2025-07-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: netrom: Fix data-races around sysctl_net_busy_read We need to protect the reader reading the sysctl value because the value can be changed concurrently.
CVE-2024-27075 1 Linux 1 Linux Kernel 2025-07-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: dvb-frontends: avoid stack overflow warnings with clang A previous patch worked around a KASAN issue in stv0367, now a similar problem showed up with clang: drivers/media/dvb-frontends/stv0367.c:1222:12: error: stack frame size (3624) exceeds limit (2048) in 'stv0367ter_set_frontend' [-Werror,-Wframe-larger-than] 1214 | static int stv0367ter_set_frontend(struct dvb_frontend *fe) Rework the stv0367_writereg() function to be simpler and mark both register access functions as noinline_for_stack so the temporary i2c_msg structures do not get duplicated on the stack when KASAN_STACK is enabled.
CVE-2024-26956 1 Linux 1 Linux Kernel 2025-07-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix failure to detect DAT corruption in btree and direct mappings Patch series "nilfs2: fix kernel bug at submit_bh_wbc()". This resolves a kernel BUG reported by syzbot. Since there are two flaws involved, I've made each one a separate patch. The first patch alone resolves the syzbot-reported bug, but I think both fixes should be sent to stable, so I've tagged them as such. This patch (of 2): Syzbot has reported a kernel bug in submit_bh_wbc() when writing file data to a nilfs2 file system whose metadata is corrupted. There are two flaws involved in this issue. The first flaw is that when nilfs_get_block() locates a data block using btree or direct mapping, if the disk address translation routine nilfs_dat_translate() fails with internal code -ENOENT due to DAT metadata corruption, it can be passed back to nilfs_get_block(). This causes nilfs_get_block() to misidentify an existing block as non-existent, causing both data block lookup and insertion to fail inconsistently. The second flaw is that nilfs_get_block() returns a successful status in this inconsistent state. This causes the caller __block_write_begin_int() or others to request a read even though the buffer is not mapped, resulting in a BUG_ON check for the BH_Mapped flag in submit_bh_wbc() failing. This fixes the first issue by changing the return value to code -EINVAL when a conversion using DAT fails with code -ENOENT, avoiding the conflicting condition that leads to the kernel bug described above. Here, code -EINVAL indicates that metadata corruption was detected during the block lookup, which will be properly handled as a file system error and converted to -EIO when passing through the nilfs2 bmap layer.
CVE-2024-27400 1 Linux 1 Linux Kernel 2025-07-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: once more fix the call oder in amdgpu_ttm_move() v2 This reverts drm/amdgpu: fix ftrace event amdgpu_bo_move always move on same heap. The basic problem here is that after the move the old location is simply not available any more. Some fixes were suggested, but essentially we should call the move notification before actually moving things because only this way we have the correct order for DMA-buf and VM move notifications as well. Also rework the statistic handling so that we don't update the eviction counter before the move. v2: add missing NULL check
CVE-2022-49852 1 Linux 1 Linux Kernel 2025-07-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: riscv: process: fix kernel info leakage thread_struct's s[12] may contain random kernel memory content, which may be finally leaked to userspace. This is a security hole. Fix it by clearing the s[12] array in thread_struct when fork. As for kthread case, it's better to clear the s[12] array as well.
CVE-2023-53035 1 Linux 1 Linux Kernel 2025-07-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix kernel-infoleak in nilfs_ioctl_wrap_copy() The ioctl helper function nilfs_ioctl_wrap_copy(), which exchanges a metadata array to/from user space, may copy uninitialized buffer regions to user space memory for read-only ioctl commands NILFS_IOCTL_GET_SUINFO and NILFS_IOCTL_GET_CPINFO. This can occur when the element size of the user space metadata given by the v_size member of the argument nilfs_argv structure is larger than the size of the metadata element (nilfs_suinfo structure or nilfs_cpinfo structure) on the file system side. KMSAN-enabled kernels detect this issue as follows: BUG: KMSAN: kernel-infoleak in instrument_copy_to_user include/linux/instrumented.h:121 [inline] BUG: KMSAN: kernel-infoleak in _copy_to_user+0xc0/0x100 lib/usercopy.c:33 instrument_copy_to_user include/linux/instrumented.h:121 [inline] _copy_to_user+0xc0/0x100 lib/usercopy.c:33 copy_to_user include/linux/uaccess.h:169 [inline] nilfs_ioctl_wrap_copy+0x6fa/0xc10 fs/nilfs2/ioctl.c:99 nilfs_ioctl_get_info fs/nilfs2/ioctl.c:1173 [inline] nilfs_ioctl+0x2402/0x4450 fs/nilfs2/ioctl.c:1290 nilfs_compat_ioctl+0x1b8/0x200 fs/nilfs2/ioctl.c:1343 __do_compat_sys_ioctl fs/ioctl.c:968 [inline] __se_compat_sys_ioctl+0x7dd/0x1000 fs/ioctl.c:910 __ia32_compat_sys_ioctl+0x93/0xd0 fs/ioctl.c:910 do_syscall_32_irqs_on arch/x86/entry/common.c:112 [inline] __do_fast_syscall_32+0xa2/0x100 arch/x86/entry/common.c:178 do_fast_syscall_32+0x37/0x80 arch/x86/entry/common.c:203 do_SYSENTER_32+0x1f/0x30 arch/x86/entry/common.c:246 entry_SYSENTER_compat_after_hwframe+0x70/0x82 Uninit was created at: __alloc_pages+0x9f6/0xe90 mm/page_alloc.c:5572 alloc_pages+0xab0/0xd80 mm/mempolicy.c:2287 __get_free_pages+0x34/0xc0 mm/page_alloc.c:5599 nilfs_ioctl_wrap_copy+0x223/0xc10 fs/nilfs2/ioctl.c:74 nilfs_ioctl_get_info fs/nilfs2/ioctl.c:1173 [inline] nilfs_ioctl+0x2402/0x4450 fs/nilfs2/ioctl.c:1290 nilfs_compat_ioctl+0x1b8/0x200 fs/nilfs2/ioctl.c:1343 __do_compat_sys_ioctl fs/ioctl.c:968 [inline] __se_compat_sys_ioctl+0x7dd/0x1000 fs/ioctl.c:910 __ia32_compat_sys_ioctl+0x93/0xd0 fs/ioctl.c:910 do_syscall_32_irqs_on arch/x86/entry/common.c:112 [inline] __do_fast_syscall_32+0xa2/0x100 arch/x86/entry/common.c:178 do_fast_syscall_32+0x37/0x80 arch/x86/entry/common.c:203 do_SYSENTER_32+0x1f/0x30 arch/x86/entry/common.c:246 entry_SYSENTER_compat_after_hwframe+0x70/0x82 Bytes 16-127 of 3968 are uninitialized ... This eliminates the leak issue by initializing the page allocated as buffer using get_zeroed_page().