| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A use-after-free vulnerability in the Linux kernel's netfilter: nf_tables component can be exploited to achieve local privilege escalation.
The nft_setelem_catchall_deactivate() function checks whether the catch-all set element is active in the current generation instead of the next generation before freeing it, but only flags it inactive in the next generation, making it possible to free the element multiple times, leading to a double free vulnerability.
We recommend upgrading past commit b1db244ffd041a49ecc9618e8feb6b5c1afcdaa7.
|
| mm/mremap.c in the Linux kernel before 5.13.3 has a use-after-free via a stale TLB because an rmap lock is not held during a PUD move. |
| In drivers/media/dvb-core/dmxdev.c in the Linux kernel through 5.19.10, there is a use-after-free caused by refcount races, affecting dvb_demux_open and dvb_dmxdev_release. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu/mes: fix use-after-free issue
Delete fence fallback timer to fix the ramdom
use-after-free issue.
v2: move to amdgpu_mes.c |
| In the Linux kernel, the following vulnerability has been resolved:
selinux: fix double free of cond_list on error paths
On error path from cond_read_list() and duplicate_policydb_cond_list()
the cond_list_destroy() gets called a second time in caller functions,
resulting in NULL pointer deref. Fix this by resetting the
cond_list_len to 0 in cond_list_destroy(), making subsequent calls a
noop.
Also consistently reset the cond_list pointer to NULL after freeing.
[PM: fix line lengths in the description] |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/core: Fix use-after-free when rename device name
Syzbot reported a slab-use-after-free with the following call trace:
==================================================================
BUG: KASAN: slab-use-after-free in nla_put+0xd3/0x150 lib/nlattr.c:1099
Read of size 5 at addr ffff888140ea1c60 by task syz.0.988/10025
CPU: 0 UID: 0 PID: 10025 Comm: syz.0.988
Not tainted 6.14.0-rc4-syzkaller-00859-gf77f12010f67 #0
Hardware name: Google Compute Engine, BIOS Google 02/12/2025
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:408 [inline]
print_report+0x16e/0x5b0 mm/kasan/report.c:521
kasan_report+0x143/0x180 mm/kasan/report.c:634
kasan_check_range+0x282/0x290 mm/kasan/generic.c:189
__asan_memcpy+0x29/0x70 mm/kasan/shadow.c:105
nla_put+0xd3/0x150 lib/nlattr.c:1099
nla_put_string include/net/netlink.h:1621 [inline]
fill_nldev_handle+0x16e/0x200 drivers/infiniband/core/nldev.c:265
rdma_nl_notify_event+0x561/0xef0 drivers/infiniband/core/nldev.c:2857
ib_device_notify_register+0x22/0x230 drivers/infiniband/core/device.c:1344
ib_register_device+0x1292/0x1460 drivers/infiniband/core/device.c:1460
rxe_register_device+0x233/0x350 drivers/infiniband/sw/rxe/rxe_verbs.c:1540
rxe_net_add+0x74/0xf0 drivers/infiniband/sw/rxe/rxe_net.c:550
rxe_newlink+0xde/0x1a0 drivers/infiniband/sw/rxe/rxe.c:212
nldev_newlink+0x5ea/0x680 drivers/infiniband/core/nldev.c:1795
rdma_nl_rcv_skb drivers/infiniband/core/netlink.c:239 [inline]
rdma_nl_rcv+0x6dd/0x9e0 drivers/infiniband/core/netlink.c:259
netlink_unicast_kernel net/netlink/af_netlink.c:1313 [inline]
netlink_unicast+0x7f6/0x990 net/netlink/af_netlink.c:1339
netlink_sendmsg+0x8de/0xcb0 net/netlink/af_netlink.c:1883
sock_sendmsg_nosec net/socket.c:709 [inline]
__sock_sendmsg+0x221/0x270 net/socket.c:724
____sys_sendmsg+0x53a/0x860 net/socket.c:2564
___sys_sendmsg net/socket.c:2618 [inline]
__sys_sendmsg+0x269/0x350 net/socket.c:2650
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f42d1b8d169
Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 ...
RSP: 002b:00007f42d2960038 EFLAGS: 00000246 ORIG_RAX: 000000000000002e
RAX: ffffffffffffffda RBX: 00007f42d1da6320 RCX: 00007f42d1b8d169
RDX: 0000000000000000 RSI: 00004000000002c0 RDI: 000000000000000c
RBP: 00007f42d1c0e2a0 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 0000000000000000 R14: 00007f42d1da6320 R15: 00007ffe399344a8
</TASK>
Allocated by task 10025:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:377 [inline]
__kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:394
kasan_kmalloc include/linux/kasan.h:260 [inline]
__do_kmalloc_node mm/slub.c:4294 [inline]
__kmalloc_node_track_caller_noprof+0x28b/0x4c0 mm/slub.c:4313
__kmemdup_nul mm/util.c:61 [inline]
kstrdup+0x42/0x100 mm/util.c:81
kobject_set_name_vargs+0x61/0x120 lib/kobject.c:274
dev_set_name+0xd5/0x120 drivers/base/core.c:3468
assign_name drivers/infiniband/core/device.c:1202 [inline]
ib_register_device+0x178/0x1460 drivers/infiniband/core/device.c:1384
rxe_register_device+0x233/0x350 drivers/infiniband/sw/rxe/rxe_verbs.c:1540
rxe_net_add+0x74/0xf0 drivers/infiniband/sw/rxe/rxe_net.c:550
rxe_newlink+0xde/0x1a0 drivers/infiniband/sw/rxe/rxe.c:212
nldev_newlink+0x5ea/0x680 drivers/infiniband/core/nldev.c:1795
rdma_nl_rcv_skb drivers/infiniband/core/netlink.c:239 [inline]
rdma_nl_rcv+0x6dd/0x9e0 drivers/infiniband/core/netlink.c:259
netlink_unicast_kernel net/netlink/af_netlink.c:1313 [inline]
netlink_unicast+0x7f6/0x990 net/netlink/af_netlink.c:1339
netlink_sendmsg+0x8de/0xcb0 net
---truncated--- |
| An issue was discovered in net/ceph/messenger_v2.c in the Linux kernel before 6.4.5. There is an integer signedness error, leading to a buffer overflow and remote code execution via HELLO or one of the AUTH frames. This occurs because of an untrusted length taken from a TCP packet in ceph_decode_32. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: hda: Fix UAF of leds class devs at unbinding
The LED class devices that are created by HD-audio codec drivers are
registered via devm_led_classdev_register() and associated with the
HD-audio codec device. Unfortunately, it turned out that the devres
release doesn't work for this case; namely, since the codec resource
release happens before the devm call chain, it triggers a NULL
dereference or a UAF for a stale set_brightness_delay callback.
For fixing the bug, this patch changes the LED class device register
and unregister in a manual manner without devres, keeping the
instances in hda_gen_spec. |
| In the Linux kernel, the following vulnerability has been resolved:
tpm_tis_spi: Account for SPI header when allocating TPM SPI xfer buffer
The TPM SPI transfer mechanism uses MAX_SPI_FRAMESIZE for computing the
maximum transfer length and the size of the transfer buffer. As such, it
does not account for the 4 bytes of header that prepends the SPI data
frame. This can result in out-of-bounds accesses and was confirmed with
KASAN.
Introduce SPI_HDRSIZE to account for the header and use to allocate the
transfer buffer. |
| IBM Common Cryptographic Architecture (CCA 5.x MTM for 4767 and CCA 7.x MTM for 4769) could allow a local user to cause a denial of service due to improper input validation. IBM X-Force ID: 223596. |
| IBM Jazz for Service Management 1.1.3 is vulnerable to stored cross-site scripting. This vulnerability allows users to embed arbitrary JavaScript code in the Web UI thus altering the intended functionality potentially leading to credentials disclosure within a trusted session. IBM X-Force ID: 231380. |
| Guest can force Linux netback driver to hog large amounts of kernel memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Incoming data packets for a guest in the Linux kernel's netback driver are buffered until the guest is ready to process them. There are some measures taken for avoiding to pile up too much data, but those can be bypassed by the guest: There is a timeout how long the client side of an interface can stop consuming new packets before it is assumed to have stalled, but this timeout is rather long (60 seconds by default). Using a UDP connection on a fast interface can easily accumulate gigabytes of data in that time. (CVE-2021-28715) The timeout could even never trigger if the guest manages to have only one free slot in its RX queue ring page and the next package would require more than one free slot, which may be the case when using GSO, XDP, or software hashing. (CVE-2021-28714) |
| It was discovered that the cls_route filter implementation in the Linux kernel would not remove an old filter from the hashtable before freeing it if its handle had the value 0. |
| IBM InfoSphere Information Server 11.7 is vulnerable to cross-site scripting. This vulnerability allows users to embed arbitrary JavaScript code in the Web UI thus altering the intended functionality potentially leading to credentials disclosure within a trusted session. IBM X-Force ID: 236586. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/amdkfd: Fix kernel panic when reset failed and been triggered again
In SRIOV configuration, the reset may failed to bring asic back to normal but stop cpsch
already been called, the start_cpsch will not be called since there is no resume in this
case. When reset been triggered again, driver should avoid to do uninitialization again. |
| In the Linux kernel, the following vulnerability has been resolved:
block: Fix wrong offset in bio_truncate()
bio_truncate() clears the buffer outside of last block of bdev, however
current bio_truncate() is using the wrong offset of page. So it can
return the uninitialized data.
This happened when both of truncated/corrupted FS and userspace (via
bdev) are trying to read the last of bdev. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf, arm64: Fix address emission with tag-based KASAN enabled
When BPF_TRAMP_F_CALL_ORIG is enabled, the address of a bpf_tramp_image
struct on the stack is passed during the size calculation pass and
an address on the heap is passed during code generation. This may
cause a heap buffer overflow if the heap address is tagged because
emit_a64_mov_i64() will emit longer code than it did during the size
calculation pass. The same problem could occur without tag-based
KASAN if one of the 16-bit words of the stack address happened to
be all-ones during the size calculation pass. Fix the problem by
assuming the worst case (4 instructions) when calculating the size
of the bpf_tramp_image address emission. |
| off-by-one in io_uring module. |
| A race condition flaw was found in the Linux kernel sound subsystem due to improper locking. It could lead to a NULL pointer dereference while handling the SNDCTL_DSP_SYNC ioctl. A privileged local user (root or member of the audio group) could use this flaw to crash the system, resulting in a denial of service condition |
| In the Linux kernel, the following vulnerability has been resolved:
bpftool: Fix undefined behavior in qsort(NULL, 0, ...)
When netfilter has no entry to display, qsort is called with
qsort(NULL, 0, ...). This results in undefined behavior, as UBSan
reports:
net.c:827:2: runtime error: null pointer passed as argument 1, which is declared to never be null
Although the C standard does not explicitly state whether calling qsort
with a NULL pointer when the size is 0 constitutes undefined behavior,
Section 7.1.4 of the C standard (Use of library functions) mentions:
"Each of the following statements applies unless explicitly stated
otherwise in the detailed descriptions that follow: If an argument to a
function has an invalid value (such as a value outside the domain of
the function, or a pointer outside the address space of the program, or
a null pointer, or a pointer to non-modifiable storage when the
corresponding parameter is not const-qualified) or a type (after
promotion) not expected by a function with variable number of
arguments, the behavior is undefined."
To avoid this, add an early return when nf_link_info is NULL to prevent
calling qsort with a NULL pointer. |