| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix array-index-out-of-bounds in dml2/FCLKChangeSupport
[Why]
Potential out of bounds access in dml2_calculate_rq_and_dlg_params()
because the value of out_lowest_state_idx used as an index for FCLKChangeSupport
array can be greater than 1.
[How]
Currently dml2 core specifies identical values for all FCLKChangeSupport
elements. Always use index 0 in the condition to avoid out of bounds access. |
| Algo 8028 Control Panel version 3.3.3 contains a command injection vulnerability in the fm-data.lua endpoint that allows authenticated attackers to execute arbitrary commands. Attackers can exploit the insecure 'source' parameter by injecting commands that are executed with root privileges, enabling remote code execution through a crafted POST request. |
| An arbitrary file upload vulnerability in the /utils/uploadFile component of Hubert Imoveis e Administracao Ltda Hub v2.0 1.27.3 allows attackers to execute arbitrary code via uploading a crafted PDF file. |
| Information disclosure in the XML component. This vulnerability affects Firefox < 147. |
| Denial-of-service in the DOM: Service Workers component. This vulnerability affects Firefox < 147. |
| Incorrect boundary conditions in the Graphics component. This vulnerability affects Firefox < 147, Firefox ESR < 115.32, and Firefox ESR < 140.7. |
| In the Linux kernel, the following vulnerability has been resolved:
perf/x86/amd: Check event before enable to avoid GPF
On AMD machines cpuc->events[idx] can become NULL in a subtle race
condition with NMI->throttle->x86_pmu_stop().
Check event for NULL in amd_pmu_enable_all() before enable to avoid a GPF.
This appears to be an AMD only issue.
Syzkaller reported a GPF in amd_pmu_enable_all.
INFO: NMI handler (perf_event_nmi_handler) took too long to run: 13.143
msecs
Oops: general protection fault, probably for non-canonical address
0xdffffc0000000034: 0000 PREEMPT SMP KASAN NOPTI
KASAN: null-ptr-deref in range [0x00000000000001a0-0x00000000000001a7]
CPU: 0 UID: 0 PID: 328415 Comm: repro_36674776 Not tainted 6.12.0-rc1-syzk
RIP: 0010:x86_pmu_enable_event (arch/x86/events/perf_event.h:1195
arch/x86/events/core.c:1430)
RSP: 0018:ffff888118009d60 EFLAGS: 00010012
RAX: dffffc0000000000 RBX: 0000000000000000 RCX: 0000000000000000
RDX: 0000000000000034 RSI: 0000000000000000 RDI: 00000000000001a0
RBP: 0000000000000001 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000002
R13: ffff88811802a440 R14: ffff88811802a240 R15: ffff8881132d8601
FS: 00007f097dfaa700(0000) GS:ffff888118000000(0000) GS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000200001c0 CR3: 0000000103d56000 CR4: 00000000000006f0
Call Trace:
<IRQ>
amd_pmu_enable_all (arch/x86/events/amd/core.c:760 (discriminator 2))
x86_pmu_enable (arch/x86/events/core.c:1360)
event_sched_out (kernel/events/core.c:1191 kernel/events/core.c:1186
kernel/events/core.c:2346)
__perf_remove_from_context (kernel/events/core.c:2435)
event_function (kernel/events/core.c:259)
remote_function (kernel/events/core.c:92 (discriminator 1)
kernel/events/core.c:72 (discriminator 1))
__flush_smp_call_function_queue (./arch/x86/include/asm/jump_label.h:27
./include/linux/jump_label.h:207 ./include/trace/events/csd.h:64
kernel/smp.c:135 kernel/smp.c:540)
__sysvec_call_function_single (./arch/x86/include/asm/jump_label.h:27
./include/linux/jump_label.h:207
./arch/x86/include/asm/trace/irq_vectors.h:99 arch/x86/kernel/smp.c:272)
sysvec_call_function_single (arch/x86/kernel/smp.c:266 (discriminator 47)
arch/x86/kernel/smp.c:266 (discriminator 47))
</IRQ> |
| fabricators Ltd Vanilla OS 2 Core image v1.1.0 was discovered to contain static keys for the SSH service, allowing attackers to possibly execute a man-in-the-middle attack during connections with other hosts. |
| In the Linux kernel, the following vulnerability has been resolved:
net/hsr: fix NULL pointer dereference in prp_get_untagged_frame()
prp_get_untagged_frame() calls __pskb_copy() to create frame->skb_std
but doesn't check if the allocation failed. If __pskb_copy() returns
NULL, skb_clone() is called with a NULL pointer, causing a crash:
Oops: general protection fault, probably for non-canonical address 0xdffffc000000000f: 0000 [#1] SMP KASAN NOPTI
KASAN: null-ptr-deref in range [0x0000000000000078-0x000000000000007f]
CPU: 0 UID: 0 PID: 5625 Comm: syz.1.18 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
RIP: 0010:skb_clone+0xd7/0x3a0 net/core/skbuff.c:2041
Code: 03 42 80 3c 20 00 74 08 4c 89 f7 e8 23 29 05 f9 49 83 3e 00 0f 85 a0 01 00 00 e8 94 dd 9d f8 48 8d 6b 7e 49 89 ee 49 c1 ee 03 <43> 0f b6 04 26 84 c0 0f 85 d1 01 00 00 44 0f b6 7d 00 41 83 e7 0c
RSP: 0018:ffffc9000d00f200 EFLAGS: 00010207
RAX: ffffffff892235a1 RBX: 0000000000000000 RCX: ffff88803372a480
RDX: 0000000000000000 RSI: 0000000000000820 RDI: 0000000000000000
RBP: 000000000000007e R08: ffffffff8f7d0f77 R09: 1ffffffff1efa1ee
R10: dffffc0000000000 R11: fffffbfff1efa1ef R12: dffffc0000000000
R13: 0000000000000820 R14: 000000000000000f R15: ffff88805144cc00
FS: 0000555557f6d500(0000) GS:ffff88808d72f000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000555581d35808 CR3: 000000005040e000 CR4: 0000000000352ef0
Call Trace:
<TASK>
hsr_forward_do net/hsr/hsr_forward.c:-1 [inline]
hsr_forward_skb+0x1013/0x2860 net/hsr/hsr_forward.c:741
hsr_handle_frame+0x6ce/0xa70 net/hsr/hsr_slave.c:84
__netif_receive_skb_core+0x10b9/0x4380 net/core/dev.c:5966
__netif_receive_skb_one_core net/core/dev.c:6077 [inline]
__netif_receive_skb+0x72/0x380 net/core/dev.c:6192
netif_receive_skb_internal net/core/dev.c:6278 [inline]
netif_receive_skb+0x1cb/0x790 net/core/dev.c:6337
tun_rx_batched+0x1b9/0x730 drivers/net/tun.c:1485
tun_get_user+0x2b65/0x3e90 drivers/net/tun.c:1953
tun_chr_write_iter+0x113/0x200 drivers/net/tun.c:1999
new_sync_write fs/read_write.c:593 [inline]
vfs_write+0x5c9/0xb30 fs/read_write.c:686
ksys_write+0x145/0x250 fs/read_write.c:738
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0xfa0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f0449f8e1ff
Code: 89 54 24 18 48 89 74 24 10 89 7c 24 08 e8 f9 92 02 00 48 8b 54 24 18 48 8b 74 24 10 41 89 c0 8b 7c 24 08 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 31 44 89 c7 48 89 44 24 08 e8 4c 93 02 00 48
RSP: 002b:00007ffd7ad94c90 EFLAGS: 00000293 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 00007f044a1e5fa0 RCX: 00007f0449f8e1ff
RDX: 000000000000003e RSI: 0000200000000500 RDI: 00000000000000c8
RBP: 00007ffd7ad94d20 R08: 0000000000000000 R09: 0000000000000000
R10: 000000000000003e R11: 0000000000000293 R12: 0000000000000001
R13: 00007f044a1e5fa0 R14: 00007f044a1e5fa0 R15: 0000000000000003
</TASK>
Add a NULL check immediately after __pskb_copy() to handle allocation
failures gracefully. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: don't log conflicting inode if it's a dir moved in the current transaction
We can't log a conflicting inode if it's a directory and it was moved
from one parent directory to another parent directory in the current
transaction, as this can result an attempt to have a directory with
two hard links during log replay, one for the old parent directory and
another for the new parent directory.
The following scenario triggers that issue:
1) We have directories "dir1" and "dir2" created in a past transaction.
Directory "dir1" has inode A as its parent directory;
2) We move "dir1" to some other directory;
3) We create a file with the name "dir1" in directory inode A;
4) We fsync the new file. This results in logging the inode of the new file
and the inode for the directory "dir1" that was previously moved in the
current transaction. So the log tree has the INODE_REF item for the
new location of "dir1";
5) We move the new file to some other directory. This results in updating
the log tree to included the new INODE_REF for the new location of the
file and removes the INODE_REF for the old location. This happens
during the rename when we call btrfs_log_new_name();
6) We fsync the file, and that persists the log tree changes done in the
previous step (btrfs_log_new_name() only updates the log tree in
memory);
7) We have a power failure;
8) Next time the fs is mounted, log replay happens and when processing
the inode for directory "dir1" we find a new INODE_REF and add that
link, but we don't remove the old link of the inode since we have
not logged the old parent directory of the directory inode "dir1".
As a result after log replay finishes when we trigger writeback of the
subvolume tree's extent buffers, the tree check will detect that we have
a directory a hard link count of 2 and we get a mount failure.
The errors and stack traces reported in dmesg/syslog are like this:
[ 3845.729764] BTRFS info (device dm-0): start tree-log replay
[ 3845.730304] page: refcount:3 mapcount:0 mapping:000000005c8a3027 index:0x1d00 pfn:0x11510c
[ 3845.731236] memcg:ffff9264c02f4e00
[ 3845.731751] aops:btree_aops [btrfs] ino:1
[ 3845.732300] flags: 0x17fffc00000400a(uptodate|private|writeback|node=0|zone=2|lastcpupid=0x1ffff)
[ 3845.733346] raw: 017fffc00000400a 0000000000000000 dead000000000122 ffff9264d978aea8
[ 3845.734265] raw: 0000000000001d00 ffff92650e6d4738 00000003ffffffff ffff9264c02f4e00
[ 3845.735305] page dumped because: eb page dump
[ 3845.735981] BTRFS critical (device dm-0): corrupt leaf: root=5 block=30408704 slot=6 ino=257, invalid nlink: has 2 expect no more than 1 for dir
[ 3845.737786] BTRFS info (device dm-0): leaf 30408704 gen 10 total ptrs 17 free space 14881 owner 5
[ 3845.737789] BTRFS info (device dm-0): refs 4 lock_owner 0 current 30701
[ 3845.737792] item 0 key (256 INODE_ITEM 0) itemoff 16123 itemsize 160
[ 3845.737794] inode generation 3 transid 9 size 16 nbytes 16384
[ 3845.737795] block group 0 mode 40755 links 1 uid 0 gid 0
[ 3845.737797] rdev 0 sequence 2 flags 0x0
[ 3845.737798] atime 1764259517.0
[ 3845.737800] ctime 1764259517.572889464
[ 3845.737801] mtime 1764259517.572889464
[ 3845.737802] otime 1764259517.0
[ 3845.737803] item 1 key (256 INODE_REF 256) itemoff 16111 itemsize 12
[ 3845.737805] index 0 name_len 2
[ 3845.737807] item 2 key (256 DIR_ITEM 2363071922) itemoff 16077 itemsize 34
[ 3845.737808] location key (257 1 0) type 2
[ 3845.737810] transid 9 data_len 0 name_len 4
[ 3845.737811] item 3 key (256 DIR_ITEM 2676584006) itemoff 16043 itemsize 34
[ 3845.737813] location key (258 1 0) type 2
[ 3845.737814] transid 9 data_len 0 name_len 4
[ 3845.737815] item 4 key (256 DIR_INDEX 2) itemoff 16009 itemsize 34
[ 3845.737816] location key (257 1 0) type 2
[
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net: openvswitch: fix middle attribute validation in push_nsh() action
The push_nsh() action structure looks like this:
OVS_ACTION_ATTR_PUSH_NSH(OVS_KEY_ATTR_NSH(OVS_NSH_KEY_ATTR_BASE,...))
The outermost OVS_ACTION_ATTR_PUSH_NSH attribute is OK'ed by the
nla_for_each_nested() inside __ovs_nla_copy_actions(). The innermost
OVS_NSH_KEY_ATTR_BASE/MD1/MD2 are OK'ed by the nla_for_each_nested()
inside nsh_key_put_from_nlattr(). But nothing checks if the attribute
in the middle is OK. We don't even check that this attribute is the
OVS_KEY_ATTR_NSH. We just do a double unwrap with a pair of nla_data()
calls - first time directly while calling validate_push_nsh() and the
second time as part of the nla_for_each_nested() macro, which isn't
safe, potentially causing invalid memory access if the size of this
attribute is incorrect. The failure may not be noticed during
validation due to larger netlink buffer, but cause trouble later during
action execution where the buffer is allocated exactly to the size:
BUG: KASAN: slab-out-of-bounds in nsh_hdr_from_nlattr+0x1dd/0x6a0 [openvswitch]
Read of size 184 at addr ffff88816459a634 by task a.out/22624
CPU: 8 UID: 0 PID: 22624 6.18.0-rc7+ #115 PREEMPT(voluntary)
Call Trace:
<TASK>
dump_stack_lvl+0x51/0x70
print_address_description.constprop.0+0x2c/0x390
kasan_report+0xdd/0x110
kasan_check_range+0x35/0x1b0
__asan_memcpy+0x20/0x60
nsh_hdr_from_nlattr+0x1dd/0x6a0 [openvswitch]
push_nsh+0x82/0x120 [openvswitch]
do_execute_actions+0x1405/0x2840 [openvswitch]
ovs_execute_actions+0xd5/0x3b0 [openvswitch]
ovs_packet_cmd_execute+0x949/0xdb0 [openvswitch]
genl_family_rcv_msg_doit+0x1d6/0x2b0
genl_family_rcv_msg+0x336/0x580
genl_rcv_msg+0x9f/0x130
netlink_rcv_skb+0x11f/0x370
genl_rcv+0x24/0x40
netlink_unicast+0x73e/0xaa0
netlink_sendmsg+0x744/0xbf0
__sys_sendto+0x3d6/0x450
do_syscall_64+0x79/0x2c0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
</TASK>
Let's add some checks that the attribute is properly sized and it's
the only one attribute inside the action. Technically, there is no
real reason for OVS_KEY_ATTR_NSH to be there, as we know that we're
pushing an NSH header already, it just creates extra nesting, but
that's how uAPI works today. So, keeping as it is. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: skip lock-range check on equal size to avoid size==0 underflow
When size equals the current i_size (including 0), the code used to call
check_lock_range(filp, i_size, size - 1, WRITE), which computes `size - 1`
and can underflow for size==0. Skip the equal case. |
| In the Linux kernel, the following vulnerability has been resolved:
ethtool: Avoid overflowing userspace buffer on stats query
The ethtool -S command operates across three ioctl calls:
ETHTOOL_GSSET_INFO for the size, ETHTOOL_GSTRINGS for the names, and
ETHTOOL_GSTATS for the values.
If the number of stats changes between these calls (e.g., due to device
reconfiguration), userspace's buffer allocation will be incorrect,
potentially leading to buffer overflow.
Drivers are generally expected to maintain stable stat counts, but some
drivers (e.g., mlx5, bnx2x, bna, ksz884x) use dynamic counters, making
this scenario possible.
Some drivers try to handle this internally:
- bnad_get_ethtool_stats() returns early in case stats.n_stats is not
equal to the driver's stats count.
- micrel/ksz884x also makes sure not to write anything beyond
stats.n_stats and overflow the buffer.
However, both use stats.n_stats which is already assigned with the value
returned from get_sset_count(), hence won't solve the issue described
here.
Change ethtool_get_strings(), ethtool_get_stats(),
ethtool_get_phy_stats() to not return anything in case of a mismatch
between userspace's size and get_sset_size(), to prevent buffer
overflow.
The returned n_stats value will be equal to zero, to reflect that
nothing has been returned.
This could result in one of two cases when using upstream ethtool,
depending on when the size change is detected:
1. When detected in ethtool_get_strings():
# ethtool -S eth2
no stats available
2. When detected in get stats, all stats will be reported as zero.
Both cases are presumably transient, and a subsequent ethtool call
should succeed.
Other than the overflow avoidance, these two cases are very evident (no
output/cleared stats), which is arguably better than presenting
incorrect/shifted stats.
I also considered returning an error instead of a "silent" response, but
that seems more destructive towards userspace apps.
Notes:
- This patch does not claim to fix the inherent race, it only makes sure
that we do not overflow the userspace buffer, and makes for a more
predictable behavior.
- RTNL lock is held during each ioctl, the race window exists between
the separate ioctl calls when the lock is released.
- Userspace ethtool always fills stats.n_stats, but it is likely that
these stats ioctls are implemented in other userspace applications
which might not fill it. The added code checks that it's not zero,
to prevent any regressions. |
| In the Linux kernel, the following vulnerability has been resolved:
mlxsw: spectrum_router: Fix neighbour use-after-free
We sometimes observe use-after-free when dereferencing a neighbour [1].
The problem seems to be that the driver stores a pointer to the
neighbour, but without holding a reference on it. A reference is only
taken when the neighbour is used by a nexthop.
Fix by simplifying the reference counting scheme. Always take a
reference when storing a neighbour pointer in a neighbour entry. Avoid
taking a referencing when the neighbour is used by a nexthop as the
neighbour entry associated with the nexthop already holds a reference.
Tested by running the test that uncovered the problem over 300 times.
Without this patch the problem was reproduced after a handful of
iterations.
[1]
BUG: KASAN: slab-use-after-free in mlxsw_sp_neigh_entry_update+0x2d4/0x310
Read of size 8 at addr ffff88817f8e3420 by task ip/3929
CPU: 3 UID: 0 PID: 3929 Comm: ip Not tainted 6.18.0-rc4-virtme-g36b21a067510 #3 PREEMPT(full)
Hardware name: Nvidia SN5600/VMOD0013, BIOS 5.13 05/31/2023
Call Trace:
<TASK>
dump_stack_lvl+0x6f/0xa0
print_address_description.constprop.0+0x6e/0x300
print_report+0xfc/0x1fb
kasan_report+0xe4/0x110
mlxsw_sp_neigh_entry_update+0x2d4/0x310
mlxsw_sp_router_rif_gone_sync+0x35f/0x510
mlxsw_sp_rif_destroy+0x1ea/0x730
mlxsw_sp_inetaddr_port_vlan_event+0xa1/0x1b0
__mlxsw_sp_inetaddr_lag_event+0xcc/0x130
__mlxsw_sp_inetaddr_event+0xf5/0x3c0
mlxsw_sp_router_netdevice_event+0x1015/0x1580
notifier_call_chain+0xcc/0x150
call_netdevice_notifiers_info+0x7e/0x100
__netdev_upper_dev_unlink+0x10b/0x210
netdev_upper_dev_unlink+0x79/0xa0
vrf_del_slave+0x18/0x50
do_set_master+0x146/0x7d0
do_setlink.isra.0+0x9a0/0x2880
rtnl_newlink+0x637/0xb20
rtnetlink_rcv_msg+0x6fe/0xb90
netlink_rcv_skb+0x123/0x380
netlink_unicast+0x4a3/0x770
netlink_sendmsg+0x75b/0xc90
__sock_sendmsg+0xbe/0x160
____sys_sendmsg+0x5b2/0x7d0
___sys_sendmsg+0xfd/0x180
__sys_sendmsg+0x124/0x1c0
do_syscall_64+0xbb/0xfd0
entry_SYSCALL_64_after_hwframe+0x4b/0x53
[...]
Allocated by task 109:
kasan_save_stack+0x30/0x50
kasan_save_track+0x14/0x30
__kasan_kmalloc+0x7b/0x90
__kmalloc_noprof+0x2c1/0x790
neigh_alloc+0x6af/0x8f0
___neigh_create+0x63/0xe90
mlxsw_sp_nexthop_neigh_init+0x430/0x7e0
mlxsw_sp_nexthop_type_init+0x212/0x960
mlxsw_sp_nexthop6_group_info_init.constprop.0+0x81f/0x1280
mlxsw_sp_nexthop6_group_get+0x392/0x6a0
mlxsw_sp_fib6_entry_create+0x46a/0xfd0
mlxsw_sp_router_fib6_replace+0x1ed/0x5f0
mlxsw_sp_router_fib6_event_work+0x10a/0x2a0
process_one_work+0xd57/0x1390
worker_thread+0x4d6/0xd40
kthread+0x355/0x5b0
ret_from_fork+0x1d4/0x270
ret_from_fork_asm+0x11/0x20
Freed by task 154:
kasan_save_stack+0x30/0x50
kasan_save_track+0x14/0x30
__kasan_save_free_info+0x3b/0x60
__kasan_slab_free+0x43/0x70
kmem_cache_free_bulk.part.0+0x1eb/0x5e0
kvfree_rcu_bulk+0x1f2/0x260
kfree_rcu_work+0x130/0x1b0
process_one_work+0xd57/0x1390
worker_thread+0x4d6/0xd40
kthread+0x355/0x5b0
ret_from_fork+0x1d4/0x270
ret_from_fork_asm+0x11/0x20
Last potentially related work creation:
kasan_save_stack+0x30/0x50
kasan_record_aux_stack+0x8c/0xa0
kvfree_call_rcu+0x93/0x5b0
mlxsw_sp_router_neigh_event_work+0x67d/0x860
process_one_work+0xd57/0x1390
worker_thread+0x4d6/0xd40
kthread+0x355/0x5b0
ret_from_fork+0x1d4/0x270
ret_from_fork_asm+0x11/0x20 |
| In the Linux kernel, the following vulnerability has been resolved:
platform/chrome: cros_ec_ishtp: Fix UAF after unbinding driver
After unbinding the driver, another kthread `cros_ec_console_log_work`
is still accessing the device, resulting an UAF and crash.
The driver doesn't unregister the EC device in .remove() which should
shutdown sub-devices synchronously. Fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: ets: Remove drr class from the active list if it changes to strict
Whenever a user issues an ets qdisc change command, transforming a
drr class into a strict one, the ets code isn't checking whether that
class was in the active list and removing it. This means that, if a
user changes a strict class (which was in the active list) back to a drr
one, that class will be added twice to the active list [1].
Doing so with the following commands:
tc qdisc add dev lo root handle 1: ets bands 2 strict 1
tc qdisc add dev lo parent 1:2 handle 20: \
tbf rate 8bit burst 100b latency 1s
tc filter add dev lo parent 1: basic classid 1:2
ping -c1 -W0.01 -s 56 127.0.0.1
tc qdisc change dev lo root handle 1: ets bands 2 strict 2
tc qdisc change dev lo root handle 1: ets bands 2 strict 1
ping -c1 -W0.01 -s 56 127.0.0.1
Will trigger the following splat with list debug turned on:
[ 59.279014][ T365] ------------[ cut here ]------------
[ 59.279452][ T365] list_add double add: new=ffff88801d60e350, prev=ffff88801d60e350, next=ffff88801d60e2c0.
[ 59.280153][ T365] WARNING: CPU: 3 PID: 365 at lib/list_debug.c:35 __list_add_valid_or_report+0x17f/0x220
[ 59.280860][ T365] Modules linked in:
[ 59.281165][ T365] CPU: 3 UID: 0 PID: 365 Comm: tc Not tainted 6.18.0-rc7-00105-g7e9f13163c13-dirty #239 PREEMPT(voluntary)
[ 59.281977][ T365] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011
[ 59.282391][ T365] RIP: 0010:__list_add_valid_or_report+0x17f/0x220
[ 59.282842][ T365] Code: 89 c6 e8 d4 b7 0d ff 90 0f 0b 90 90 31 c0 e9 31 ff ff ff 90 48 c7 c7 e0 a0 22 9f 48 89 f2 48 89 c1 4c 89 c6 e8 b2 b7 0d ff 90 <0f> 0b 90 90 31 c0 e9 0f ff ff ff 48 89 f7 48 89 44 24 10 4c 89 44
...
[ 59.288812][ T365] Call Trace:
[ 59.289056][ T365] <TASK>
[ 59.289224][ T365] ? srso_alias_return_thunk+0x5/0xfbef5
[ 59.289546][ T365] ets_qdisc_change+0xd2b/0x1e80
[ 59.289891][ T365] ? __lock_acquire+0x7e7/0x1be0
[ 59.290223][ T365] ? __pfx_ets_qdisc_change+0x10/0x10
[ 59.290546][ T365] ? srso_alias_return_thunk+0x5/0xfbef5
[ 59.290898][ T365] ? __mutex_trylock_common+0xda/0x240
[ 59.291228][ T365] ? __pfx___mutex_trylock_common+0x10/0x10
[ 59.291655][ T365] ? srso_alias_return_thunk+0x5/0xfbef5
[ 59.291993][ T365] ? srso_alias_return_thunk+0x5/0xfbef5
[ 59.292313][ T365] ? trace_contention_end+0xc8/0x110
[ 59.292656][ T365] ? srso_alias_return_thunk+0x5/0xfbef5
[ 59.293022][ T365] ? srso_alias_return_thunk+0x5/0xfbef5
[ 59.293351][ T365] tc_modify_qdisc+0x63a/0x1cf0
Fix this by always checking and removing an ets class from the active list
when changing it to strict.
[1] https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.git/tree/net/sched/sch_ets.c?id=ce052b9402e461a9aded599f5b47e76bc727f7de#n663 |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/mediatek: fix use-after-free on probe deferral
The driver is dropping the references taken to the larb devices during
probe after successful lookup as well as on errors. This can
potentially lead to a use-after-free in case a larb device has not yet
been bound to its driver so that the iommu driver probe defers.
Fix this by keeping the references as expected while the iommu driver is
bound. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: aic94xx: fix use-after-free in device removal path
The asd_pci_remove() function fails to synchronize with pending tasklets
before freeing the asd_ha structure, leading to a potential
use-after-free vulnerability.
When a device removal is triggered (via hot-unplug or module unload),
race condition can occur.
The fix adds tasklet_kill() before freeing the asd_ha structure,
ensuring all scheduled tasklets complete before cleanup proceeds. |
| In the Linux kernel, the following vulnerability has been resolved:
tpm: Cap the number of PCR banks
tpm2_get_pcr_allocation() does not cap any upper limit for the number of
banks. Cap the limit to eight banks so that out of bounds values coming
from external I/O cause on only limited harm. |
| In the Linux kernel, the following vulnerability has been resolved:
iavf: fix off-by-one issues in iavf_config_rss_reg()
There are off-by-one bugs when configuring RSS hash key and lookup
table, causing out-of-bounds reads to memory [1] and out-of-bounds
writes to device registers.
Before commit 43a3d9ba34c9 ("i40evf: Allow PF driver to configure RSS"),
the loop upper bounds were:
i <= I40E_VFQF_{HKEY,HLUT}_MAX_INDEX
which is safe since the value is the last valid index.
That commit changed the bounds to:
i <= adapter->rss_{key,lut}_size / 4
where `rss_{key,lut}_size / 4` is the number of dwords, so the last
valid index is `(rss_{key,lut}_size / 4) - 1`. Therefore, using `<=`
accesses one element past the end.
Fix the issues by using `<` instead of `<=`, ensuring we do not exceed
the bounds.
[1] KASAN splat about rss_key_size off-by-one
BUG: KASAN: slab-out-of-bounds in iavf_config_rss+0x619/0x800
Read of size 4 at addr ffff888102c50134 by task kworker/u8:6/63
CPU: 0 UID: 0 PID: 63 Comm: kworker/u8:6 Not tainted 6.18.0-rc2-enjuk-tnguy-00378-g3005f5b77652-dirty #156 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
Workqueue: iavf iavf_watchdog_task
Call Trace:
<TASK>
dump_stack_lvl+0x6f/0xb0
print_report+0x170/0x4f3
kasan_report+0xe1/0x1a0
iavf_config_rss+0x619/0x800
iavf_watchdog_task+0x2be7/0x3230
process_one_work+0x7fd/0x1420
worker_thread+0x4d1/0xd40
kthread+0x344/0x660
ret_from_fork+0x249/0x320
ret_from_fork_asm+0x1a/0x30
</TASK>
Allocated by task 63:
kasan_save_stack+0x30/0x50
kasan_save_track+0x14/0x30
__kasan_kmalloc+0x7f/0x90
__kmalloc_noprof+0x246/0x6f0
iavf_watchdog_task+0x28fc/0x3230
process_one_work+0x7fd/0x1420
worker_thread+0x4d1/0xd40
kthread+0x344/0x660
ret_from_fork+0x249/0x320
ret_from_fork_asm+0x1a/0x30
The buggy address belongs to the object at ffff888102c50100
which belongs to the cache kmalloc-64 of size 64
The buggy address is located 0 bytes to the right of
allocated 52-byte region [ffff888102c50100, ffff888102c50134)
The buggy address belongs to the physical page:
page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x102c50
flags: 0x200000000000000(node=0|zone=2)
page_type: f5(slab)
raw: 0200000000000000 ffff8881000418c0 dead000000000122 0000000000000000
raw: 0000000000000000 0000000080200020 00000000f5000000 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff888102c50000: 00 00 00 00 00 00 00 fc fc fc fc fc fc fc fc fc
ffff888102c50080: 00 00 00 00 00 00 00 fc fc fc fc fc fc fc fc fc
>ffff888102c50100: 00 00 00 00 00 00 04 fc fc fc fc fc fc fc fc fc
^
ffff888102c50180: 00 00 00 00 00 00 00 00 fc fc fc fc fc fc fc fc
ffff888102c50200: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc |