Filtered by vendor Fedoraproject
Subscriptions
Total
5259 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2024-27013 | 3 Fedoraproject, Linux, Redhat | 3 Fedora, Linux Kernel, Enterprise Linux | 2024-12-19 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: tun: limit printing rate when illegal packet received by tun dev vhost_worker will call tun call backs to receive packets. If too many illegal packets arrives, tun_do_read will keep dumping packet contents. When console is enabled, it will costs much more cpu time to dump packet and soft lockup will be detected. net_ratelimit mechanism can be used to limit the dumping rate. PID: 33036 TASK: ffff949da6f20000 CPU: 23 COMMAND: "vhost-32980" #0 [fffffe00003fce50] crash_nmi_callback at ffffffff89249253 #1 [fffffe00003fce58] nmi_handle at ffffffff89225fa3 #2 [fffffe00003fceb0] default_do_nmi at ffffffff8922642e #3 [fffffe00003fced0] do_nmi at ffffffff8922660d #4 [fffffe00003fcef0] end_repeat_nmi at ffffffff89c01663 [exception RIP: io_serial_in+20] RIP: ffffffff89792594 RSP: ffffa655314979e8 RFLAGS: 00000002 RAX: ffffffff89792500 RBX: ffffffff8af428a0 RCX: 0000000000000000 RDX: 00000000000003fd RSI: 0000000000000005 RDI: ffffffff8af428a0 RBP: 0000000000002710 R8: 0000000000000004 R9: 000000000000000f R10: 0000000000000000 R11: ffffffff8acbf64f R12: 0000000000000020 R13: ffffffff8acbf698 R14: 0000000000000058 R15: 0000000000000000 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 #5 [ffffa655314979e8] io_serial_in at ffffffff89792594 #6 [ffffa655314979e8] wait_for_xmitr at ffffffff89793470 #7 [ffffa65531497a08] serial8250_console_putchar at ffffffff897934f6 #8 [ffffa65531497a20] uart_console_write at ffffffff8978b605 #9 [ffffa65531497a48] serial8250_console_write at ffffffff89796558 #10 [ffffa65531497ac8] console_unlock at ffffffff89316124 #11 [ffffa65531497b10] vprintk_emit at ffffffff89317c07 #12 [ffffa65531497b68] printk at ffffffff89318306 #13 [ffffa65531497bc8] print_hex_dump at ffffffff89650765 #14 [ffffa65531497ca8] tun_do_read at ffffffffc0b06c27 [tun] #15 [ffffa65531497d38] tun_recvmsg at ffffffffc0b06e34 [tun] #16 [ffffa65531497d68] handle_rx at ffffffffc0c5d682 [vhost_net] #17 [ffffa65531497ed0] vhost_worker at ffffffffc0c644dc [vhost] #18 [ffffa65531497f10] kthread at ffffffff892d2e72 #19 [ffffa65531497f50] ret_from_fork at ffffffff89c0022f | ||||
CVE-2024-27012 | 3 Fedoraproject, Linux, Redhat | 3 Fedora, Linux Kernel, Enterprise Linux | 2024-12-19 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: restore set elements when delete set fails From abort path, nft_mapelem_activate() needs to restore refcounters to the original state. Currently, it uses the set->ops->walk() to iterate over these set elements. The existing set iterator skips inactive elements in the next generation, this does not work from the abort path to restore the original state since it has to skip active elements instead (not inactive ones). This patch moves the check for inactive elements to the set iterator callback, then it reverses the logic for the .activate case which needs to skip active elements. Toggle next generation bit for elements when delete set command is invoked and call nft_clear() from .activate (abort) path to restore the next generation bit. The splat below shows an object in mappings memleak: [43929.457523] ------------[ cut here ]------------ [43929.457532] WARNING: CPU: 0 PID: 1139 at include/net/netfilter/nf_tables.h:1237 nft_setelem_data_deactivate+0xe4/0xf0 [nf_tables] [...] [43929.458014] RIP: 0010:nft_setelem_data_deactivate+0xe4/0xf0 [nf_tables] [43929.458076] Code: 83 f8 01 77 ab 49 8d 7c 24 08 e8 37 5e d0 de 49 8b 6c 24 08 48 8d 7d 50 e8 e9 5c d0 de 8b 45 50 8d 50 ff 89 55 50 85 c0 75 86 <0f> 0b eb 82 0f 0b eb b3 0f 1f 40 00 90 90 90 90 90 90 90 90 90 90 [43929.458081] RSP: 0018:ffff888140f9f4b0 EFLAGS: 00010246 [43929.458086] RAX: 0000000000000000 RBX: ffff8881434f5288 RCX: dffffc0000000000 [43929.458090] RDX: 00000000ffffffff RSI: ffffffffa26d28a7 RDI: ffff88810ecc9550 [43929.458093] RBP: ffff88810ecc9500 R08: 0000000000000001 R09: ffffed10281f3e8f [43929.458096] R10: 0000000000000003 R11: ffff0000ffff0000 R12: ffff8881434f52a0 [43929.458100] R13: ffff888140f9f5f4 R14: ffff888151c7a800 R15: 0000000000000002 [43929.458103] FS: 00007f0c687c4740(0000) GS:ffff888390800000(0000) knlGS:0000000000000000 [43929.458107] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [43929.458111] CR2: 00007f58dbe5b008 CR3: 0000000123602005 CR4: 00000000001706f0 [43929.458114] Call Trace: [43929.458118] <TASK> [43929.458121] ? __warn+0x9f/0x1a0 [43929.458127] ? nft_setelem_data_deactivate+0xe4/0xf0 [nf_tables] [43929.458188] ? report_bug+0x1b1/0x1e0 [43929.458196] ? handle_bug+0x3c/0x70 [43929.458200] ? exc_invalid_op+0x17/0x40 [43929.458211] ? nft_setelem_data_deactivate+0xd7/0xf0 [nf_tables] [43929.458271] ? nft_setelem_data_deactivate+0xe4/0xf0 [nf_tables] [43929.458332] nft_mapelem_deactivate+0x24/0x30 [nf_tables] [43929.458392] nft_rhash_walk+0xdd/0x180 [nf_tables] [43929.458453] ? __pfx_nft_rhash_walk+0x10/0x10 [nf_tables] [43929.458512] ? rb_insert_color+0x2e/0x280 [43929.458520] nft_map_deactivate+0xdc/0x1e0 [nf_tables] [43929.458582] ? __pfx_nft_map_deactivate+0x10/0x10 [nf_tables] [43929.458642] ? __pfx_nft_mapelem_deactivate+0x10/0x10 [nf_tables] [43929.458701] ? __rcu_read_unlock+0x46/0x70 [43929.458709] nft_delset+0xff/0x110 [nf_tables] [43929.458769] nft_flush_table+0x16f/0x460 [nf_tables] [43929.458830] nf_tables_deltable+0x501/0x580 [nf_tables] | ||||
CVE-2024-26987 | 3 Fedoraproject, Linux, Redhat | 3 Fedora, Linux Kernel, Enterprise Linux | 2024-12-19 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: mm/memory-failure: fix deadlock when hugetlb_optimize_vmemmap is enabled When I did hard offline test with hugetlb pages, below deadlock occurs: ====================================================== WARNING: possible circular locking dependency detected 6.8.0-11409-gf6cef5f8c37f #1 Not tainted ------------------------------------------------------ bash/46904 is trying to acquire lock: ffffffffabe68910 (cpu_hotplug_lock){++++}-{0:0}, at: static_key_slow_dec+0x16/0x60 but task is already holding lock: ffffffffabf92ea8 (pcp_batch_high_lock){+.+.}-{3:3}, at: zone_pcp_disable+0x16/0x40 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (pcp_batch_high_lock){+.+.}-{3:3}: __mutex_lock+0x6c/0x770 page_alloc_cpu_online+0x3c/0x70 cpuhp_invoke_callback+0x397/0x5f0 __cpuhp_invoke_callback_range+0x71/0xe0 _cpu_up+0xeb/0x210 cpu_up+0x91/0xe0 cpuhp_bringup_mask+0x49/0xb0 bringup_nonboot_cpus+0xb7/0xe0 smp_init+0x25/0xa0 kernel_init_freeable+0x15f/0x3e0 kernel_init+0x15/0x1b0 ret_from_fork+0x2f/0x50 ret_from_fork_asm+0x1a/0x30 -> #0 (cpu_hotplug_lock){++++}-{0:0}: __lock_acquire+0x1298/0x1cd0 lock_acquire+0xc0/0x2b0 cpus_read_lock+0x2a/0xc0 static_key_slow_dec+0x16/0x60 __hugetlb_vmemmap_restore_folio+0x1b9/0x200 dissolve_free_huge_page+0x211/0x260 __page_handle_poison+0x45/0xc0 memory_failure+0x65e/0xc70 hard_offline_page_store+0x55/0xa0 kernfs_fop_write_iter+0x12c/0x1d0 vfs_write+0x387/0x550 ksys_write+0x64/0xe0 do_syscall_64+0xca/0x1e0 entry_SYSCALL_64_after_hwframe+0x6d/0x75 other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(pcp_batch_high_lock); lock(cpu_hotplug_lock); lock(pcp_batch_high_lock); rlock(cpu_hotplug_lock); *** DEADLOCK *** 5 locks held by bash/46904: #0: ffff98f6c3bb23f0 (sb_writers#5){.+.+}-{0:0}, at: ksys_write+0x64/0xe0 #1: ffff98f6c328e488 (&of->mutex){+.+.}-{3:3}, at: kernfs_fop_write_iter+0xf8/0x1d0 #2: ffff98ef83b31890 (kn->active#113){.+.+}-{0:0}, at: kernfs_fop_write_iter+0x100/0x1d0 #3: ffffffffabf9db48 (mf_mutex){+.+.}-{3:3}, at: memory_failure+0x44/0xc70 #4: ffffffffabf92ea8 (pcp_batch_high_lock){+.+.}-{3:3}, at: zone_pcp_disable+0x16/0x40 stack backtrace: CPU: 10 PID: 46904 Comm: bash Kdump: loaded Not tainted 6.8.0-11409-gf6cef5f8c37f #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x68/0xa0 check_noncircular+0x129/0x140 __lock_acquire+0x1298/0x1cd0 lock_acquire+0xc0/0x2b0 cpus_read_lock+0x2a/0xc0 static_key_slow_dec+0x16/0x60 __hugetlb_vmemmap_restore_folio+0x1b9/0x200 dissolve_free_huge_page+0x211/0x260 __page_handle_poison+0x45/0xc0 memory_failure+0x65e/0xc70 hard_offline_page_store+0x55/0xa0 kernfs_fop_write_iter+0x12c/0x1d0 vfs_write+0x387/0x550 ksys_write+0x64/0xe0 do_syscall_64+0xca/0x1e0 entry_SYSCALL_64_after_hwframe+0x6d/0x75 RIP: 0033:0x7fc862314887 Code: 10 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 51 c3 48 83 ec 28 48 89 54 24 18 48 89 74 24 RSP: 002b:00007fff19311268 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 000000000000000c RCX: 00007fc862314887 RDX: 000000000000000c RSI: 000056405645fe10 RDI: 0000000000000001 RBP: 000056405645fe10 R08: 00007fc8623d1460 R09: 000000007fffffff R10: 0000000000000000 R11: 0000000000000246 R12: 000000000000000c R13: 00007fc86241b780 R14: 00007fc862417600 R15: 00007fc862416a00 In short, below scene breaks the ---truncated--- | ||||
CVE-2024-26986 | 2 Fedoraproject, Linux | 2 Fedora, Linux Kernel | 2024-12-19 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: Fix memory leak in create_process failure Fix memory leak due to a leaked mmget reference on an error handling code path that is triggered when attempting to create KFD processes while a GPU reset is in progress. | ||||
CVE-2024-29894 | 2 Cacti, Fedoraproject | 2 Cacti, Fedora | 2024-12-18 | 5.4 Medium |
Cacti provides an operational monitoring and fault management framework. Versions of Cacti prior to 1.2.27 contain a residual cross-site scripting vulnerability caused by an incomplete fix for CVE-2023-50250. `raise_message_javascript` from `lib/functions.php` now uses purify.js to fix CVE-2023-50250 (among others). However, it still generates the code out of unescaped PHP variables `$title` and `$header`. If those variables contain single quotes, they can be used to inject JavaScript code. An attacker exploiting this vulnerability could execute actions on behalf of other users. This ability to impersonate users could lead to unauthorized changes to settings. Version 1.2.27 fixes this issue. | ||||
CVE-2024-25641 | 2 Cacti, Fedoraproject | 2 Cacti, Fedora | 2024-12-18 | 9.1 Critical |
Cacti provides an operational monitoring and fault management framework. Prior to version 1.2.27, an arbitrary file write vulnerability, exploitable through the "Package Import" feature, allows authenticated users having the "Import Templates" permission to execute arbitrary PHP code on the web server. The vulnerability is located within the `import_package()` function defined into the `/lib/import.php` script. The function blindly trusts the filename and file content provided within the XML data, and writes such files into the Cacti base path (or even outside, since path traversal sequences are not filtered). This can be exploited to write or overwrite arbitrary files on the web server, leading to execution of arbitrary PHP code or other security impacts. Version 1.2.27 contains a patch for this issue. | ||||
CVE-2024-31459 | 2 Cacti, Fedoraproject | 2 Cacti, Fedora | 2024-12-18 | 8.1 High |
Cacti provides an operational monitoring and fault management framework. Prior to version 1.2.27, there is a file inclusion issue in the `lib/plugin.php` file. Combined with SQL injection vulnerabilities, remote code execution can be implemented. There is a file inclusion issue with the `api_plugin_hook()` function in the `lib/plugin.php` file, which reads the plugin_hooks and plugin_config tables in database. The read data is directly used to concatenate the file path which is used for file inclusion. Version 1.2.27 contains a patch for the issue. | ||||
CVE-2024-31458 | 2 Cacti, Fedoraproject | 2 Cacti, Fedora | 2024-12-18 | 4.6 Medium |
Cacti provides an operational monitoring and fault management framework. Prior to version 1.2.27, some of the data stored in `form_save()` function in `graph_template_inputs.php` is not thoroughly checked and is used to concatenate the SQL statement in `draw_nontemplated_fields_graph_item()` function from `lib/html_form_templates.php` , finally resulting in SQL injection. Version 1.2.27 contains a patch for the issue. | ||||
CVE-2024-34340 | 2 Cacti, Fedoraproject | 2 Cacti, Fedora | 2024-12-18 | 9.1 Critical |
Cacti provides an operational monitoring and fault management framework. Prior to version 1.2.27, Cacti calls `compat_password_hash` when users set their password. `compat_password_hash` use `password_hash` if there is it, else use `md5`. When verifying password, it calls `compat_password_verify`. In `compat_password_verify`, `password_verify` is called if there is it, else use `md5`. `password_verify` and `password_hash` are supported on PHP < 5.5.0, following PHP manual. The vulnerability is in `compat_password_verify`. Md5-hashed user input is compared with correct password in database by `$md5 == $hash`. It is a loose comparison, not `===`. It is a type juggling vulnerability. Version 1.2.27 contains a patch for the issue. | ||||
CVE-2024-31460 | 2 Cacti, Fedoraproject | 2 Cacti, Fedora | 2024-12-18 | 6.5 Medium |
Cacti provides an operational monitoring and fault management framework. Prior to version 1.2.27, some of the data stored in `automation_tree_rules.php` is not thoroughly checked and is used to concatenate the SQL statement in `create_all_header_nodes()` function from `lib/api_automation.php` , finally resulting in SQL injection. Using SQL based secondary injection technology, attackers can modify the contents of the Cacti database, and based on the modified content, it may be possible to achieve further impact, such as arbitrary file reading, and even remote code execution through arbitrary file writing. Version 1.2.27 contains a patch for the issue. | ||||
CVE-2024-30261 | 3 Fedoraproject, Nodejs, Redhat | 3 Fedora, Undici, Openshift Devspaces | 2024-12-18 | 2.6 Low |
Undici is an HTTP/1.1 client, written from scratch for Node.js. An attacker can alter the `integrity` option passed to `fetch()`, allowing `fetch()` to accept requests as valid even if they have been tampered. This vulnerability was patched in version(s) 5.28.4 and 6.11.1. | ||||
CVE-2024-30260 | 3 Fedoraproject, Nodejs, Redhat | 3 Fedora, Undici, Openshift Devspaces | 2024-12-18 | 3.9 Low |
Undici is an HTTP/1.1 client, written from scratch for Node.js. Undici cleared Authorization and Proxy-Authorization headers for `fetch()`, but did not clear them for `undici.request()`. This vulnerability was patched in version(s) 5.28.4 and 6.11.1. | ||||
CVE-2024-31445 | 2 Cacti, Fedoraproject | 2 Cacti, Fedora | 2024-12-18 | 8.8 High |
Cacti provides an operational monitoring and fault management framework. Prior to version 1.2.27, a SQL injection vulnerability in `automation_get_new_graphs_sql` function of `api_automation.php` allows authenticated users to exploit these SQL injection vulnerabilities to perform privilege escalation and remote code execution. In `api_automation.php` line 856, the `get_request_var('filter')` is being concatenated into the SQL statement without any sanitization. In `api_automation.php` line 717, The filter of `'filter'` is `FILTER_DEFAULT`, which means there is no filter for it. Version 1.2.27 contains a patch for the issue. | ||||
CVE-2024-31444 | 2 Cacti, Fedoraproject | 2 Cacti, Fedora | 2024-12-18 | 4.6 Medium |
Cacti provides an operational monitoring and fault management framework. Prior to version 1.2.27, some of the data stored in `automation_tree_rules_form_save()` function in `automation_tree_rules.php` is not thoroughly checked and is used to concatenate the HTML statement in `form_confirm()` function from `lib/html.php` , finally resulting in cross-site scripting. Version 1.2.27 contains a patch for the issue. | ||||
CVE-2024-31443 | 2 Cacti, Fedoraproject | 2 Cacti, Fedora | 2024-12-18 | 5.7 Medium |
Cacti provides an operational monitoring and fault management framework. Prior to 1.2.27, some of the data stored in `form_save()` function in `data_queries.php` is not thoroughly checked and is used to concatenate the HTML statement in `grow_right_pane_tree()` function from `lib/html.php` , finally resulting in cross-site scripting. Version 1.2.27 contains a patch for the issue. | ||||
CVE-2024-23835 | 2 Fedoraproject, Oisf | 2 Fedora, Suricata | 2024-12-18 | 7.5 High |
Suricata is a network Intrusion Detection System, Intrusion Prevention System and Network Security Monitoring engine. Prior to version 7.0.3, excessive memory use during pgsql parsing could lead to OOM-related crashes. This vulnerability is patched in 7.0.3. As workaround, users can disable the pgsql app layer parser. | ||||
CVE-2024-1931 | 2 Fedoraproject, Nlnetlabs | 2 Fedora, Unbound | 2024-12-17 | 7.5 High |
NLnet Labs Unbound version 1.18.0 up to and including version 1.19.1 contain a vulnerability that can cause denial of service by a certain code path that can lead to an infinite loop. Unbound 1.18.0 introduced a feature that removes EDE records from responses with size higher than the client's advertised buffer size. Before removing all the EDE records however, it would try to see if trimming the extra text fields on those records would result in an acceptable size while still retaining the EDE codes. Due to an unchecked condition, the code that trims the text of the EDE records could loop indefinitely. This happens when Unbound would reply with attached EDE information on a positive reply and the client's buffer size is smaller than the needed space to include EDE records. The vulnerability can only be triggered when the 'ede: yes' option is used; non default configuration. From version 1.19.2 on, the code is fixed to avoid looping indefinitely. | ||||
CVE-2022-1949 | 2 Fedoraproject, Redhat | 4 Fedora, 389 Directory Server, Directory Server and 1 more | 2024-12-13 | 7.5 High |
An access control bypass vulnerability found in 389-ds-base. That mishandling of the filter that would yield incorrect results, but as that has progressed, can be determined that it actually is an access control bypass. This may allow any remote unauthenticated user to issue a filter that allows searching for database items they do not have access to, including but not limited to potentially userPassword hashes and other sensitive data. | ||||
CVE-2023-43804 | 4 Debian, Fedoraproject, Python and 1 more | 12 Debian Linux, Fedora, Urllib3 and 9 more | 2024-12-13 | 5.9 Medium |
urllib3 is a user-friendly HTTP client library for Python. urllib3 doesn't treat the `Cookie` HTTP header special or provide any helpers for managing cookies over HTTP, that is the responsibility of the user. However, it is possible for a user to specify a `Cookie` header and unknowingly leak information via HTTP redirects to a different origin if that user doesn't disable redirects explicitly. This issue has been patched in urllib3 version 1.26.17 or 2.0.5. | ||||
CVE-2023-29402 | 3 Fedoraproject, Golang, Redhat | 5 Fedora, Go, Ceph Storage and 2 more | 2024-12-13 | 9.8 Critical |
The go command may generate unexpected code at build time when using cgo. This may result in unexpected behavior when running a go program which uses cgo. This may occur when running an untrusted module which contains directories with newline characters in their names. Modules which are retrieved using the go command, i.e. via "go get", are not affected (modules retrieved using GOPATH-mode, i.e. GO111MODULE=off, may be affected). |