| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
i2c: acpi: fix resource leak in reconfiguration device addition
acpi_i2c_find_adapter_by_handle() calls bus_find_device() which takes a
reference on the adapter which is never released which will result in a
reference count leak and render the adapter unremovable. Make sure to
put the adapter after creating the client in the same manner that we do
for OF.
[wsa: fixed title] |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/cma: Fix listener leak in rdma_cma_listen_on_all() failure
If cma_listen_on_all() fails it leaves the per-device ID still on the
listen_list but the state is not set to RDMA_CM_ADDR_BOUND.
When the cmid is eventually destroyed cma_cancel_listens() is not called
due to the wrong state, however the per-device IDs are still holding the
refcount preventing the ID from being destroyed, thus deadlocking:
task:rping state:D stack: 0 pid:19605 ppid: 47036 flags:0x00000084
Call Trace:
__schedule+0x29a/0x780
? free_unref_page_commit+0x9b/0x110
schedule+0x3c/0xa0
schedule_timeout+0x215/0x2b0
? __flush_work+0x19e/0x1e0
wait_for_completion+0x8d/0xf0
_destroy_id+0x144/0x210 [rdma_cm]
ucma_close_id+0x2b/0x40 [rdma_ucm]
__destroy_id+0x93/0x2c0 [rdma_ucm]
? __xa_erase+0x4a/0xa0
ucma_destroy_id+0x9a/0x120 [rdma_ucm]
ucma_write+0xb8/0x130 [rdma_ucm]
vfs_write+0xb4/0x250
ksys_write+0xb5/0xd0
? syscall_trace_enter.isra.19+0x123/0x190
do_syscall_64+0x33/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Ensure that cma_listen_on_all() atomically unwinds its action under the
lock during error. |
| In the Linux kernel, the following vulnerability has been resolved:
IB/hfi1: Restore allocated resources on failed copyout
Fix a resource leak if an error occurs. |
| In the Linux kernel, the following vulnerability has been resolved:
mmc: sdio: fix possible resource leaks in some error paths
If sdio_add_func() or sdio_init_func() fails, sdio_remove_func() can
not release the resources, because the sdio function is not presented
in these two cases, it won't call of_node_put() or put_device().
To fix these leaks, make sdio_func_present() only control whether
device_del() needs to be called or not, then always call of_node_put()
and put_device().
In error case in sdio_init_func(), the reference of 'card->dev' is
not get, to avoid redundant put in sdio_free_func_cis(), move the
get_device() to sdio_alloc_func() and put_device() to sdio_release_func(),
it can keep the get/put function be balanced.
Without this patch, while doing fault inject test, it can get the
following leak reports, after this fix, the leak is gone.
unreferenced object 0xffff888112514000 (size 2048):
comm "kworker/3:2", pid 65, jiffies 4294741614 (age 124.774s)
hex dump (first 32 bytes):
00 e0 6f 12 81 88 ff ff 60 58 8d 06 81 88 ff ff ..o.....`X......
10 40 51 12 81 88 ff ff 10 40 51 12 81 88 ff ff .@Q......@Q.....
backtrace:
[<000000009e5931da>] kmalloc_trace+0x21/0x110
[<000000002f839ccb>] mmc_alloc_card+0x38/0xb0 [mmc_core]
[<0000000004adcbf6>] mmc_sdio_init_card+0xde/0x170 [mmc_core]
[<000000007538fea0>] mmc_attach_sdio+0xcb/0x1b0 [mmc_core]
[<00000000d4fdeba7>] mmc_rescan+0x54a/0x640 [mmc_core]
unreferenced object 0xffff888112511000 (size 2048):
comm "kworker/3:2", pid 65, jiffies 4294741623 (age 124.766s)
hex dump (first 32 bytes):
00 40 51 12 81 88 ff ff e0 58 8d 06 81 88 ff ff .@Q......X......
10 10 51 12 81 88 ff ff 10 10 51 12 81 88 ff ff ..Q.......Q.....
backtrace:
[<000000009e5931da>] kmalloc_trace+0x21/0x110
[<00000000fcbe706c>] sdio_alloc_func+0x35/0x100 [mmc_core]
[<00000000c68f4b50>] mmc_attach_sdio.cold.18+0xb1/0x395 [mmc_core]
[<00000000d4fdeba7>] mmc_rescan+0x54a/0x640 [mmc_core] |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/hfi1: Fix kernel pointer leak
Pointers should be printed with %p or %px rather than cast to 'unsigned
long long' and printed with %llx. Change %llx to %p to print the secured
pointer. |
| In the Linux kernel, the following vulnerability has been resolved:
sched/scs: Reset task stack state in bringup_cpu()
To hot unplug a CPU, the idle task on that CPU calls a few layers of C
code before finally leaving the kernel. When KASAN is in use, poisoned
shadow is left around for each of the active stack frames, and when
shadow call stacks are in use. When shadow call stacks (SCS) are in use
the task's saved SCS SP is left pointing at an arbitrary point within
the task's shadow call stack.
When a CPU is offlined than onlined back into the kernel, this stale
state can adversely affect execution. Stale KASAN shadow can alias new
stackframes and result in bogus KASAN warnings. A stale SCS SP is
effectively a memory leak, and prevents a portion of the shadow call
stack being used. Across a number of hotplug cycles the idle task's
entire shadow call stack can become unusable.
We previously fixed the KASAN issue in commit:
e1b77c92981a5222 ("sched/kasan: remove stale KASAN poison after hotplug")
... by removing any stale KASAN stack poison immediately prior to
onlining a CPU.
Subsequently in commit:
f1a0a376ca0c4ef1 ("sched/core: Initialize the idle task with preemption disabled")
... the refactoring left the KASAN and SCS cleanup in one-time idle
thread initialization code rather than something invoked prior to each
CPU being onlined, breaking both as above.
We fixed SCS (but not KASAN) in commit:
63acd42c0d4942f7 ("sched/scs: Reset the shadow stack when idle_task_exit")
... but as this runs in the context of the idle task being offlined it's
potentially fragile.
To fix these consistently and more robustly, reset the SCS SP and KASAN
shadow of a CPU's idle task immediately before we online that CPU in
bringup_cpu(). This ensures the idle task always has a consistent state
when it is running, and removes the need to so so when exiting an idle
task.
Whenever any thread is created, dup_task_struct() will give the task a
stack which is free of KASAN shadow, and initialize the task's SCS SP,
so there's no need to specially initialize either for idle thread within
init_idle(), as this was only necessary to handle hotplug cycles.
I've tested this on arm64 with:
* gcc 11.1.0, defconfig +KASAN_INLINE, KASAN_STACK
* clang 12.0.0, defconfig +KASAN_INLINE, KASAN_STACK, SHADOW_CALL_STACK
... offlining and onlining CPUS with:
| while true; do
| for C in /sys/devices/system/cpu/cpu*/online; do
| echo 0 > $C;
| echo 1 > $C;
| done
| done |
| In the Linux kernel, the following vulnerability has been resolved:
net: ieee802154: ca8210: Stop leaking skb's
Upon error the ieee802154_xmit_complete() helper is not called. Only
ieee802154_wake_queue() is called manually. We then leak the skb
structure.
Free the skb structure upon error before returning. |
| In the Linux kernel, the following vulnerability has been resolved:
ptp: ocp: Fix a resource leak in an error handling path
If an error occurs after a successful 'pci_ioremap_bar()' call, it must be
undone by a corresponding 'pci_iounmap()' call, as already done in the
remove function. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: sunxi-ng: Unregister clocks/resets when unbinding
Currently, unbinding a CCU driver unmaps the device's MMIO region, while
leaving its clocks/resets and their providers registered. This can cause
a page fault later when some clock operation tries to perform MMIO. Fix
this by separating the CCU initialization from the memory allocation,
and then using a devres callback to unregister the clocks and resets.
This also fixes a memory leak of the `struct ccu_reset`, and uses the
correct owner (the specific platform driver) for the clocks and resets.
Early OF clock providers are never unregistered, and limited error
handling is possible, so they are mostly unchanged. The error reporting
is made more consistent by moving the message inside of_sunxi_ccu_probe. |
| Transmission of Private Resources into a New Sphere ('Resource Leak') vulnerability in CrafterCMS Engine on Linux, MacOS, x86, Windows, 64 bit, ARM allows Directory Indexing, Resource Leak Exposure.This issue affects CrafterCMS: from 4.0.0 before 4.0.8, from 4.1.0 before 4.1.6. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix potential memory leak in DMUB hw_init
[Why]
On resume we perform DMUB hw_init which allocates memory:
dm_resume->dm_dmub_hw_init->dc_dmub_srv_create->kzalloc
That results in memory leak in suspend/resume scenarios.
[How]
Allocate memory for the DC wrapper to DMUB only if it was not
allocated before.
No need to reallocate it on suspend/resume. |
| In Plesk Obsidian 18.0.69, unauthenticated requests to /login_up.php can reveal an AWS accessKeyId, secretAccessKey, region, and endpoint. |
| In One Identity OneLogin Active Directory Connector before 6.1.5, encryption of the DirectoryToken was mishandled, aka ST-812. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/mcde: Fix refcount leak in mcde_dsi_bind
Every iteration of for_each_available_child_of_node() decrements
the reference counter of the previous node. There is no decrement
when break out from the loop and results in refcount leak.
Add missing of_node_put() to fix this. |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
| In the Linux kernel, the following vulnerability has been resolved:
media: ir_toy: fix a memleak in irtoy_tx
When irtoy_command fails, buf should be freed since it is allocated by
irtoy_tx, or there is a memleak. |
| Django-Select2 is a Django integration for Select2. Prior to version 8.4.1, instances of HeavySelect2Mixin subclasses like the ModelSelect2MultipleWidget and ModelSelect2Widget can leak secret access tokens across requests. This can allow users to access restricted query sets and restricted data. This issue has been patched in version 8.4.1. |
| In the Linux kernel, the following vulnerability has been resolved:
net/sunrpc: fix reference count leaks in rpc_sysfs_xprt_state_change
The refcount leak issues take place in an error handling path. When the
3rd argument buf doesn't match with "offline", "online" or "remove", the
function simply returns -EINVAL and forgets to decrease the reference
count of a rpc_xprt object and a rpc_xprt_switch object increased by
rpc_sysfs_xprt_kobj_get_xprt() and
rpc_sysfs_xprt_kobj_get_xprt_switch(), causing reference count leaks of
both unused objects.
Fix this issue by jumping to the error handling path labelled with
out_put when buf matches none of "offline", "online" or "remove". |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: fix tcp_init_transfer() to not reset icsk_ca_initialized
This commit fixes a bug (found by syzkaller) that could cause spurious
double-initializations for congestion control modules, which could cause
memory leaks or other problems for congestion control modules (like CDG)
that allocate memory in their init functions.
The buggy scenario constructed by syzkaller was something like:
(1) create a TCP socket
(2) initiate a TFO connect via sendto()
(3) while socket is in TCP_SYN_SENT, call setsockopt(TCP_CONGESTION),
which calls:
tcp_set_congestion_control() ->
tcp_reinit_congestion_control() ->
tcp_init_congestion_control()
(4) receive ACK, connection is established, call tcp_init_transfer(),
set icsk_ca_initialized=0 (without first calling cc->release()),
call tcp_init_congestion_control() again.
Note that in this sequence tcp_init_congestion_control() is called
twice without a cc->release() call in between. Thus, for CC modules
that allocate memory in their init() function, e.g, CDG, a memory leak
may occur. The syzkaller tool managed to find a reproducer that
triggered such a leak in CDG.
The bug was introduced when that commit 8919a9b31eb4 ("tcp: Only init
congestion control if not initialized already")
introduced icsk_ca_initialized and set icsk_ca_initialized to 0 in
tcp_init_transfer(), missing the possibility for a sequence like the
one above, where a process could call setsockopt(TCP_CONGESTION) in
state TCP_SYN_SENT (i.e. after the connect() or TFO open sendmsg()),
which would call tcp_init_congestion_control(). It did not intend to
reset any initialization that the user had already explicitly made;
it just missed the possibility of that particular sequence (which
syzkaller managed to find). |
| In the Linux kernel, the following vulnerability has been resolved:
dma-buf/sync_file: Don't leak fences on merge failure
Each add_fence() call does a dma_fence_get() on the relevant fence. In
the error path, we weren't calling dma_fence_put() so all those fences
got leaked. Also, in the krealloc_array failure case, we weren't
freeing the fences array. Instead, ensure that i and fences are always
zero-initialized and dma_fence_put() all the fences and kfree(fences) on
every error path. |