CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
mac802154: fix llsec key resources release in mac802154_llsec_key_del
mac802154_llsec_key_del() can free resources of a key directly without
following the RCU rules for waiting before the end of a grace period. This
may lead to use-after-free in case llsec_lookup_key() is traversing the
list of keys in parallel with a key deletion:
refcount_t: addition on 0; use-after-free.
WARNING: CPU: 4 PID: 16000 at lib/refcount.c:25 refcount_warn_saturate+0x162/0x2a0
Modules linked in:
CPU: 4 PID: 16000 Comm: wpan-ping Not tainted 6.7.0 #19
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
RIP: 0010:refcount_warn_saturate+0x162/0x2a0
Call Trace:
<TASK>
llsec_lookup_key.isra.0+0x890/0x9e0
mac802154_llsec_encrypt+0x30c/0x9c0
ieee802154_subif_start_xmit+0x24/0x1e0
dev_hard_start_xmit+0x13e/0x690
sch_direct_xmit+0x2ae/0xbc0
__dev_queue_xmit+0x11dd/0x3c20
dgram_sendmsg+0x90b/0xd60
__sys_sendto+0x466/0x4c0
__x64_sys_sendto+0xe0/0x1c0
do_syscall_64+0x45/0xf0
entry_SYSCALL_64_after_hwframe+0x6e/0x76
Also, ieee802154_llsec_key_entry structures are not freed by
mac802154_llsec_key_del():
unreferenced object 0xffff8880613b6980 (size 64):
comm "iwpan", pid 2176, jiffies 4294761134 (age 60.475s)
hex dump (first 32 bytes):
78 0d 8f 18 80 88 ff ff 22 01 00 00 00 00 ad de x.......".......
00 00 00 00 00 00 00 00 03 00 cd ab 00 00 00 00 ................
backtrace:
[<ffffffff81dcfa62>] __kmem_cache_alloc_node+0x1e2/0x2d0
[<ffffffff81c43865>] kmalloc_trace+0x25/0xc0
[<ffffffff88968b09>] mac802154_llsec_key_add+0xac9/0xcf0
[<ffffffff8896e41a>] ieee802154_add_llsec_key+0x5a/0x80
[<ffffffff8892adc6>] nl802154_add_llsec_key+0x426/0x5b0
[<ffffffff86ff293e>] genl_family_rcv_msg_doit+0x1fe/0x2f0
[<ffffffff86ff46d1>] genl_rcv_msg+0x531/0x7d0
[<ffffffff86fee7a9>] netlink_rcv_skb+0x169/0x440
[<ffffffff86ff1d88>] genl_rcv+0x28/0x40
[<ffffffff86fec15c>] netlink_unicast+0x53c/0x820
[<ffffffff86fecd8b>] netlink_sendmsg+0x93b/0xe60
[<ffffffff86b91b35>] ____sys_sendmsg+0xac5/0xca0
[<ffffffff86b9c3dd>] ___sys_sendmsg+0x11d/0x1c0
[<ffffffff86b9c65a>] __sys_sendmsg+0xfa/0x1d0
[<ffffffff88eadbf5>] do_syscall_64+0x45/0xf0
[<ffffffff890000ea>] entry_SYSCALL_64_after_hwframe+0x6e/0x76
Handle the proper resource release in the RCU callback function
mac802154_llsec_key_del_rcu().
Note that if llsec_lookup_key() finds a key, it gets a refcount via
llsec_key_get() and locally copies key id from key_entry (which is a
list element). So it's safe to call llsec_key_put() and free the list
entry after the RCU grace period elapses.
Found by Linux Verification Center (linuxtesting.org). |
In the Linux kernel, the following vulnerability has been resolved:
LoongArch: Update cpu_sibling_map when disabling nonboot CPUs
Update cpu_sibling_map when disabling nonboot CPUs by defining & calling
clear_cpu_sibling_map(), otherwise we get such errors on SMT systems:
jump label: negative count!
WARNING: CPU: 6 PID: 45 at kernel/jump_label.c:263 __static_key_slow_dec_cpuslocked+0xec/0x100
CPU: 6 PID: 45 Comm: cpuhp/6 Not tainted 6.8.0-rc5+ #1340
pc 90000000004c302c ra 90000000004c302c tp 90000001005bc000 sp 90000001005bfd20
a0 000000000000001b a1 900000000224c278 a2 90000001005bfb58 a3 900000000224c280
a4 900000000224c278 a5 90000001005bfb50 a6 0000000000000001 a7 0000000000000001
t0 ce87a4763eb5234a t1 ce87a4763eb5234a t2 0000000000000000 t3 0000000000000000
t4 0000000000000006 t5 0000000000000000 t6 0000000000000064 t7 0000000000001964
t8 000000000009ebf6 u0 9000000001f2a068 s9 0000000000000000 s0 900000000246a2d8
s1 ffffffffffffffff s2 ffffffffffffffff s3 90000000021518c0 s4 0000000000000040
s5 9000000002151058 s6 9000000009828e40 s7 00000000000000b4 s8 0000000000000006
ra: 90000000004c302c __static_key_slow_dec_cpuslocked+0xec/0x100
ERA: 90000000004c302c __static_key_slow_dec_cpuslocked+0xec/0x100
CRMD: 000000b0 (PLV0 -IE -DA +PG DACF=CC DACM=CC -WE)
PRMD: 00000004 (PPLV0 +PIE -PWE)
EUEN: 00000000 (-FPE -SXE -ASXE -BTE)
ECFG: 00071c1c (LIE=2-4,10-12 VS=7)
ESTAT: 000c0000 [BRK] (IS= ECode=12 EsubCode=0)
PRID: 0014d000 (Loongson-64bit, Loongson-3A6000-HV)
CPU: 6 PID: 45 Comm: cpuhp/6 Not tainted 6.8.0-rc5+ #1340
Stack : 0000000000000000 900000000203f258 900000000179afc8 90000001005bc000
90000001005bf980 0000000000000000 90000001005bf988 9000000001fe0be0
900000000224c280 900000000224c278 90000001005bf8c0 0000000000000001
0000000000000001 ce87a4763eb5234a 0000000007f38000 90000001003f8cc0
0000000000000000 0000000000000006 0000000000000000 4c206e6f73676e6f
6f4c203a656d616e 000000000009ec99 0000000007f38000 0000000000000000
900000000214b000 9000000001fe0be0 0000000000000004 0000000000000000
0000000000000107 0000000000000009 ffffffffffafdabe 00000000000000b4
0000000000000006 90000000004c302c 9000000000224528 00005555939a0c7c
00000000000000b0 0000000000000004 0000000000000000 0000000000071c1c
...
Call Trace:
[<9000000000224528>] show_stack+0x48/0x1a0
[<900000000179afc8>] dump_stack_lvl+0x78/0xa0
[<9000000000263ed0>] __warn+0x90/0x1a0
[<90000000017419b8>] report_bug+0x1b8/0x280
[<900000000179c564>] do_bp+0x264/0x420
[<90000000004c302c>] __static_key_slow_dec_cpuslocked+0xec/0x100
[<90000000002b4d7c>] sched_cpu_deactivate+0x2fc/0x300
[<9000000000266498>] cpuhp_invoke_callback+0x178/0x8a0
[<9000000000267f70>] cpuhp_thread_fun+0xf0/0x240
[<90000000002a117c>] smpboot_thread_fn+0x1dc/0x2e0
[<900000000029a720>] kthread+0x140/0x160
[<9000000000222288>] ret_from_kernel_thread+0xc/0xa4 |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: set dormant flag on hook register failure
We need to set the dormant flag again if we fail to register
the hooks.
During memory pressure hook registration can fail and we end up
with a table marked as active but no registered hooks.
On table/base chain deletion, nf_tables will attempt to unregister
the hook again which yields a warn splat from the nftables core. |
In the Linux kernel, the following vulnerability has been resolved:
nfc: nci: free rx_data_reassembly skb on NCI device cleanup
rx_data_reassembly skb is stored during NCI data exchange for processing
fragmented packets. It is dropped only when the last fragment is processed
or when an NTF packet with NCI_OP_RF_DEACTIVATE_NTF opcode is received.
However, the NCI device may be deallocated before that which leads to skb
leak.
As by design the rx_data_reassembly skb is bound to the NCI device and
nothing prevents the device to be freed before the skb is processed in
some way and cleaned, free it on the NCI device cleanup.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
In the Linux kernel, the following vulnerability has been resolved:
net: veth: clear GRO when clearing XDP even when down
veth sets NETIF_F_GRO automatically when XDP is enabled,
because both features use the same NAPI machinery.
The logic to clear NETIF_F_GRO sits in veth_disable_xdp() which
is called both on ndo_stop and when XDP is turned off.
To avoid the flag from being cleared when the device is brought
down, the clearing is skipped when IFF_UP is not set.
Bringing the device down should indeed not modify its features.
Unfortunately, this means that clearing is also skipped when
XDP is disabled _while_ the device is down. And there's nothing
on the open path to bring the device features back into sync.
IOW if user enables XDP, disables it and then brings the device
up we'll end up with a stray GRO flag set but no NAPI instances.
We don't depend on the GRO flag on the datapath, so the datapath
won't crash. We will crash (or hang), however, next time features
are sync'ed (either by user via ethtool or peer changing its config).
The GRO flag will go away, and veth will try to disable the NAPIs.
But the open path never created them since XDP was off, the GRO flag
was a stray. If NAPI was initialized before we'll hang in napi_disable().
If it never was we'll crash trying to stop uninitialized hrtimer.
Move the GRO flag updates to the XDP enable / disable paths,
instead of mixing them with the ndo_open / ndo_close paths. |
In the Linux kernel, the following vulnerability has been resolved:
md: Don't register sync_thread for reshape directly
Currently, if reshape is interrupted, then reassemble the array will
register sync_thread directly from pers->run(), in this case
'MD_RECOVERY_RUNNING' is set directly, however, there is no guarantee
that md_do_sync() will be executed, hence stop_sync_thread() will hang
because 'MD_RECOVERY_RUNNING' can't be cleared.
Last patch make sure that md_do_sync() will set MD_RECOVERY_DONE,
however, following hang can still be triggered by dm-raid test
shell/lvconvert-raid-reshape.sh occasionally:
[root@fedora ~]# cat /proc/1982/stack
[<0>] stop_sync_thread+0x1ab/0x270 [md_mod]
[<0>] md_frozen_sync_thread+0x5c/0xa0 [md_mod]
[<0>] raid_presuspend+0x1e/0x70 [dm_raid]
[<0>] dm_table_presuspend_targets+0x40/0xb0 [dm_mod]
[<0>] __dm_destroy+0x2a5/0x310 [dm_mod]
[<0>] dm_destroy+0x16/0x30 [dm_mod]
[<0>] dev_remove+0x165/0x290 [dm_mod]
[<0>] ctl_ioctl+0x4bb/0x7b0 [dm_mod]
[<0>] dm_ctl_ioctl+0x11/0x20 [dm_mod]
[<0>] vfs_ioctl+0x21/0x60
[<0>] __x64_sys_ioctl+0xb9/0xe0
[<0>] do_syscall_64+0xc6/0x230
[<0>] entry_SYSCALL_64_after_hwframe+0x6c/0x74
Meanwhile mddev->recovery is:
MD_RECOVERY_RUNNING |
MD_RECOVERY_INTR |
MD_RECOVERY_RESHAPE |
MD_RECOVERY_FROZEN
Fix this problem by remove the code to register sync_thread directly
from raid10 and raid5. And let md_check_recovery() to register
sync_thread. |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/qedr: Fix qedr_create_user_qp error flow
Avoid the following warning by making sure to free the allocated
resources in case that qedr_init_user_queue() fail.
-----------[ cut here ]-----------
WARNING: CPU: 0 PID: 143192 at drivers/infiniband/core/rdma_core.c:874 uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs]
Modules linked in: tls target_core_user uio target_core_pscsi target_core_file target_core_iblock ib_srpt ib_srp scsi_transport_srp nfsd nfs_acl rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver nfs lockd grace fscache netfs 8021q garp mrp stp llc ext4 mbcache jbd2 opa_vnic ib_umad ib_ipoib sunrpc rdma_ucm ib_isert iscsi_target_mod target_core_mod ib_iser libiscsi scsi_transport_iscsi rdma_cm iw_cm ib_cm hfi1 intel_rapl_msr intel_rapl_common mgag200 qedr sb_edac drm_shmem_helper rdmavt x86_pkg_temp_thermal drm_kms_helper intel_powerclamp ib_uverbs coretemp i2c_algo_bit kvm_intel dell_wmi_descriptor ipmi_ssif sparse_keymap kvm ib_core rfkill syscopyarea sysfillrect video sysimgblt irqbypass ipmi_si ipmi_devintf fb_sys_fops rapl iTCO_wdt mxm_wmi iTCO_vendor_support intel_cstate pcspkr dcdbas intel_uncore ipmi_msghandler lpc_ich acpi_power_meter mei_me mei fuse drm xfs libcrc32c qede sd_mod ahci libahci t10_pi sg crct10dif_pclmul crc32_pclmul crc32c_intel qed libata tg3
ghash_clmulni_intel megaraid_sas crc8 wmi [last unloaded: ib_srpt]
CPU: 0 PID: 143192 Comm: fi_rdm_tagged_p Kdump: loaded Not tainted 5.14.0-408.el9.x86_64 #1
Hardware name: Dell Inc. PowerEdge R430/03XKDV, BIOS 2.14.0 01/25/2022
RIP: 0010:uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs]
Code: 5d 41 5c 41 5d 41 5e e9 0f 26 1b dd 48 89 df e8 67 6a ff ff 49 8b 86 10 01 00 00 48 85 c0 74 9c 4c 89 e7 e8 83 c0 cb dd eb 92 <0f> 0b eb be 0f 0b be 04 00 00 00 48 89 df e8 8e f5 ff ff e9 6d ff
RSP: 0018:ffffb7c6cadfbc60 EFLAGS: 00010286
RAX: ffff8f0889ee3f60 RBX: ffff8f088c1a5200 RCX: 00000000802a0016
RDX: 00000000802a0017 RSI: 0000000000000001 RDI: ffff8f0880042600
RBP: 0000000000000001 R08: 0000000000000001 R09: 0000000000000000
R10: ffff8f11fffd5000 R11: 0000000000039000 R12: ffff8f0d5b36cd80
R13: ffff8f088c1a5250 R14: ffff8f1206d91000 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff8f11d7c00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000147069200e20 CR3: 00000001c7210002 CR4: 00000000001706f0
Call Trace:
<TASK>
? show_trace_log_lvl+0x1c4/0x2df
? show_trace_log_lvl+0x1c4/0x2df
? ib_uverbs_close+0x1f/0xb0 [ib_uverbs]
? uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs]
? __warn+0x81/0x110
? uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs]
? report_bug+0x10a/0x140
? handle_bug+0x3c/0x70
? exc_invalid_op+0x14/0x70
? asm_exc_invalid_op+0x16/0x20
? uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs]
ib_uverbs_close+0x1f/0xb0 [ib_uverbs]
__fput+0x94/0x250
task_work_run+0x5c/0x90
do_exit+0x270/0x4a0
do_group_exit+0x2d/0x90
get_signal+0x87c/0x8c0
arch_do_signal_or_restart+0x25/0x100
? ib_uverbs_ioctl+0xc2/0x110 [ib_uverbs]
exit_to_user_mode_loop+0x9c/0x130
exit_to_user_mode_prepare+0xb6/0x100
syscall_exit_to_user_mode+0x12/0x40
do_syscall_64+0x69/0x90
? syscall_exit_work+0x103/0x130
? syscall_exit_to_user_mode+0x22/0x40
? do_syscall_64+0x69/0x90
? syscall_exit_work+0x103/0x130
? syscall_exit_to_user_mode+0x22/0x40
? do_syscall_64+0x69/0x90
? do_syscall_64+0x69/0x90
? common_interrupt+0x43/0xa0
entry_SYSCALL_64_after_hwframe+0x72/0xdc
RIP: 0033:0x1470abe3ec6b
Code: Unable to access opcode bytes at RIP 0x1470abe3ec41.
RSP: 002b:00007fff13ce9108 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: fffffffffffffffc RBX: 00007fff13ce9218 RCX: 00001470abe3ec6b
RDX: 00007fff13ce9200 RSI: 00000000c0181b01 RDI: 0000000000000004
RBP: 00007fff13ce91e0 R08: 0000558d9655da10 R09: 0000558d9655dd00
R10: 00007fff13ce95c0 R11: 0000000000000246 R12: 00007fff13ce9358
R13: 0000000000000013 R14: 0000558d9655db50 R15: 00007fff13ce9470
</TASK>
--[ end trace 888a9b92e04c5c97 ]-- |
In the Linux kernel, the following vulnerability has been resolved:
dccp/tcp: Unhash sk from ehash for tb2 alloc failure after check_estalblished().
syzkaller reported a warning [0] in inet_csk_destroy_sock() with no
repro.
WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
However, the syzkaller's log hinted that connect() failed just before
the warning due to FAULT_INJECTION. [1]
When connect() is called for an unbound socket, we search for an
available ephemeral port. If a bhash bucket exists for the port, we
call __inet_check_established() or __inet6_check_established() to check
if the bucket is reusable.
If reusable, we add the socket into ehash and set inet_sk(sk)->inet_num.
Later, we look up the corresponding bhash2 bucket and try to allocate
it if it does not exist.
Although it rarely occurs in real use, if the allocation fails, we must
revert the changes by check_established(). Otherwise, an unconnected
socket could illegally occupy an ehash entry.
Note that we do not put tw back into ehash because sk might have
already responded to a packet for tw and it would be better to free
tw earlier under such memory presure.
[0]:
WARNING: CPU: 0 PID: 350830 at net/ipv4/inet_connection_sock.c:1193 inet_csk_destroy_sock (net/ipv4/inet_connection_sock.c:1193)
Modules linked in:
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
RIP: 0010:inet_csk_destroy_sock (net/ipv4/inet_connection_sock.c:1193)
Code: 41 5c 41 5d 41 5e e9 2d 4a 3d fd e8 28 4a 3d fd 48 89 ef e8 f0 cd 7d ff 5b 5d 41 5c 41 5d 41 5e e9 13 4a 3d fd e8 0e 4a 3d fd <0f> 0b e9 61 fe ff ff e8 02 4a 3d fd 4c 89 e7 be 03 00 00 00 e8 05
RSP: 0018:ffffc9000b21fd38 EFLAGS: 00010293
RAX: 0000000000000000 RBX: 0000000000009e78 RCX: ffffffff840bae40
RDX: ffff88806e46c600 RSI: ffffffff840bb012 RDI: ffff88811755cca8
RBP: ffff88811755c880 R08: 0000000000000003 R09: 0000000000000000
R10: 0000000000009e78 R11: 0000000000000000 R12: ffff88811755c8e0
R13: ffff88811755c892 R14: ffff88811755c918 R15: 0000000000000000
FS: 00007f03e5243800(0000) GS:ffff88811ae00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000001b32f21000 CR3: 0000000112ffe001 CR4: 0000000000770ef0
PKRU: 55555554
Call Trace:
<TASK>
? inet_csk_destroy_sock (net/ipv4/inet_connection_sock.c:1193)
dccp_close (net/dccp/proto.c:1078)
inet_release (net/ipv4/af_inet.c:434)
__sock_release (net/socket.c:660)
sock_close (net/socket.c:1423)
__fput (fs/file_table.c:377)
__fput_sync (fs/file_table.c:462)
__x64_sys_close (fs/open.c:1557 fs/open.c:1539 fs/open.c:1539)
do_syscall_64 (arch/x86/entry/common.c:52 arch/x86/entry/common.c:83)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:129)
RIP: 0033:0x7f03e53852bb
Code: 03 00 00 00 0f 05 48 3d 00 f0 ff ff 77 41 c3 48 83 ec 18 89 7c 24 0c e8 43 c9 f5 ff 8b 7c 24 0c 41 89 c0 b8 03 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 35 44 89 c7 89 44 24 0c e8 a1 c9 f5 ff 8b 44
RSP: 002b:00000000005dfba0 EFLAGS: 00000293 ORIG_RAX: 0000000000000003
RAX: ffffffffffffffda RBX: 0000000000000004 RCX: 00007f03e53852bb
RDX: 0000000000000002 RSI: 0000000000000002 RDI: 0000000000000003
RBP: 0000000000000000 R08: 0000000000000000 R09: 000000000000167c
R10: 0000000008a79680 R11: 0000000000000293 R12: 00007f03e4e43000
R13: 00007f03e4e43170 R14: 00007f03e4e43178 R15: 00007f03e4e43170
</TASK>
[1]:
FAULT_INJECTION: forcing a failure.
name failslab, interval 1, probability 0, space 0, times 0
CPU: 0 PID: 350833 Comm: syz-executor.1 Not tainted 6.7.0-12272-g2121c43f88f5 #9
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl (lib/dump_stack.c:107 (discriminator 1))
should_fail_ex (lib/fault-inject.c:52 lib/fault-inject.c:153)
should_failslab (mm/slub.c:3748)
kmem_cache_alloc (mm/slub.c:3763 mm/slub.c:3842 mm/slub.c:3867)
inet_bind2_bucket_create
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
xen/events: close evtchn after mapping cleanup
shutdown_pirq and startup_pirq are not taking the
irq_mapping_update_lock because they can't due to lock inversion. Both
are called with the irq_desc->lock being taking. The lock order,
however, is first irq_mapping_update_lock and then irq_desc->lock.
This opens multiple races:
- shutdown_pirq can be interrupted by a function that allocates an event
channel:
CPU0 CPU1
shutdown_pirq {
xen_evtchn_close(e)
__startup_pirq {
EVTCHNOP_bind_pirq
-> returns just freed evtchn e
set_evtchn_to_irq(e, irq)
}
xen_irq_info_cleanup() {
set_evtchn_to_irq(e, -1)
}
}
Assume here event channel e refers here to the same event channel
number.
After this race the evtchn_to_irq mapping for e is invalid (-1).
- __startup_pirq races with __unbind_from_irq in a similar way. Because
__startup_pirq doesn't take irq_mapping_update_lock it can grab the
evtchn that __unbind_from_irq is currently freeing and cleaning up. In
this case even though the event channel is allocated, its mapping can
be unset in evtchn_to_irq.
The fix is to first cleanup the mappings and then close the event
channel. In this way, when an event channel gets allocated it's
potential previous evtchn_to_irq mappings are guaranteed to be unset already.
This is also the reverse order of the allocation where first the event
channel is allocated and then the mappings are setup.
On a 5.10 kernel prior to commit 3fcdaf3d7634 ("xen/events: modify internal
[un]bind interfaces"), we hit a BUG like the following during probing of NVMe
devices. The issue is that during nvme_setup_io_queues, pci_free_irq
is called for every device which results in a call to shutdown_pirq.
With many nvme devices it's therefore likely to hit this race during
boot because there will be multiple calls to shutdown_pirq and
startup_pirq are running potentially in parallel.
------------[ cut here ]------------
blkfront: xvda: barrier or flush: disabled; persistent grants: enabled; indirect descriptors: enabled; bounce buffer: enabled
kernel BUG at drivers/xen/events/events_base.c:499!
invalid opcode: 0000 [#1] SMP PTI
CPU: 44 PID: 375 Comm: kworker/u257:23 Not tainted 5.10.201-191.748.amzn2.x86_64 #1
Hardware name: Xen HVM domU, BIOS 4.11.amazon 08/24/2006
Workqueue: nvme-reset-wq nvme_reset_work
RIP: 0010:bind_evtchn_to_cpu+0xdf/0xf0
Code: 5d 41 5e c3 cc cc cc cc 44 89 f7 e8 2b 55 ad ff 49 89 c5 48 85 c0 0f 84 64 ff ff ff 4c 8b 68 30 41 83 fe ff 0f 85 60 ff ff ff <0f> 0b 66 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 0f 1f 44 00 00
RSP: 0000:ffffc9000d533b08 EFLAGS: 00010046
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000006
RDX: 0000000000000028 RSI: 00000000ffffffff RDI: 00000000ffffffff
RBP: ffff888107419680 R08: 0000000000000000 R09: ffffffff82d72b00
R10: 0000000000000000 R11: 0000000000000000 R12: 00000000000001ed
R13: 0000000000000000 R14: 00000000ffffffff R15: 0000000000000002
FS: 0000000000000000(0000) GS:ffff88bc8b500000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 0000000002610001 CR4: 00000000001706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
? show_trace_log_lvl+0x1c1/0x2d9
? show_trace_log_lvl+0x1c1/0x2d9
? set_affinity_irq+0xdc/0x1c0
? __die_body.cold+0x8/0xd
? die+0x2b/0x50
? do_trap+0x90/0x110
? bind_evtchn_to_cpu+0xdf/0xf0
? do_error_trap+0x65/0x80
? bind_evtchn_to_cpu+0xdf/0xf0
? exc_invalid_op+0x4e/0x70
? bind_evtchn_to_cpu+0xdf/0xf0
? asm_exc_invalid_op+0x12/0x20
? bind_evtchn_to_cpu+0xdf/0x
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
drm/msm/dpu: check for valid hw_pp in dpu_encoder_helper_phys_cleanup
The commit 8b45a26f2ba9 ("drm/msm/dpu: reserve cdm blocks for writeback
in case of YUV output") introduced a smatch warning about another
conditional block in dpu_encoder_helper_phys_cleanup() which had assumed
hw_pp will always be valid which may not necessarily be true.
Lets fix the other conditional block by making sure hw_pp is valid
before dereferencing it.
Patchwork: https://patchwork.freedesktop.org/patch/574878/ |
In the Linux kernel, the following vulnerability has been resolved:
srcu: Tighten cleanup_srcu_struct() GP checks
Currently, cleanup_srcu_struct() checks for a grace period in progress,
but it does not check for a grace period that has not yet started but
which might start at any time. Such a situation could result in a
use-after-free bug, so this commit adds a check for a grace period that
is needed but not yet started to cleanup_srcu_struct(). |
In the Linux kernel, the following vulnerability has been resolved:
ath11k: fix kernel panic during unload/load ath11k modules
Call netif_napi_del() from ath11k_ahb_free_ext_irq() to fix
the following kernel panic when unload/load ath11k modules
for few iterations.
[ 971.201365] Unable to handle kernel paging request at virtual address 6d97a208
[ 971.204227] pgd = 594c2919
[ 971.211478] [6d97a208] *pgd=00000000
[ 971.214120] Internal error: Oops: 5 [#1] PREEMPT SMP ARM
[ 971.412024] CPU: 2 PID: 4435 Comm: insmod Not tainted 5.4.89 #0
[ 971.434256] Hardware name: Generic DT based system
[ 971.440165] PC is at napi_by_id+0x10/0x40
[ 971.445019] LR is at netif_napi_add+0x160/0x1dc
[ 971.743127] (napi_by_id) from [<807d89a0>] (netif_napi_add+0x160/0x1dc)
[ 971.751295] (netif_napi_add) from [<7f1209ac>] (ath11k_ahb_config_irq+0xf8/0x414 [ath11k_ahb])
[ 971.759164] (ath11k_ahb_config_irq [ath11k_ahb]) from [<7f12135c>] (ath11k_ahb_probe+0x40c/0x51c [ath11k_ahb])
[ 971.768567] (ath11k_ahb_probe [ath11k_ahb]) from [<80666864>] (platform_drv_probe+0x48/0x94)
[ 971.779670] (platform_drv_probe) from [<80664718>] (really_probe+0x1c8/0x450)
[ 971.789389] (really_probe) from [<80664cc4>] (driver_probe_device+0x15c/0x1b8)
[ 971.797547] (driver_probe_device) from [<80664f60>] (device_driver_attach+0x44/0x60)
[ 971.805795] (device_driver_attach) from [<806650a0>] (__driver_attach+0x124/0x140)
[ 971.814822] (__driver_attach) from [<80662adc>] (bus_for_each_dev+0x58/0xa4)
[ 971.823328] (bus_for_each_dev) from [<80663a2c>] (bus_add_driver+0xf0/0x1e8)
[ 971.831662] (bus_add_driver) from [<806658a4>] (driver_register+0xa8/0xf0)
[ 971.839822] (driver_register) from [<8030269c>] (do_one_initcall+0x78/0x1ac)
[ 971.847638] (do_one_initcall) from [<80392524>] (do_init_module+0x54/0x200)
[ 971.855968] (do_init_module) from [<803945b0>] (load_module+0x1e30/0x1ffc)
[ 971.864126] (load_module) from [<803948b0>] (sys_init_module+0x134/0x17c)
[ 971.871852] (sys_init_module) from [<80301000>] (ret_fast_syscall+0x0/0x50)
Tested-on: IPQ8074 hw2.0 AHB WLAN.HK.2.6.0.1-00760-QCAHKSWPL_SILICONZ-1 |
In the Linux kernel, the following vulnerability has been resolved:
ceph: fix inode reference leakage in ceph_get_snapdir()
The ceph_get_inode() will search for or insert a new inode into the
hash for the given vino, and return a reference to it. If new is
non-NULL, its reference is consumed.
We should release the reference when in error handing cases. |
In the Linux kernel, the following vulnerability has been resolved:
ixgbevf: Fix resource leak in ixgbevf_init_module()
ixgbevf_init_module() won't destroy the workqueue created by
create_singlethread_workqueue() when pci_register_driver() failed. Add
destroy_workqueue() in fail path to prevent the resource leak.
Similar to the handling of u132_hcd_init in commit f276e002793c
("usb: u132-hcd: fix resource leak") |
In the Linux kernel, the following vulnerability has been resolved:
afs: Fix server->active leak in afs_put_server
The atomic_read was accidentally replaced with atomic_inc_return,
which prevents the server from getting cleaned up and causes rmmod
to hang with a warning:
Can't purge s=00000001 |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Fix not cleanup led when bt_init fails
bt_init() calls bt_leds_init() to register led, but if it fails later,
bt_leds_cleanup() is not called to unregister it.
This can cause panic if the argument "bluetooth-power" in text is freed
and then another led_trigger_register() tries to access it:
BUG: unable to handle page fault for address: ffffffffc06d3bc0
RIP: 0010:strcmp+0xc/0x30
Call Trace:
<TASK>
led_trigger_register+0x10d/0x4f0
led_trigger_register_simple+0x7d/0x100
bt_init+0x39/0xf7 [bluetooth]
do_one_initcall+0xd0/0x4e0 |
In the Linux kernel, the following vulnerability has been resolved:
drm/i915/gt: Cleanup partial engine discovery failures
If we abort driver initialisation in the middle of gt/engine discovery,
some engines will be fully setup and some not. Those incompletely setup
engines only have 'engine->release == NULL' and so will leak any of the
common objects allocated.
v2:
- Drop the destroy_pinned_context() helper for now. It's not really
worth it with just a single callsite at the moment. (Janusz) |
In the Linux kernel, the following vulnerability has been resolved:
vdpa: ifcvf: Do proper cleanup if IFCVF init fails
ifcvf_mgmt_dev leaks memory if it is not freed before
returning. Call is made to correct return statement
so memory does not leak. ifcvf_init_hw does not take
care of this so it is needed to do it here. |
In the Linux kernel, the following vulnerability has been resolved:
cxl/region: Do not try to cleanup after cxl_region_setup_targets() fails
Commit 5e42bcbc3fef ("cxl/region: decrement ->nr_targets on error in
cxl_region_attach()") tried to avoid 'eiw' initialization errors when
->nr_targets exceeded 16, by just decrementing ->nr_targets when
cxl_region_setup_targets() failed.
Commit 86987c766276 ("cxl/region: Cleanup target list on attach error")
extended that cleanup to also clear cxled->pos and p->targets[pos]. The
initialization error was incidentally fixed separately by:
Commit 8d4285425714 ("cxl/region: Fix port setup uninitialized variable
warnings") which was merged a few days after 5e42bcbc3fef.
But now the original cleanup when cxl_region_setup_targets() fails
prevents endpoint and switch decoder resources from being reused:
1) the cleanup does not set the decoder's region to NULL, which results
in future dpa_size_store() calls returning -EBUSY
2) the decoder is not properly freed, which results in future commit
errors associated with the upstream switch
Now that the initialization errors were fixed separately, the proper
cleanup for this case is to just return immediately. Then the resources
associated with this target get cleanup up as normal when the failed
region is deleted.
The ->nr_targets decrement in the error case also helped prevent
a p->targets[] array overflow, so add a new check to prevent against
that overflow.
Tested by trying to create an invalid region for a 2 switch * 2 endpoint
topology, and then following up with creating a valid region. |
In the Linux kernel, the following vulnerability has been resolved:
i2c: core: Run atomic i2c xfer when !preemptible
Since bae1d3a05a8b, i2c transfers are non-atomic if preemption is
disabled. However, non-atomic i2c transfers require preemption (e.g. in
wait_for_completion() while waiting for the DMA).
panic() calls preempt_disable_notrace() before calling
emergency_restart(). Therefore, if an i2c device is used for the
restart, the xfer should be atomic. This avoids warnings like:
[ 12.667612] WARNING: CPU: 1 PID: 1 at kernel/rcu/tree_plugin.h:318 rcu_note_context_switch+0x33c/0x6b0
[ 12.676926] Voluntary context switch within RCU read-side critical section!
...
[ 12.742376] schedule_timeout from wait_for_completion_timeout+0x90/0x114
[ 12.749179] wait_for_completion_timeout from tegra_i2c_wait_completion+0x40/0x70
...
[ 12.994527] atomic_notifier_call_chain from machine_restart+0x34/0x58
[ 13.001050] machine_restart from panic+0x2a8/0x32c
Use !preemptible() instead, which is basically the same check as
pre-v5.2. |