| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86: ISST: Fix the KASAN report slab-out-of-bounds bug
Attaching SST PCI device to VM causes "BUG: KASAN: slab-out-of-bounds".
kasan report:
[ 19.411889] ==================================================================
[ 19.413702] BUG: KASAN: slab-out-of-bounds in _isst_if_get_pci_dev+0x3d5/0x400 [isst_if_common]
[ 19.415634] Read of size 8 at addr ffff888829e65200 by task cpuhp/16/113
[ 19.417368]
[ 19.418627] CPU: 16 PID: 113 Comm: cpuhp/16 Tainted: G E 6.9.0 #10
[ 19.420435] Hardware name: VMware, Inc. VMware20,1/440BX Desktop Reference Platform, BIOS VMW201.00V.20192059.B64.2207280713 07/28/2022
[ 19.422687] Call Trace:
[ 19.424091] <TASK>
[ 19.425448] dump_stack_lvl+0x5d/0x80
[ 19.426963] ? _isst_if_get_pci_dev+0x3d5/0x400 [isst_if_common]
[ 19.428694] print_report+0x19d/0x52e
[ 19.430206] ? __pfx__raw_spin_lock_irqsave+0x10/0x10
[ 19.431837] ? _isst_if_get_pci_dev+0x3d5/0x400 [isst_if_common]
[ 19.433539] kasan_report+0xf0/0x170
[ 19.435019] ? _isst_if_get_pci_dev+0x3d5/0x400 [isst_if_common]
[ 19.436709] _isst_if_get_pci_dev+0x3d5/0x400 [isst_if_common]
[ 19.438379] ? __pfx_sched_clock_cpu+0x10/0x10
[ 19.439910] isst_if_cpu_online+0x406/0x58f [isst_if_common]
[ 19.441573] ? __pfx_isst_if_cpu_online+0x10/0x10 [isst_if_common]
[ 19.443263] ? ttwu_queue_wakelist+0x2c1/0x360
[ 19.444797] cpuhp_invoke_callback+0x221/0xec0
[ 19.446337] cpuhp_thread_fun+0x21b/0x610
[ 19.447814] ? __pfx_cpuhp_thread_fun+0x10/0x10
[ 19.449354] smpboot_thread_fn+0x2e7/0x6e0
[ 19.450859] ? __pfx_smpboot_thread_fn+0x10/0x10
[ 19.452405] kthread+0x29c/0x350
[ 19.453817] ? __pfx_kthread+0x10/0x10
[ 19.455253] ret_from_fork+0x31/0x70
[ 19.456685] ? __pfx_kthread+0x10/0x10
[ 19.458114] ret_from_fork_asm+0x1a/0x30
[ 19.459573] </TASK>
[ 19.460853]
[ 19.462055] Allocated by task 1198:
[ 19.463410] kasan_save_stack+0x30/0x50
[ 19.464788] kasan_save_track+0x14/0x30
[ 19.466139] __kasan_kmalloc+0xaa/0xb0
[ 19.467465] __kmalloc+0x1cd/0x470
[ 19.468748] isst_if_cdev_register+0x1da/0x350 [isst_if_common]
[ 19.470233] isst_if_mbox_init+0x108/0xff0 [isst_if_mbox_msr]
[ 19.471670] do_one_initcall+0xa4/0x380
[ 19.472903] do_init_module+0x238/0x760
[ 19.474105] load_module+0x5239/0x6f00
[ 19.475285] init_module_from_file+0xd1/0x130
[ 19.476506] idempotent_init_module+0x23b/0x650
[ 19.477725] __x64_sys_finit_module+0xbe/0x130
[ 19.476506] idempotent_init_module+0x23b/0x650
[ 19.477725] __x64_sys_finit_module+0xbe/0x130
[ 19.478920] do_syscall_64+0x82/0x160
[ 19.480036] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[ 19.481292]
[ 19.482205] The buggy address belongs to the object at ffff888829e65000
which belongs to the cache kmalloc-512 of size 512
[ 19.484818] The buggy address is located 0 bytes to the right of
allocated 512-byte region [ffff888829e65000, ffff888829e65200)
[ 19.487447]
[ 19.488328] The buggy address belongs to the physical page:
[ 19.489569] page: refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888829e60c00 pfn:0x829e60
[ 19.491140] head: order:3 entire_mapcount:0 nr_pages_mapped:0 pincount:0
[ 19.492466] anon flags: 0x57ffffc0000840(slab|head|node=1|zone=2|lastcpupid=0x1fffff)
[ 19.493914] page_type: 0xffffffff()
[ 19.494988] raw: 0057ffffc0000840 ffff88810004cc80 0000000000000000 0000000000000001
[ 19.496451] raw: ffff888829e60c00 0000000080200018 00000001ffffffff 0000000000000000
[ 19.497906] head: 0057ffffc0000840 ffff88810004cc80 0000000000000000 0000000000000001
[ 19.499379] head: ffff888829e60c00 0000000080200018 00000001ffffffff 0000000000000000
[ 19.500844] head: 0057ffffc0000003 ffffea0020a79801 ffffea0020a79848 00000000ffffffff
[ 19.502316] head: 0000000800000000 0000000000000000 00000000ffffffff 0000000000000000
[ 19.503784] page dumped because: k
---truncated--- |
| The device directly executes .patch firmware upgrade files on a USB stick without any prior authentication in the admin interface. This leads to an unauthenticated code execution via the firmware upgrade function. |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix potential oob read in nilfs_btree_check_delete()
The function nilfs_btree_check_delete(), which checks whether degeneration
to direct mapping occurs before deleting a b-tree entry, causes memory
access outside the block buffer when retrieving the maximum key if the
root node has no entries.
This does not usually happen because b-tree mappings with 0 child nodes
are never created by mkfs.nilfs2 or nilfs2 itself. However, it can happen
if the b-tree root node read from a device is configured that way, so fix
this potential issue by adding a check for that case. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: kirin: Fix buffer overflow in kirin_pcie_parse_port()
Within kirin_pcie_parse_port(), the pcie->num_slots is compared to
pcie->gpio_id_reset size (MAX_PCI_SLOTS) which is correct and would lead
to an overflow.
Thus, fix condition to pcie->num_slots + 1 >= MAX_PCI_SLOTS and move
pcie->num_slots increment below the if-statement to avoid out-of-bounds
array access.
Found by Linux Verification Center (linuxtesting.org) with SVACE.
[kwilczynski: commit log] |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: fix out-of-bounds in dbNextAG() and diAlloc()
In dbNextAG() , there is no check for the case where bmp->db_numag is
greater or same than MAXAG due to a polluted image, which causes an
out-of-bounds. Therefore, a bounds check should be added in dbMount().
And in dbNextAG(), a check for the case where agpref is greater than
bmp->db_numag should be added, so an out-of-bounds exception should be
prevented.
Additionally, a check for the case where agno is greater or same than
MAXAG should be added in diAlloc() to prevent out-of-bounds. |
| GStreamer is a library for constructing graphs of media-handling components. stack-buffer overflow has been detected in the gst_opus_dec_parse_header function within `gstopusdec.c'. The pos array is a stack-allocated buffer of size 64. If n_channels exceeds 64, the for loop will write beyond the boundaries of the pos array. The value written will always be GST_AUDIO_CHANNEL_POSITION_NONE. This bug allows to overwrite the EIP address allocated in the stack. This vulnerability is fixed in 1.24.10. |
| GStreamer is a library for constructing graphs of media-handling components. An OOB-read vulnerability has been detected in the format_channel_mask function in gst-discoverer.c. The vulnerability affects the local array position, which is defined with a fixed size of 64 elements. However, the function gst_discoverer_audio_info_get_channels may return a guint channels value greater than 64. This causes the for loop to attempt access beyond the bounds of the position array, resulting in an OOB-read when an index greater than 63 is used. This vulnerability can result in reading unintended bytes from the stack. Additionally, the dereference of value->value_nick after the OOB-read can lead to further memory corruption or undefined behavior. This vulnerability is fixed in 1.24.10. |
| GStreamer is a library for constructing graphs of media-handling components. A null pointer dereference has been discovered in the id3v2_read_synch_uint function, located in id3v2.c. If id3v2_read_synch_uint is called with a null work->hdr.frame_data, the pointer guint8 *data is accessed without validation, resulting in a null pointer dereference. This vulnerability can result in a Denial of Service (DoS) by triggering a segmentation fault (SEGV). This vulnerability is fixed in 1.24.10. |
| GStreamer is a library for constructing graphs of media-handling components. A stack-buffer overflow has been detected in the `vorbis_handle_identification_packet` function within `gstvorbisdec.c`. The position array is a stack-allocated buffer of size 64. If vd->vi.channels exceeds 64, the for loop will write beyond the boundaries of the position array. The value written will always be `GST_AUDIO_CHANNEL_POSITION_NONE`. This vulnerability allows someone to overwrite the EIP address allocated in the stack. Additionally, this bug can overwrite the `GstAudioInfo` info structure. This vulnerability is fixed in 1.24.10. |
| XStream is a simple library to serialize objects to XML and back again. This vulnerability may allow a remote attacker to terminate the application with a stack overflow error resulting in a denial of service only by manipulating the processed input stream when XStream is configured to use the BinaryStreamDriver. XStream 1.4.21 has been patched to detect the manipulation in the binary input stream causing the the stack overflow and raises an InputManipulationException instead. Users are advised to upgrade. Users unable to upgrade may catch the StackOverflowError in the client code calling XStream if XStream is configured to use the BinaryStreamDriver. |
| An issue was discovered in psi/zfile.c in Artifex Ghostscript before 10.04.0. Out-of-bounds data access in filenameforall can lead to arbitrary code execution. |
| An issue was discovered in psi/zcolor.c in Artifex Ghostscript before 10.04.0. There is an out-of-bounds read when reading color in Indexed color space. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Correct the defined value for AMDGPU_DMUB_NOTIFICATION_MAX
[Why & How]
It actually exposes '6' types in enum dmub_notification_type. Not 5. Using smaller
number to create array dmub_callback & dmub_thread_offload has potential to access
item out of array bound. Fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86: panasonic-laptop: Fix SINF array out of bounds accesses
The panasonic laptop code in various places uses the SINF array with index
values of 0 - SINF_CUR_BRIGHT(0x0d) without checking that the SINF array
is big enough.
Not all panasonic laptops have this many SINF array entries, for example
the Toughbook CF-18 model only has 10 SINF array entries. So it only
supports the AC+DC brightness entries and mute.
Check that the SINF array has a minimum size which covers all AC+DC
brightness entries and refuse to load if the SINF array is smaller.
For higher SINF indexes hide the sysfs attributes when the SINF array
does not contain an entry for that attribute, avoiding show()/store()
accessing the array out of bounds and add bounds checking to the probe()
and resume() code accessing these. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: nxp-fspi: fix the KASAN report out-of-bounds bug
Change the memcpy length to fix the out-of-bounds issue when writing the
data that is not 4 byte aligned to TX FIFO.
To reproduce the issue, write 3 bytes data to NOR chip.
dd if=3b of=/dev/mtd0
[ 36.926103] ==================================================================
[ 36.933409] BUG: KASAN: slab-out-of-bounds in nxp_fspi_exec_op+0x26ec/0x2838
[ 36.940514] Read of size 4 at addr ffff00081037c2a0 by task dd/455
[ 36.946721]
[ 36.948235] CPU: 3 UID: 0 PID: 455 Comm: dd Not tainted 6.11.0-rc5-gc7b0e37c8434 #1070
[ 36.956185] Hardware name: Freescale i.MX8QM MEK (DT)
[ 36.961260] Call trace:
[ 36.963723] dump_backtrace+0x90/0xe8
[ 36.967414] show_stack+0x18/0x24
[ 36.970749] dump_stack_lvl+0x78/0x90
[ 36.974451] print_report+0x114/0x5cc
[ 36.978151] kasan_report+0xa4/0xf0
[ 36.981670] __asan_report_load_n_noabort+0x1c/0x28
[ 36.986587] nxp_fspi_exec_op+0x26ec/0x2838
[ 36.990800] spi_mem_exec_op+0x8ec/0xd30
[ 36.994762] spi_mem_no_dirmap_read+0x190/0x1e0
[ 36.999323] spi_mem_dirmap_write+0x238/0x32c
[ 37.003710] spi_nor_write_data+0x220/0x374
[ 37.007932] spi_nor_write+0x110/0x2e8
[ 37.011711] mtd_write_oob_std+0x154/0x1f0
[ 37.015838] mtd_write_oob+0x104/0x1d0
[ 37.019617] mtd_write+0xb8/0x12c
[ 37.022953] mtdchar_write+0x224/0x47c
[ 37.026732] vfs_write+0x1e4/0x8c8
[ 37.030163] ksys_write+0xec/0x1d0
[ 37.033586] __arm64_sys_write+0x6c/0x9c
[ 37.037539] invoke_syscall+0x6c/0x258
[ 37.041327] el0_svc_common.constprop.0+0x160/0x22c
[ 37.046244] do_el0_svc+0x44/0x5c
[ 37.049589] el0_svc+0x38/0x78
[ 37.052681] el0t_64_sync_handler+0x13c/0x158
[ 37.057077] el0t_64_sync+0x190/0x194
[ 37.060775]
[ 37.062274] Allocated by task 455:
[ 37.065701] kasan_save_stack+0x2c/0x54
[ 37.069570] kasan_save_track+0x20/0x3c
[ 37.073438] kasan_save_alloc_info+0x40/0x54
[ 37.077736] __kasan_kmalloc+0xa0/0xb8
[ 37.081515] __kmalloc_noprof+0x158/0x2f8
[ 37.085563] mtd_kmalloc_up_to+0x120/0x154
[ 37.089690] mtdchar_write+0x130/0x47c
[ 37.093469] vfs_write+0x1e4/0x8c8
[ 37.096901] ksys_write+0xec/0x1d0
[ 37.100332] __arm64_sys_write+0x6c/0x9c
[ 37.104287] invoke_syscall+0x6c/0x258
[ 37.108064] el0_svc_common.constprop.0+0x160/0x22c
[ 37.112972] do_el0_svc+0x44/0x5c
[ 37.116319] el0_svc+0x38/0x78
[ 37.119401] el0t_64_sync_handler+0x13c/0x158
[ 37.123788] el0t_64_sync+0x190/0x194
[ 37.127474]
[ 37.128977] The buggy address belongs to the object at ffff00081037c2a0
[ 37.128977] which belongs to the cache kmalloc-8 of size 8
[ 37.141177] The buggy address is located 0 bytes inside of
[ 37.141177] allocated 3-byte region [ffff00081037c2a0, ffff00081037c2a3)
[ 37.153465]
[ 37.154971] The buggy address belongs to the physical page:
[ 37.160559] page: refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x89037c
[ 37.168596] flags: 0xbfffe0000000000(node=0|zone=2|lastcpupid=0x1ffff)
[ 37.175149] page_type: 0xfdffffff(slab)
[ 37.179021] raw: 0bfffe0000000000 ffff000800002500 dead000000000122 0000000000000000
[ 37.186788] raw: 0000000000000000 0000000080800080 00000001fdffffff 0000000000000000
[ 37.194553] page dumped because: kasan: bad access detected
[ 37.200144]
[ 37.201647] Memory state around the buggy address:
[ 37.206460] ffff00081037c180: fa fc fc fc fa fc fc fc fa fc fc fc fa fc fc fc
[ 37.213701] ffff00081037c200: fa fc fc fc 05 fc fc fc 03 fc fc fc 02 fc fc fc
[ 37.220946] >ffff00081037c280: 06 fc fc fc 03 fc fc fc fc fc fc fc fc fc fc fc
[ 37.228186] ^
[ 37.232473] ffff00081037c300: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[ 37.239718] ffff00081037c380: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[ 37.246962] ==============================================================
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: aspeed_udc: validate endpoint index for ast udc
We should verify the bound of the array to assure that host
may not manipulate the index to point past endpoint array.
Found by static analysis. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/pm: Fix negative array index read
Avoid using the negative values
for clk_idex as an index into an array pptable->DpmDescriptor.
V2: fix clk_index return check (Tim Huang) |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Check gpio_id before used as array index
[WHY & HOW]
GPIO_ID_UNKNOWN (-1) is not a valid value for array index and therefore
should be checked in advance.
This fixes 5 OVERRUN issues reported by Coverity. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Stop amdgpu_dm initialize when stream nums greater than 6
[Why]
Coverity reports OVERRUN warning. Should abort amdgpu_dm
initialize.
[How]
Return failure to amdgpu_dm_init. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Check num_valid_sets before accessing reader_wm_sets[]
[WHY & HOW]
num_valid_sets needs to be checked to avoid a negative index when
accessing reader_wm_sets[num_valid_sets - 1].
This fixes an OVERRUN issue reported by Coverity. |