CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
media: wl128x: Fix atomicity violation in fmc_send_cmd()
Atomicity violation occurs when the fmc_send_cmd() function is executed
simultaneously with the modification of the fmdev->resp_skb value.
Consider a scenario where, after passing the validity check within the
function, a non-null fmdev->resp_skb variable is assigned a null value.
This results in an invalid fmdev->resp_skb variable passing the validity
check. As seen in the later part of the function, skb = fmdev->resp_skb;
when the invalid fmdev->resp_skb passes the check, a null pointer
dereference error may occur at line 478, evt_hdr = (void *)skb->data;
To address this issue, it is recommended to include the validity check of
fmdev->resp_skb within the locked section of the function. This
modification ensures that the value of fmdev->resp_skb does not change
during the validation process, thereby maintaining its validity.
This possible bug is found by an experimental static analysis tool
developed by our team. This tool analyzes the locking APIs
to extract function pairs that can be concurrently executed, and then
analyzes the instructions in the paired functions to identify possible
concurrency bugs including data races and atomicity violations. |
In the Linux kernel, the following vulnerability has been resolved:
s390/cpum_sf: Fix and protect memory allocation of SDBs with mutex
Reservation of the PMU hardware is done at first event creation
and is protected by a pair of mutex_lock() and mutex_unlock().
After reservation of the PMU hardware the memory
required for the PMUs the event is to be installed on is
allocated by allocate_buffers() and alloc_sampling_buffer().
This done outside of the mutex protection.
Without mutex protection two or more concurrent invocations of
perf_event_init() may run in parallel.
This can lead to allocation of Sample Data Blocks (SDBs)
multiple times for the same PMU.
Prevent this and protect memory allocation of SDBs by
mutex. |
In the Linux kernel, the following vulnerability has been resolved:
s390/cpum_sf: Handle CPU hotplug remove during sampling
CPU hotplug remove handling triggers the following function
call sequence:
CPUHP_AP_PERF_S390_SF_ONLINE --> s390_pmu_sf_offline_cpu()
...
CPUHP_AP_PERF_ONLINE --> perf_event_exit_cpu()
The s390 CPUMF sampling CPU hotplug handler invokes:
s390_pmu_sf_offline_cpu()
+--> cpusf_pmu_setup()
+--> setup_pmc_cpu()
+--> deallocate_buffers()
This function de-allocates all sampling data buffers (SDBs) allocated
for that CPU at event initialization. It also clears the
PMU_F_RESERVED bit. The CPU is gone and can not be sampled.
With the event still being active on the removed CPU, the CPU event
hotplug support in kernel performance subsystem triggers the
following function calls on the removed CPU:
perf_event_exit_cpu()
+--> perf_event_exit_cpu_context()
+--> __perf_event_exit_context()
+--> __perf_remove_from_context()
+--> event_sched_out()
+--> cpumsf_pmu_del()
+--> cpumsf_pmu_stop()
+--> hw_perf_event_update()
to stop and remove the event. During removal of the event, the
sampling device driver tries to read out the remaining samples from
the sample data buffers (SDBs). But they have already been freed
(and may have been re-assigned). This may lead to a use after free
situation in which case the samples are most likely invalid. In the
best case the memory has not been reassigned and still contains
valid data.
Remedy this situation and check if the CPU is still in reserved
state (bit PMU_F_RESERVED set). In this case the SDBs have not been
released an contain valid data. This is always the case when
the event is removed (and no CPU hotplug off occured).
If the PMU_F_RESERVED bit is not set, the SDB buffers are gone. |
In the Linux kernel, the following vulnerability has been resolved:
drm/dp_mst: Fix resetting msg rx state after topology removal
If the MST topology is removed during the reception of an MST down reply
or MST up request sideband message, the
drm_dp_mst_topology_mgr::up_req_recv/down_rep_recv states could be reset
from one thread via drm_dp_mst_topology_mgr_set_mst(false), racing with
the reading/parsing of the message from another thread via
drm_dp_mst_handle_down_rep() or drm_dp_mst_handle_up_req(). The race is
possible since the reader/parser doesn't hold any lock while accessing
the reception state. This in turn can lead to a memory corruption in the
reader/parser as described by commit bd2fccac61b4 ("drm/dp_mst: Fix MST
sideband message body length check").
Fix the above by resetting the message reception state if needed before
reading/parsing a message. Another solution would be to hold the
drm_dp_mst_topology_mgr::lock for the whole duration of the message
reception/parsing in drm_dp_mst_handle_down_rep() and
drm_dp_mst_handle_up_req(), however this would require a bigger change.
Since the fix is also needed for stable, opting for the simpler solution
in this patch. |
An issue in O-RAN Near Realtime RIC ric-plt-submgr in the J-Release environment, allows remote attackers to cause a denial of service (DoS) via a crafted request to the Subscription Manager API component. |
An issue in pytorch v2.7.0 can lead to a Denial of Service (DoS) when a PyTorch model consists of torch.Tensor.to_sparse() and torch.Tensor.to_dense() and is compiled by Inductor. |
A buffer overflow occurs in pytorch v2.7.0 when a PyTorch model consists of torch.nn.Conv2d, torch.nn.functional.hardshrink, and torch.Tensor.view-torch.mv() and is compiled by Inductor, leading to a Denial of Service (DoS). |
TensorFlow v2.18.0 was discovered to output random results when compiling Embedding, leading to unexpected behavior in the application. |
pytorch v2.8.0 was discovered to contain an integer overflow in the component torch.nan_to_num-.long(). |
DO NOT USE THIS CVE RECORD. ConsultIDs: none. Reason: This record was withdrawn by its CNA. Further investigation showed that it was not a security issue. Notes: none. |
A vulnerability in the Python-Future 1.0.0 module allows for arbitrary code execution via the unintended import of a file named test.py. When the module is loaded, it automatically imports test.py, if present in the same directory or in the sys.path. This behavior can be exploited by an attacker who has the ability to write files to the server, allowing the execution of arbitrary code. NOTE: Multiple third parties have disputed this issue and stated that it is not a security flaw in python-future and is a documented feature of Python’s import system in the handling of sys.path. |
An issue was discovered in Stormshield Network Security (SNS) before 5.0.1. TPM authentication information could, in some HA use cases, be shared among administrators, which can cause secret sharing. |
An issue in petstore v.1.0.7 allows a remote attacker to execute arbitrary code via the DELETE endpoint |
In the Linux kernel, the following vulnerability has been resolved:
mm: hugetlb: independent PMD page table shared count
The folio refcount may be increased unexpectly through try_get_folio() by
caller such as split_huge_pages. In huge_pmd_unshare(), we use refcount
to check whether a pmd page table is shared. The check is incorrect if
the refcount is increased by the above caller, and this can cause the page
table leaked:
BUG: Bad page state in process sh pfn:109324
page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x66 pfn:0x109324
flags: 0x17ffff800000000(node=0|zone=2|lastcpupid=0xfffff)
page_type: f2(table)
raw: 017ffff800000000 0000000000000000 0000000000000000 0000000000000000
raw: 0000000000000066 0000000000000000 00000000f2000000 0000000000000000
page dumped because: nonzero mapcount
...
CPU: 31 UID: 0 PID: 7515 Comm: sh Kdump: loaded Tainted: G B 6.13.0-rc2master+ #7
Tainted: [B]=BAD_PAGE
Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015
Call trace:
show_stack+0x20/0x38 (C)
dump_stack_lvl+0x80/0xf8
dump_stack+0x18/0x28
bad_page+0x8c/0x130
free_page_is_bad_report+0xa4/0xb0
free_unref_page+0x3cc/0x620
__folio_put+0xf4/0x158
split_huge_pages_all+0x1e0/0x3e8
split_huge_pages_write+0x25c/0x2d8
full_proxy_write+0x64/0xd8
vfs_write+0xcc/0x280
ksys_write+0x70/0x110
__arm64_sys_write+0x24/0x38
invoke_syscall+0x50/0x120
el0_svc_common.constprop.0+0xc8/0xf0
do_el0_svc+0x24/0x38
el0_svc+0x34/0x128
el0t_64_sync_handler+0xc8/0xd0
el0t_64_sync+0x190/0x198
The issue may be triggered by damon, offline_page, page_idle, etc, which
will increase the refcount of page table.
1. The page table itself will be discarded after reporting the
"nonzero mapcount".
2. The HugeTLB page mapped by the page table miss freeing since we
treat the page table as shared and a shared page table will not be
unmapped.
Fix it by introducing independent PMD page table shared count. As
described by comment, pt_index/pt_mm/pt_frag_refcount are used for s390
gmap, x86 pgds and powerpc, pt_share_count is used for x86/arm64/riscv
pmds, so we can reuse the field as pt_share_count. |
In the Linux kernel, the following vulnerability has been resolved:
mm: vmscan: account for free pages to prevent infinite Loop in throttle_direct_reclaim()
The task sometimes continues looping in throttle_direct_reclaim() because
allow_direct_reclaim(pgdat) keeps returning false.
#0 [ffff80002cb6f8d0] __switch_to at ffff8000080095ac
#1 [ffff80002cb6f900] __schedule at ffff800008abbd1c
#2 [ffff80002cb6f990] schedule at ffff800008abc50c
#3 [ffff80002cb6f9b0] throttle_direct_reclaim at ffff800008273550
#4 [ffff80002cb6fa20] try_to_free_pages at ffff800008277b68
#5 [ffff80002cb6fae0] __alloc_pages_nodemask at ffff8000082c4660
#6 [ffff80002cb6fc50] alloc_pages_vma at ffff8000082e4a98
#7 [ffff80002cb6fca0] do_anonymous_page at ffff80000829f5a8
#8 [ffff80002cb6fce0] __handle_mm_fault at ffff8000082a5974
#9 [ffff80002cb6fd90] handle_mm_fault at ffff8000082a5bd4
At this point, the pgdat contains the following two zones:
NODE: 4 ZONE: 0 ADDR: ffff00817fffe540 NAME: "DMA32"
SIZE: 20480 MIN/LOW/HIGH: 11/28/45
VM_STAT:
NR_FREE_PAGES: 359
NR_ZONE_INACTIVE_ANON: 18813
NR_ZONE_ACTIVE_ANON: 0
NR_ZONE_INACTIVE_FILE: 50
NR_ZONE_ACTIVE_FILE: 0
NR_ZONE_UNEVICTABLE: 0
NR_ZONE_WRITE_PENDING: 0
NR_MLOCK: 0
NR_BOUNCE: 0
NR_ZSPAGES: 0
NR_FREE_CMA_PAGES: 0
NODE: 4 ZONE: 1 ADDR: ffff00817fffec00 NAME: "Normal"
SIZE: 8454144 PRESENT: 98304 MIN/LOW/HIGH: 68/166/264
VM_STAT:
NR_FREE_PAGES: 146
NR_ZONE_INACTIVE_ANON: 94668
NR_ZONE_ACTIVE_ANON: 3
NR_ZONE_INACTIVE_FILE: 735
NR_ZONE_ACTIVE_FILE: 78
NR_ZONE_UNEVICTABLE: 0
NR_ZONE_WRITE_PENDING: 0
NR_MLOCK: 0
NR_BOUNCE: 0
NR_ZSPAGES: 0
NR_FREE_CMA_PAGES: 0
In allow_direct_reclaim(), while processing ZONE_DMA32, the sum of
inactive/active file-backed pages calculated in zone_reclaimable_pages()
based on the result of zone_page_state_snapshot() is zero.
Additionally, since this system lacks swap, the calculation of inactive/
active anonymous pages is skipped.
crash> p nr_swap_pages
nr_swap_pages = $1937 = {
counter = 0
}
As a result, ZONE_DMA32 is deemed unreclaimable and skipped, moving on to
the processing of the next zone, ZONE_NORMAL, despite ZONE_DMA32 having
free pages significantly exceeding the high watermark.
The problem is that the pgdat->kswapd_failures hasn't been incremented.
crash> px ((struct pglist_data *) 0xffff00817fffe540)->kswapd_failures
$1935 = 0x0
This is because the node deemed balanced. The node balancing logic in
balance_pgdat() evaluates all zones collectively. If one or more zones
(e.g., ZONE_DMA32) have enough free pages to meet their watermarks, the
entire node is deemed balanced. This causes balance_pgdat() to exit early
before incrementing the kswapd_failures, as it considers the overall
memory state acceptable, even though some zones (like ZONE_NORMAL) remain
under significant pressure.
The patch ensures that zone_reclaimable_pages() includes free pages
(NR_FREE_PAGES) in its calculation when no other reclaimable pages are
available (e.g., file-backed or anonymous pages). This change prevents
zones like ZONE_DMA32, which have sufficient free pages, from being
mistakenly deemed unreclaimable. By doing so, the patch ensures proper
node balancing, avoids masking pressure on other zones like ZONE_NORMAL,
and prevents infinite loops in throttle_direct_reclaim() caused by
allow_direct_reclaim(pgdat) repeatedly returning false.
The kernel hangs due to a task stuck in throttle_direct_reclaim(), caused
by a node being incorrectly deemed balanced despite pressure in certain
zones, such as ZONE_NORMAL. This issue arises from
zone_reclaimable_pages
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
ALSA: seq: oss: Fix races at processing SysEx messages
OSS sequencer handles the SysEx messages split in 6 bytes packets, and
ALSA sequencer OSS layer tries to combine those. It stores the data
in the internal buffer and this access is racy as of now, which may
lead to the out-of-bounds access.
As a temporary band-aid fix, introduce a mutex for serializing the
process of the SysEx message packets. |
In the Linux kernel, the following vulnerability has been resolved:
pinctrl: mcp23s08: Fix sleeping in atomic context due to regmap locking
If a device uses MCP23xxx IO expander to receive IRQs, the following
bug can happen:
BUG: sleeping function called from invalid context
at kernel/locking/mutex.c:283
in_atomic(): 1, irqs_disabled(): 1, non_block: 0, ...
preempt_count: 1, expected: 0
...
Call Trace:
...
__might_resched+0x104/0x10e
__might_sleep+0x3e/0x62
mutex_lock+0x20/0x4c
regmap_lock_mutex+0x10/0x18
regmap_update_bits_base+0x2c/0x66
mcp23s08_irq_set_type+0x1ae/0x1d6
__irq_set_trigger+0x56/0x172
__setup_irq+0x1e6/0x646
request_threaded_irq+0xb6/0x160
...
We observed the problem while experimenting with a touchscreen driver which
used MCP23017 IO expander (I2C).
The regmap in the pinctrl-mcp23s08 driver uses a mutex for protection from
concurrent accesses, which is the default for regmaps without .fast_io,
.disable_locking, etc.
mcp23s08_irq_set_type() calls regmap_update_bits_base(), and the latter
locks the mutex.
However, __setup_irq() locks desc->lock spinlock before calling these
functions. As a result, the system tries to lock the mutex whole holding
the spinlock.
It seems, the internal regmap locks are not needed in this driver at all.
mcp->lock seems to protect the regmap from concurrent accesses already,
except, probably, in mcp_pinconf_get/set.
mcp23s08_irq_set_type() and mcp23s08_irq_mask/unmask() are called under
chip_bus_lock(), which calls mcp23s08_irq_bus_lock(). The latter takes
mcp->lock and enables regmap caching, so that the potentially slow I2C
accesses are deferred until chip_bus_unlock().
The accesses to the regmap from mcp23s08_probe_one() do not need additional
locking.
In all remaining places where the regmap is accessed, except
mcp_pinconf_get/set(), the driver already takes mcp->lock.
This patch adds locking in mcp_pinconf_get/set() and disables internal
locking in the regmap config. Among other things, it fixes the sleeping
in atomic context described above. |
In the Linux kernel, the following vulnerability has been resolved:
mm/damon/core: fix new damon_target objects leaks on damon_commit_targets()
Patch series "mm/damon/core: fix memory leaks and ignored inputs from
damon_commit_ctx()".
Due to two bugs in damon_commit_targets() and damon_commit_schemes(),
which are called from damon_commit_ctx(), some user inputs can be ignored,
and some mmeory objects can be leaked. Fix those.
Note that only DAMON sysfs interface users are affected. Other DAMON core
API user modules that more focused more on simple and dedicated production
usages, including DAMON_RECLAIM and DAMON_LRU_SORT are not using the buggy
function in the way, so not affected.
This patch (of 2):
When new DAMON targets are added via damon_commit_targets(), the newly
created targets are not deallocated when updating the internal data
(damon_commit_target()) is failed. Worse yet, even if the setup is
successfully done, the new target is not linked to the context. Hence,
the new targets are always leaked regardless of the internal data setup
failure. Fix the leaks. |
In the Linux kernel, the following vulnerability has been resolved:
mm/kmemleak: fix sleeping function called from invalid context at print message
Address a bug in the kernel that triggers a "sleeping function called from
invalid context" warning when /sys/kernel/debug/kmemleak is printed under
specific conditions:
- CONFIG_PREEMPT_RT=y
- Set SELinux as the LSM for the system
- Set kptr_restrict to 1
- kmemleak buffer contains at least one item
BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48
in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 136, name: cat
preempt_count: 1, expected: 0
RCU nest depth: 2, expected: 2
6 locks held by cat/136:
#0: ffff32e64bcbf950 (&p->lock){+.+.}-{3:3}, at: seq_read_iter+0xb8/0xe30
#1: ffffafe6aaa9dea0 (scan_mutex){+.+.}-{3:3}, at: kmemleak_seq_start+0x34/0x128
#3: ffff32e6546b1cd0 (&object->lock){....}-{2:2}, at: kmemleak_seq_show+0x3c/0x1e0
#4: ffffafe6aa8d8560 (rcu_read_lock){....}-{1:2}, at: has_ns_capability_noaudit+0x8/0x1b0
#5: ffffafe6aabbc0f8 (notif_lock){+.+.}-{2:2}, at: avc_compute_av+0xc4/0x3d0
irq event stamp: 136660
hardirqs last enabled at (136659): [<ffffafe6a80fd7a0>] _raw_spin_unlock_irqrestore+0xa8/0xd8
hardirqs last disabled at (136660): [<ffffafe6a80fd85c>] _raw_spin_lock_irqsave+0x8c/0xb0
softirqs last enabled at (0): [<ffffafe6a5d50b28>] copy_process+0x11d8/0x3df8
softirqs last disabled at (0): [<0000000000000000>] 0x0
Preemption disabled at:
[<ffffafe6a6598a4c>] kmemleak_seq_show+0x3c/0x1e0
CPU: 1 UID: 0 PID: 136 Comm: cat Tainted: G E 6.11.0-rt7+ #34
Tainted: [E]=UNSIGNED_MODULE
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace+0xa0/0x128
show_stack+0x1c/0x30
dump_stack_lvl+0xe8/0x198
dump_stack+0x18/0x20
rt_spin_lock+0x8c/0x1a8
avc_perm_nonode+0xa0/0x150
cred_has_capability.isra.0+0x118/0x218
selinux_capable+0x50/0x80
security_capable+0x7c/0xd0
has_ns_capability_noaudit+0x94/0x1b0
has_capability_noaudit+0x20/0x30
restricted_pointer+0x21c/0x4b0
pointer+0x298/0x760
vsnprintf+0x330/0xf70
seq_printf+0x178/0x218
print_unreferenced+0x1a4/0x2d0
kmemleak_seq_show+0xd0/0x1e0
seq_read_iter+0x354/0xe30
seq_read+0x250/0x378
full_proxy_read+0xd8/0x148
vfs_read+0x190/0x918
ksys_read+0xf0/0x1e0
__arm64_sys_read+0x70/0xa8
invoke_syscall.constprop.0+0xd4/0x1d8
el0_svc+0x50/0x158
el0t_64_sync+0x17c/0x180
%pS and %pK, in the same back trace line, are redundant, and %pS can void
%pK service in certain contexts.
%pS alone already provides the necessary information, and if it cannot
resolve the symbol, it falls back to printing the raw address voiding
the original intent behind the %pK.
Additionally, %pK requires a privilege check CAP_SYSLOG enforced through
the LSM, which can trigger a "sleeping function called from invalid
context" warning under RT_PREEMPT kernels when the check occurs in an
atomic context. This issue may also affect other LSMs.
This change avoids the unnecessary privilege check and resolves the
sleeping function warning without any loss of information. |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: zlib: fix avail_in bytes for s390 zlib HW compression path
Since the input data length passed to zlib_compress_folios() can be
arbitrary, always setting strm.avail_in to a multiple of PAGE_SIZE may
cause read-in bytes to exceed the input range. Currently this triggers
an assert in btrfs_compress_folios() on the debug kernel (see below).
Fix strm.avail_in calculation for S390 hardware acceleration path.
assertion failed: *total_in <= orig_len, in fs/btrfs/compression.c:1041
------------[ cut here ]------------
kernel BUG at fs/btrfs/compression.c:1041!
monitor event: 0040 ilc:2 [#1] PREEMPT SMP
CPU: 16 UID: 0 PID: 325 Comm: kworker/u273:3 Not tainted 6.13.0-20241204.rc1.git6.fae3b21430ca.300.fc41.s390x+debug #1
Hardware name: IBM 3931 A01 703 (z/VM 7.4.0)
Workqueue: btrfs-delalloc btrfs_work_helper
Krnl PSW : 0704d00180000000 0000021761df6538 (btrfs_compress_folios+0x198/0x1a0)
R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:1 PM:0 RI:0 EA:3
Krnl GPRS: 0000000080000000 0000000000000001 0000000000000047 0000000000000000
0000000000000006 ffffff01757bb000 000001976232fcc0 000000000000130c
000001976232fcd0 000001976232fcc8 00000118ff4a0e30 0000000000000001
00000111821ab400 0000011100000000 0000021761df6534 000001976232fb58
Krnl Code: 0000021761df6528: c020006f5ef4 larl %r2,0000021762be2310
0000021761df652e: c0e5ffbd09d5 brasl %r14,00000217615978d8
#0000021761df6534: af000000 mc 0,0
>0000021761df6538: 0707 bcr 0,%r7
0000021761df653a: 0707 bcr 0,%r7
0000021761df653c: 0707 bcr 0,%r7
0000021761df653e: 0707 bcr 0,%r7
0000021761df6540: c004004bb7ec brcl 0,000002176276d518
Call Trace:
[<0000021761df6538>] btrfs_compress_folios+0x198/0x1a0
([<0000021761df6534>] btrfs_compress_folios+0x194/0x1a0)
[<0000021761d97788>] compress_file_range+0x3b8/0x6d0
[<0000021761dcee7c>] btrfs_work_helper+0x10c/0x160
[<0000021761645760>] process_one_work+0x2b0/0x5d0
[<000002176164637e>] worker_thread+0x20e/0x3e0
[<000002176165221a>] kthread+0x15a/0x170
[<00000217615b859c>] __ret_from_fork+0x3c/0x60
[<00000217626e72d2>] ret_from_fork+0xa/0x38
INFO: lockdep is turned off.
Last Breaking-Event-Address:
[<0000021761597924>] _printk+0x4c/0x58
Kernel panic - not syncing: Fatal exception: panic_on_oops |