CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
icmp6: Fix null-ptr-deref of ip6_null_entry->rt6i_idev in icmp6_dev().
With some IPv6 Ext Hdr (RPL, SRv6, etc.), we can send a packet that
has the link-local address as src and dst IP and will be forwarded to
an external IP in the IPv6 Ext Hdr.
For example, the script below generates a packet whose src IP is the
link-local address and dst is updated to 11::.
# for f in $(find /proc/sys/net/ -name *seg6_enabled*); do echo 1 > $f; done
# python3
>>> from socket import *
>>> from scapy.all import *
>>>
>>> SRC_ADDR = DST_ADDR = "fe80::5054:ff:fe12:3456"
>>>
>>> pkt = IPv6(src=SRC_ADDR, dst=DST_ADDR)
>>> pkt /= IPv6ExtHdrSegmentRouting(type=4, addresses=["11::", "22::"], segleft=1)
>>>
>>> sk = socket(AF_INET6, SOCK_RAW, IPPROTO_RAW)
>>> sk.sendto(bytes(pkt), (DST_ADDR, 0))
For such a packet, we call ip6_route_input() to look up a route for the
next destination in these three functions depending on the header type.
* ipv6_rthdr_rcv()
* ipv6_rpl_srh_rcv()
* ipv6_srh_rcv()
If no route is found, ip6_null_entry is set to skb, and the following
dst_input(skb) calls ip6_pkt_drop().
Finally, in icmp6_dev(), we dereference skb_rt6_info(skb)->rt6i_idev->dev
as the input device is the loopback interface. Then, we have to check if
skb_rt6_info(skb)->rt6i_idev is NULL or not to avoid NULL pointer deref
for ip6_null_entry.
BUG: kernel NULL pointer dereference, address: 0000000000000000
PF: supervisor read access in kernel mode
PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 0 PID: 157 Comm: python3 Not tainted 6.4.0-11996-gb121d614371c #35
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
RIP: 0010:icmp6_send (net/ipv6/icmp.c:436 net/ipv6/icmp.c:503)
Code: fe ff ff 48 c7 40 30 c0 86 5d 83 e8 c6 44 1c 00 e9 c8 fc ff ff 49 8b 46 58 48 83 e0 fe 0f 84 4a fb ff ff 48 8b 80 d0 00 00 00 <48> 8b 00 44 8b 88 e0 00 00 00 e9 34 fb ff ff 4d 85 ed 0f 85 69 01
RSP: 0018:ffffc90000003c70 EFLAGS: 00000286
RAX: 0000000000000000 RBX: 0000000000000001 RCX: 00000000000000e0
RDX: 0000000000000021 RSI: 0000000000000000 RDI: ffff888006d72a18
RBP: ffffc90000003d80 R08: 0000000000000000 R09: 0000000000000001
R10: ffffc90000003d98 R11: 0000000000000040 R12: ffff888006d72a10
R13: 0000000000000000 R14: ffff8880057fb800 R15: ffffffff835d86c0
FS: 00007f9dc72ee740(0000) GS:ffff88807dc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 00000000057b2000 CR4: 00000000007506f0
PKRU: 55555554
Call Trace:
<IRQ>
ip6_pkt_drop (net/ipv6/route.c:4513)
ipv6_rthdr_rcv (net/ipv6/exthdrs.c:640 net/ipv6/exthdrs.c:686)
ip6_protocol_deliver_rcu (net/ipv6/ip6_input.c:437 (discriminator 5))
ip6_input_finish (./include/linux/rcupdate.h:781 net/ipv6/ip6_input.c:483)
__netif_receive_skb_one_core (net/core/dev.c:5455)
process_backlog (./include/linux/rcupdate.h:781 net/core/dev.c:5895)
__napi_poll (net/core/dev.c:6460)
net_rx_action (net/core/dev.c:6529 net/core/dev.c:6660)
__do_softirq (./arch/x86/include/asm/jump_label.h:27 ./include/linux/jump_label.h:207 ./include/trace/events/irq.h:142 kernel/softirq.c:554)
do_softirq (kernel/softirq.c:454 kernel/softirq.c:441)
</IRQ>
<TASK>
__local_bh_enable_ip (kernel/softirq.c:381)
__dev_queue_xmit (net/core/dev.c:4231)
ip6_finish_output2 (./include/net/neighbour.h:544 net/ipv6/ip6_output.c:135)
rawv6_sendmsg (./include/net/dst.h:458 ./include/linux/netfilter.h:303 net/ipv6/raw.c:656 net/ipv6/raw.c:914)
sock_sendmsg (net/socket.c:725 net/socket.c:748)
__sys_sendto (net/socket.c:2134)
__x64_sys_sendto (net/socket.c:2146 net/socket.c:2142 net/socket.c:2142)
do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:120)
RIP: 0033:0x7f9dc751baea
Code: d8 64 89 02 48 c7 c0 ff f
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
powercap: intel_rapl: fix UBSAN shift-out-of-bounds issue
When value < time_unit, the parameter of ilog2() will be zero and
the return value is -1. u64(-1) is too large for shift exponent
and then will trigger shift-out-of-bounds:
shift exponent 18446744073709551615 is too large for 32-bit type 'int'
Call Trace:
rapl_compute_time_window_core
rapl_write_data_raw
set_time_window
store_constraint_time_window_us |
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: hisilicon: Add multi-thread support for a DMA channel
When we get a DMA channel and try to use it in multiple threads it
will cause oops and hanging the system.
% echo 100 > /sys/module/dmatest/parameters/threads_per_chan
% echo 100 > /sys/module/dmatest/parameters/iterations
% echo 1 > /sys/module/dmatest/parameters/run
[383493.327077] Unable to handle kernel paging request at virtual
address dead000000000108
[383493.335103] Mem abort info:
[383493.335103] ESR = 0x96000044
[383493.335105] EC = 0x25: DABT (current EL), IL = 32 bits
[383493.335107] SET = 0, FnV = 0
[383493.335108] EA = 0, S1PTW = 0
[383493.335109] FSC = 0x04: level 0 translation fault
[383493.335110] Data abort info:
[383493.335111] ISV = 0, ISS = 0x00000044
[383493.364739] CM = 0, WnR = 1
[383493.367793] [dead000000000108] address between user and kernel
address ranges
[383493.375021] Internal error: Oops: 96000044 [#1] PREEMPT SMP
[383493.437574] CPU: 63 PID: 27895 Comm: dma0chan0-copy2 Kdump:
loaded Tainted: GO 5.17.0-rc4+ #2
[383493.457851] pstate: 204000c9 (nzCv daIF +PAN -UAO -TCO -DIT
-SSBS BTYPE=--)
[383493.465331] pc : vchan_tx_submit+0x64/0xa0
[383493.469957] lr : vchan_tx_submit+0x34/0xa0
This occurs because the transmission timed out, and that's due
to data race. Each thread rewrite channels's descriptor as soon as
device_issue_pending is called. It leads to the situation that
the driver thinks that it uses the right descriptor in interrupt
handler while channels's descriptor has been changed by other
thread. The descriptor which in fact reported interrupt will not
be handled any more, as well as its tx->callback.
That's why timeout reports.
With current fixes channels' descriptor changes it's value only
when it has been used. A new descriptor is acquired from
vc->desc_issued queue that is already filled with descriptors
that are ready to be sent. Threads have no direct access to DMA
channel descriptor. In case of channel's descriptor is busy, try
to submit to HW again when a descriptor is completed. In this case,
vc->desc_issued may be empty when hisi_dma_start_transfer is called,
so delete error reporting on this. Now it is just possible to queue
a descriptor for further processing. |
In the Linux kernel, the following vulnerability has been resolved:
brcmfmac: return error when getting invalid max_flowrings from dongle
When firmware hit trap at initialization, host will read abnormal
max_flowrings number from dongle, and it will cause kernel panic when
doing iowrite to initialize dongle ring.
To detect this error at early stage, we directly return error when getting
invalid max_flowrings(>256). |
In the Linux kernel, the following vulnerability has been resolved:
USB: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic at
once. |
In the Linux kernel, the following vulnerability has been resolved:
lwt: Fix return values of BPF xmit ops
BPF encap ops can return different types of positive values, such like
NET_RX_DROP, NET_XMIT_CN, NETDEV_TX_BUSY, and so on, from function
skb_do_redirect and bpf_lwt_xmit_reroute. At the xmit hook, such return
values would be treated implicitly as LWTUNNEL_XMIT_CONTINUE in
ip(6)_finish_output2. When this happens, skbs that have been freed would
continue to the neighbor subsystem, causing use-after-free bug and
kernel crashes.
To fix the incorrect behavior, skb_do_redirect return values can be
simply discarded, the same as tc-egress behavior. On the other hand,
bpf_lwt_xmit_reroute returns useful errors to local senders, e.g. PMTU
information. Thus convert its return values to avoid the conflict with
LWTUNNEL_XMIT_CONTINUE. |
In the Linux kernel, the following vulnerability has been resolved:
NFSv4.2: Rework scratch handling for READ_PLUS (again)
I found that the read code might send multiple requests using the same
nfs_pgio_header, but nfs4_proc_read_setup() is only called once. This is
how we ended up occasionally double-freeing the scratch buffer, but also
means we set a NULL pointer but non-zero length to the xdr scratch
buffer. This results in an oops the first time decoding needs to copy
something to scratch, which frequently happens when decoding READ_PLUS
hole segments.
I fix this by moving scratch handling into the pageio read code. I
provide a function to allocate scratch space for decoding read replies,
and free the scratch buffer when the nfs_pgio_header is freed. |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix deadlock when aborting transaction during relocation with scrub
Before relocating a block group we pause scrub, then do the relocation and
then unpause scrub. The relocation process requires starting and committing
a transaction, and if we have a failure in the critical section of the
transaction commit path (transaction state >= TRANS_STATE_COMMIT_START),
we will deadlock if there is a paused scrub.
That results in stack traces like the following:
[42.479] BTRFS info (device sdc): relocating block group 53876686848 flags metadata|raid6
[42.936] BTRFS warning (device sdc): Skipping commit of aborted transaction.
[42.936] ------------[ cut here ]------------
[42.936] BTRFS: Transaction aborted (error -28)
[42.936] WARNING: CPU: 11 PID: 346822 at fs/btrfs/transaction.c:1977 btrfs_commit_transaction+0xcc8/0xeb0 [btrfs]
[42.936] Modules linked in: dm_flakey dm_mod loop btrfs (...)
[42.936] CPU: 11 PID: 346822 Comm: btrfs Tainted: G W 6.3.0-rc2-btrfs-next-127+ #1
[42.936] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[42.936] RIP: 0010:btrfs_commit_transaction+0xcc8/0xeb0 [btrfs]
[42.936] Code: ff ff 45 8b (...)
[42.936] RSP: 0018:ffffb58649633b48 EFLAGS: 00010282
[42.936] RAX: 0000000000000000 RBX: ffff8be6ef4d5bd8 RCX: 0000000000000000
[42.936] RDX: 0000000000000002 RSI: ffffffffb35e7782 RDI: 00000000ffffffff
[42.936] RBP: ffff8be6ef4d5c98 R08: 0000000000000000 R09: ffffb586496339e8
[42.936] R10: 0000000000000001 R11: 0000000000000001 R12: ffff8be6d38c7c00
[42.936] R13: 00000000ffffffe4 R14: ffff8be6c268c000 R15: ffff8be6ef4d5cf0
[42.936] FS: 00007f381a82b340(0000) GS:ffff8beddfcc0000(0000) knlGS:0000000000000000
[42.936] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[42.936] CR2: 00007f1e35fb7638 CR3: 0000000117680006 CR4: 0000000000370ee0
[42.936] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[42.936] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[42.936] Call Trace:
[42.936] <TASK>
[42.936] ? start_transaction+0xcb/0x610 [btrfs]
[42.936] prepare_to_relocate+0x111/0x1a0 [btrfs]
[42.936] relocate_block_group+0x57/0x5d0 [btrfs]
[42.936] ? btrfs_wait_nocow_writers+0x25/0xb0 [btrfs]
[42.936] btrfs_relocate_block_group+0x248/0x3c0 [btrfs]
[42.936] ? __pfx_autoremove_wake_function+0x10/0x10
[42.936] btrfs_relocate_chunk+0x3b/0x150 [btrfs]
[42.936] btrfs_balance+0x8ff/0x11d0 [btrfs]
[42.936] ? __kmem_cache_alloc_node+0x14a/0x410
[42.936] btrfs_ioctl+0x2334/0x32c0 [btrfs]
[42.937] ? mod_objcg_state+0xd2/0x360
[42.937] ? refill_obj_stock+0xb0/0x160
[42.937] ? seq_release+0x25/0x30
[42.937] ? __rseq_handle_notify_resume+0x3b5/0x4b0
[42.937] ? percpu_counter_add_batch+0x2e/0xa0
[42.937] ? __x64_sys_ioctl+0x88/0xc0
[42.937] __x64_sys_ioctl+0x88/0xc0
[42.937] do_syscall_64+0x38/0x90
[42.937] entry_SYSCALL_64_after_hwframe+0x72/0xdc
[42.937] RIP: 0033:0x7f381a6ffe9b
[42.937] Code: 00 48 89 44 24 (...)
[42.937] RSP: 002b:00007ffd45ecf060 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
[42.937] RAX: ffffffffffffffda RBX: 0000000000000001 RCX: 00007f381a6ffe9b
[42.937] RDX: 00007ffd45ecf150 RSI: 00000000c4009420 RDI: 0000000000000003
[42.937] RBP: 0000000000000003 R08: 0000000000000013 R09: 0000000000000000
[42.937] R10: 00007f381a60c878 R11: 0000000000000246 R12: 00007ffd45ed0423
[42.937] R13: 00007ffd45ecf150 R14: 0000000000000000 R15: 00007ffd45ecf148
[42.937] </TASK>
[42.937] ---[ end trace 0000000000000000 ]---
[42.937] BTRFS: error (device sdc: state A) in cleanup_transaction:1977: errno=-28 No space left
[59.196] INFO: task btrfs:346772 blocked for more than 120 seconds.
[59.196] Tainted: G W 6.3.0-rc2-btrfs-next-127+ #1
[59.196] "echo 0 > /proc/sys/kernel/hung_
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
sctp: initialize more fields in sctp_v6_from_sk()
syzbot found that sin6_scope_id was not properly initialized,
leading to undefined behavior.
Clear sin6_scope_id and sin6_flowinfo.
BUG: KMSAN: uninit-value in __sctp_v6_cmp_addr+0x887/0x8c0 net/sctp/ipv6.c:649
__sctp_v6_cmp_addr+0x887/0x8c0 net/sctp/ipv6.c:649
sctp_inet6_cmp_addr+0x4f2/0x510 net/sctp/ipv6.c:983
sctp_bind_addr_conflict+0x22a/0x3b0 net/sctp/bind_addr.c:390
sctp_get_port_local+0x21eb/0x2440 net/sctp/socket.c:8452
sctp_get_port net/sctp/socket.c:8523 [inline]
sctp_listen_start net/sctp/socket.c:8567 [inline]
sctp_inet_listen+0x710/0xfd0 net/sctp/socket.c:8636
__sys_listen_socket net/socket.c:1912 [inline]
__sys_listen net/socket.c:1927 [inline]
__do_sys_listen net/socket.c:1932 [inline]
__se_sys_listen net/socket.c:1930 [inline]
__x64_sys_listen+0x343/0x4c0 net/socket.c:1930
x64_sys_call+0x271d/0x3e20 arch/x86/include/generated/asm/syscalls_64.h:51
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xd9/0x210 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Local variable addr.i.i created at:
sctp_get_port net/sctp/socket.c:8515 [inline]
sctp_listen_start net/sctp/socket.c:8567 [inline]
sctp_inet_listen+0x650/0xfd0 net/sctp/socket.c:8636
__sys_listen_socket net/socket.c:1912 [inline]
__sys_listen net/socket.c:1927 [inline]
__do_sys_listen net/socket.c:1932 [inline]
__se_sys_listen net/socket.c:1930 [inline]
__x64_sys_listen+0x343/0x4c0 net/socket.c:1930 |
In the Linux kernel, the following vulnerability has been resolved:
LoongArch: mm: Add p?d_leaf() definitions
When I do LTP test, LTP test case ksm06 caused panic at
break_ksm_pmd_entry
-> pmd_leaf (Huge page table but False)
-> pte_present (panic)
The reason is pmd_leaf() is not defined, So like commit 501b81046701
("mips: mm: add p?d_leaf() definitions") add p?d_leaf() definition for
LoongArch. |
In the Linux kernel, the following vulnerability has been resolved:
HID: intel-thc-hid: intel-quicki2c: Fix ACPI dsd ICRS/ISUB length
The QuickI2C ACPI _DSD methods return ICRS and ISUB data with a
trailing byte, making the actual length is one more byte than the
structs defined.
It caused stack-out-of-bounds and kernel crash:
kernel: BUG: KASAN: stack-out-of-bounds in quicki2c_acpi_get_dsd_property.constprop.0+0x111/0x1b0 [intel_quicki2c]
kernel: Write of size 12 at addr ffff888106d1f900 by task kworker/u33:2/75
kernel:
kernel: CPU: 3 UID: 0 PID: 75 Comm: kworker/u33:2 Not tainted 6.16.0+ #3 PREEMPT(voluntary)
kernel: Workqueue: async async_run_entry_fn
kernel: Call Trace:
kernel: <TASK>
kernel: dump_stack_lvl+0x76/0xa0
kernel: print_report+0xd1/0x660
kernel: ? __pfx__raw_spin_lock_irqsave+0x10/0x10
kernel: ? __kasan_slab_free+0x5d/0x80
kernel: ? kasan_addr_to_slab+0xd/0xb0
kernel: kasan_report+0xe1/0x120
kernel: ? quicki2c_acpi_get_dsd_property.constprop.0+0x111/0x1b0 [intel_quicki2c]
kernel: ? quicki2c_acpi_get_dsd_property.constprop.0+0x111/0x1b0 [intel_quicki2c]
kernel: kasan_check_range+0x11c/0x200
kernel: __asan_memcpy+0x3b/0x80
kernel: quicki2c_acpi_get_dsd_property.constprop.0+0x111/0x1b0 [intel_quicki2c]
kernel: ? __pfx_quicki2c_acpi_get_dsd_property.constprop.0+0x10/0x10 [intel_quicki2c]
kernel: quicki2c_get_acpi_resources+0x237/0x730 [intel_quicki2c]
[...]
kernel: </TASK>
kernel:
kernel: The buggy address belongs to stack of task kworker/u33:2/75
kernel: and is located at offset 48 in frame:
kernel: quicki2c_get_acpi_resources+0x0/0x730 [intel_quicki2c]
kernel:
kernel: This frame has 3 objects:
kernel: [32, 36) 'hid_desc_addr'
kernel: [48, 59) 'i2c_param'
kernel: [80, 224) 'i2c_config'
ACPI DSD methods return:
\_SB.PC00.THC0.ICRS Buffer 000000003fdc947b 001 Len 0C = 0A 00 80 1A 06 00 00 00 00 00 00 00
\_SB.PC00.THC0.ISUB Buffer 00000000f2fcbdc4 001 Len 91 = 00 00 00 00 00 00 00 00 00 00 00 00
Adding reserved padding to quicki2c_subip_acpi_parameter/config. |
In the Linux kernel, the following vulnerability has been resolved:
i2c: designware: Fix handling of real but unexpected device interrupts
Commit c7b79a752871 ("mfd: intel-lpss: Add Intel Alder Lake PCH-S PCI
IDs") caused a regression on certain Gigabyte motherboards for Intel
Alder Lake-S where system crashes to NULL pointer dereference in
i2c_dw_xfer_msg() when system resumes from S3 sleep state ("deep").
I was able to debug the issue on Gigabyte Z690 AORUS ELITE and made
following notes:
- Issue happens when resuming from S3 but not when resuming from
"s2idle"
- PCI device 00:15.0 == i2c_designware.0 is already in D0 state when
system enters into pci_pm_resume_noirq() while all other i2c_designware
PCI devices are in D3. Devices were runtime suspended and in D3 prior
entering into suspend
- Interrupt comes after pci_pm_resume_noirq() when device interrupts are
re-enabled
- According to register dump the interrupt really comes from the
i2c_designware.0. Controller is enabled, I2C target address register
points to a one detectable I2C device address 0x60 and the
DW_IC_RAW_INTR_STAT register START_DET, STOP_DET, ACTIVITY and
TX_EMPTY bits are set indicating completed I2C transaction.
My guess is that the firmware uses this controller to communicate with
an on-board I2C device during resume but does not disable the controller
before giving control to an operating system.
I was told the UEFI update fixes this but never the less it revealed the
driver is not ready to handle TX_EMPTY (or RX_FULL) interrupt when device
is supposed to be idle and state variables are not set (especially the
dev->msgs pointer which may point to NULL or stale old data).
Introduce a new software status flag STATUS_ACTIVE indicating when the
controller is active in driver point of view. Now treat all interrupts
that occur when is not set as unexpected and mask all interrupts from
the controller. |
In the Linux kernel, the following vulnerability has been resolved:
RISC-V: KVM: fix stack overrun when loading vlenb
The userspace load can put up to 2048 bits into an xlen bit stack
buffer. We want only xlen bits, so check the size beforehand. |
In the Linux kernel, the following vulnerability has been resolved:
kernel/fail_function: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
In the Linux kernel, the following vulnerability has been resolved:
can: bcm: bcm_tx_setup(): fix KMSAN uninit-value in vfs_write
Syzkaller reported the following issue:
=====================================================
BUG: KMSAN: uninit-value in aio_rw_done fs/aio.c:1520 [inline]
BUG: KMSAN: uninit-value in aio_write+0x899/0x950 fs/aio.c:1600
aio_rw_done fs/aio.c:1520 [inline]
aio_write+0x899/0x950 fs/aio.c:1600
io_submit_one+0x1d1c/0x3bf0 fs/aio.c:2019
__do_sys_io_submit fs/aio.c:2078 [inline]
__se_sys_io_submit+0x293/0x770 fs/aio.c:2048
__x64_sys_io_submit+0x92/0xd0 fs/aio.c:2048
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Uninit was created at:
slab_post_alloc_hook mm/slab.h:766 [inline]
slab_alloc_node mm/slub.c:3452 [inline]
__kmem_cache_alloc_node+0x71f/0xce0 mm/slub.c:3491
__do_kmalloc_node mm/slab_common.c:967 [inline]
__kmalloc+0x11d/0x3b0 mm/slab_common.c:981
kmalloc_array include/linux/slab.h:636 [inline]
bcm_tx_setup+0x80e/0x29d0 net/can/bcm.c:930
bcm_sendmsg+0x3a2/0xce0 net/can/bcm.c:1351
sock_sendmsg_nosec net/socket.c:714 [inline]
sock_sendmsg net/socket.c:734 [inline]
sock_write_iter+0x495/0x5e0 net/socket.c:1108
call_write_iter include/linux/fs.h:2189 [inline]
aio_write+0x63a/0x950 fs/aio.c:1600
io_submit_one+0x1d1c/0x3bf0 fs/aio.c:2019
__do_sys_io_submit fs/aio.c:2078 [inline]
__se_sys_io_submit+0x293/0x770 fs/aio.c:2048
__x64_sys_io_submit+0x92/0xd0 fs/aio.c:2048
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
CPU: 1 PID: 5034 Comm: syz-executor350 Not tainted 6.2.0-rc6-syzkaller-80422-geda666ff2276 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/12/2023
=====================================================
We can follow the call chain and find that 'bcm_tx_setup' function
calls 'memcpy_from_msg' to copy some content to the newly allocated
frame of 'op->frames'. After that the 'len' field of copied structure
being compared with some constant value (64 or 8). However, if
'memcpy_from_msg' returns an error, we will compare some uninitialized
memory. This triggers 'uninit-value' issue.
This patch will add 'memcpy_from_msg' possible errors processing to
avoid uninit-value issue.
Tested via syzkaller |
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Handle pairing of E-switch via uplink un/load APIs
In case user switch a device from switchdev mode to legacy mode, mlx5
first unpair the E-switch and afterwards unload the uplink vport.
From the other hand, in case user remove or reload a device, mlx5
first unload the uplink vport and afterwards unpair the E-switch.
The latter is causing a bug[1], hence, handle pairing of E-switch as
part of uplink un/load APIs.
[1]
In case VF_LAG is used, every tc fdb flow is duplicated to the peer
esw. However, the original esw keeps a pointer to this duplicated
flow, not the peer esw.
e.g.: if user create tc fdb flow over esw0, the flow is duplicated
over esw1, in FW/HW, but in SW, esw0 keeps a pointer to the duplicated
flow.
During module unload while a peer tc fdb flow is still offloaded, in
case the first device to be removed is the peer device (esw1 in the
example above), the peer net-dev is destroyed, and so the mlx5e_priv
is memset to 0.
Afterwards, the peer device is trying to unpair himself from the
original device (esw0 in the example above). Unpair API invoke the
original device to clear peer flow from its eswitch (esw0), but the
peer flow, which is stored over the original eswitch (esw0), is
trying to use the peer mlx5e_priv, which is memset to 0 and result in
bellow kernel-oops.
[ 157.964081 ] BUG: unable to handle page fault for address: 000000000002ce60
[ 157.964662 ] #PF: supervisor read access in kernel mode
[ 157.965123 ] #PF: error_code(0x0000) - not-present page
[ 157.965582 ] PGD 0 P4D 0
[ 157.965866 ] Oops: 0000 [#1] SMP
[ 157.967670 ] RIP: 0010:mlx5e_tc_del_fdb_flow+0x48/0x460 [mlx5_core]
[ 157.976164 ] Call Trace:
[ 157.976437 ] <TASK>
[ 157.976690 ] __mlx5e_tc_del_fdb_peer_flow+0xe6/0x100 [mlx5_core]
[ 157.977230 ] mlx5e_tc_clean_fdb_peer_flows+0x67/0x90 [mlx5_core]
[ 157.977767 ] mlx5_esw_offloads_unpair+0x2d/0x1e0 [mlx5_core]
[ 157.984653 ] mlx5_esw_offloads_devcom_event+0xbf/0x130 [mlx5_core]
[ 157.985212 ] mlx5_devcom_send_event+0xa3/0xb0 [mlx5_core]
[ 157.985714 ] esw_offloads_disable+0x5a/0x110 [mlx5_core]
[ 157.986209 ] mlx5_eswitch_disable_locked+0x152/0x170 [mlx5_core]
[ 157.986757 ] mlx5_eswitch_disable+0x51/0x80 [mlx5_core]
[ 157.987248 ] mlx5_unload+0x2a/0xb0 [mlx5_core]
[ 157.987678 ] mlx5_uninit_one+0x5f/0xd0 [mlx5_core]
[ 157.988127 ] remove_one+0x64/0xe0 [mlx5_core]
[ 157.988549 ] pci_device_remove+0x31/0xa0
[ 157.988933 ] device_release_driver_internal+0x18f/0x1f0
[ 157.989402 ] driver_detach+0x3f/0x80
[ 157.989754 ] bus_remove_driver+0x70/0xf0
[ 157.990129 ] pci_unregister_driver+0x34/0x90
[ 157.990537 ] mlx5_cleanup+0xc/0x1c [mlx5_core]
[ 157.990972 ] __x64_sys_delete_module+0x15a/0x250
[ 157.991398 ] ? exit_to_user_mode_prepare+0xea/0x110
[ 157.991840 ] do_syscall_64+0x3d/0x90
[ 157.992198 ] entry_SYSCALL_64_after_hwframe+0x46/0xb0 |
In the Linux kernel, the following vulnerability has been resolved:
drm/ttm: check null pointer before accessing when swapping
Add a check to avoid null pointer dereference as below:
[ 90.002283] general protection fault, probably for non-canonical
address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN NOPTI
[ 90.002292] KASAN: null-ptr-deref in range
[0x0000000000000000-0x0000000000000007]
[ 90.002346] ? exc_general_protection+0x159/0x240
[ 90.002352] ? asm_exc_general_protection+0x26/0x30
[ 90.002357] ? ttm_bo_evict_swapout_allowable+0x322/0x5e0 [ttm]
[ 90.002365] ? ttm_bo_evict_swapout_allowable+0x42e/0x5e0 [ttm]
[ 90.002373] ttm_bo_swapout+0x134/0x7f0 [ttm]
[ 90.002383] ? __pfx_ttm_bo_swapout+0x10/0x10 [ttm]
[ 90.002391] ? lock_acquire+0x44d/0x4f0
[ 90.002398] ? ttm_device_swapout+0xa5/0x260 [ttm]
[ 90.002412] ? lock_acquired+0x355/0xa00
[ 90.002416] ? do_raw_spin_trylock+0xb6/0x190
[ 90.002421] ? __pfx_lock_acquired+0x10/0x10
[ 90.002426] ? ttm_global_swapout+0x25/0x210 [ttm]
[ 90.002442] ttm_device_swapout+0x198/0x260 [ttm]
[ 90.002456] ? __pfx_ttm_device_swapout+0x10/0x10 [ttm]
[ 90.002472] ttm_global_swapout+0x75/0x210 [ttm]
[ 90.002486] ttm_tt_populate+0x187/0x3f0 [ttm]
[ 90.002501] ttm_bo_handle_move_mem+0x437/0x590 [ttm]
[ 90.002517] ttm_bo_validate+0x275/0x430 [ttm]
[ 90.002530] ? __pfx_ttm_bo_validate+0x10/0x10 [ttm]
[ 90.002544] ? kasan_save_stack+0x33/0x60
[ 90.002550] ? kasan_set_track+0x25/0x30
[ 90.002554] ? __kasan_kmalloc+0x8f/0xa0
[ 90.002558] ? amdgpu_gtt_mgr_new+0x81/0x420 [amdgpu]
[ 90.003023] ? ttm_resource_alloc+0xf6/0x220 [ttm]
[ 90.003038] amdgpu_bo_pin_restricted+0x2dd/0x8b0 [amdgpu]
[ 90.003210] ? __x64_sys_ioctl+0x131/0x1a0
[ 90.003210] ? do_syscall_64+0x60/0x90 |
In the Linux kernel, the following vulnerability has been resolved:
media: ov2740: Fix memleak in ov2740_init_controls()
There is a kmemleak when testing the media/i2c/ov2740.c with bpf mock
device:
unreferenced object 0xffff8881090e19e0 (size 16):
comm "51-i2c-ov2740", pid 278, jiffies 4294781584 (age 23.613s)
hex dump (first 16 bytes):
00 f3 7c 0b 81 88 ff ff 80 75 6a 09 81 88 ff ff ..|......uj.....
backtrace:
[<000000004e9fad8f>] __kmalloc_node+0x44/0x1b0
[<0000000039c802f4>] kvmalloc_node+0x34/0x180
[<000000009b8b5c63>] v4l2_ctrl_handler_init_class+0x11d/0x180
[videodev]
[<0000000038644056>] ov2740_probe+0x37d/0x84f [ov2740]
[<0000000092489f59>] i2c_device_probe+0x28d/0x680
[<000000001038babe>] really_probe+0x17c/0x3f0
[<0000000098c7af1c>] __driver_probe_device+0xe3/0x170
[<00000000e1b3dc24>] device_driver_attach+0x34/0x80
[<000000005a04a34d>] bind_store+0x10b/0x1a0
[<00000000ce25d4f2>] drv_attr_store+0x49/0x70
[<000000007d9f4e9a>] sysfs_kf_write+0x8c/0xb0
[<00000000be6cff0f>] kernfs_fop_write_iter+0x216/0x2e0
[<0000000031ddb40a>] vfs_write+0x658/0x810
[<0000000041beecdd>] ksys_write+0xd6/0x1b0
[<0000000023755840>] do_syscall_64+0x38/0x90
[<00000000b2cc2da2>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
ov2740_init_controls() won't clean all the allocated resources in fail
path, which may causes the memleaks. Add v4l2_ctrl_handler_free() to
prevent memleak. |
In the Linux kernel, the following vulnerability has been resolved:
led: qcom-lpg: Fix sleeping in atomic
lpg_brighness_set() function can sleep, while led's brightness_set()
callback must be non-blocking. Change LPG driver to use
brightness_set_blocking() instead.
BUG: sleeping function called from invalid context at kernel/locking/mutex.c:580
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 0, name: swapper/0
preempt_count: 101, expected: 0
INFO: lockdep is turned off.
CPU: 0 PID: 0 Comm: swapper/0 Tainted: G W 6.1.0-rc1-00014-gbe99b089c6fc-dirty #85
Hardware name: Qualcomm Technologies, Inc. DB820c (DT)
Call trace:
dump_backtrace.part.0+0xe4/0xf0
show_stack+0x18/0x40
dump_stack_lvl+0x88/0xb4
dump_stack+0x18/0x34
__might_resched+0x170/0x254
__might_sleep+0x48/0x9c
__mutex_lock+0x4c/0x400
mutex_lock_nested+0x2c/0x40
lpg_brightness_single_set+0x40/0x90
led_set_brightness_nosleep+0x34/0x60
led_heartbeat_function+0x80/0x170
call_timer_fn+0xb8/0x340
__run_timers.part.0+0x20c/0x254
run_timer_softirq+0x3c/0x7c
_stext+0x14c/0x578
____do_softirq+0x10/0x20
call_on_irq_stack+0x2c/0x5c
do_softirq_own_stack+0x1c/0x30
__irq_exit_rcu+0x164/0x170
irq_exit_rcu+0x10/0x40
el1_interrupt+0x38/0x50
el1h_64_irq_handler+0x18/0x2c
el1h_64_irq+0x64/0x68
cpuidle_enter_state+0xc8/0x380
cpuidle_enter+0x38/0x50
do_idle+0x244/0x2d0
cpu_startup_entry+0x24/0x30
rest_init+0x128/0x1a0
arch_post_acpi_subsys_init+0x0/0x18
start_kernel+0x6f4/0x734
__primary_switched+0xbc/0xc4 |
In the Linux kernel, the following vulnerability has been resolved:
tracing: Fix race issue between cpu buffer write and swap
Warning happened in rb_end_commit() at code:
if (RB_WARN_ON(cpu_buffer, !local_read(&cpu_buffer->committing)))
WARNING: CPU: 0 PID: 139 at kernel/trace/ring_buffer.c:3142
rb_commit+0x402/0x4a0
Call Trace:
ring_buffer_unlock_commit+0x42/0x250
trace_buffer_unlock_commit_regs+0x3b/0x250
trace_event_buffer_commit+0xe5/0x440
trace_event_buffer_reserve+0x11c/0x150
trace_event_raw_event_sched_switch+0x23c/0x2c0
__traceiter_sched_switch+0x59/0x80
__schedule+0x72b/0x1580
schedule+0x92/0x120
worker_thread+0xa0/0x6f0
It is because the race between writing event into cpu buffer and swapping
cpu buffer through file per_cpu/cpu0/snapshot:
Write on CPU 0 Swap buffer by per_cpu/cpu0/snapshot on CPU 1
-------- --------
tracing_snapshot_write()
[...]
ring_buffer_lock_reserve()
cpu_buffer = buffer->buffers[cpu]; // 1. Suppose find 'cpu_buffer_a';
[...]
rb_reserve_next_event()
[...]
ring_buffer_swap_cpu()
if (local_read(&cpu_buffer_a->committing))
goto out_dec;
if (local_read(&cpu_buffer_b->committing))
goto out_dec;
buffer_a->buffers[cpu] = cpu_buffer_b;
buffer_b->buffers[cpu] = cpu_buffer_a;
// 2. cpu_buffer has swapped here.
rb_start_commit(cpu_buffer);
if (unlikely(READ_ONCE(cpu_buffer->buffer)
!= buffer)) { // 3. This check passed due to 'cpu_buffer->buffer'
[...] // has not changed here.
return NULL;
}
cpu_buffer_b->buffer = buffer_a;
cpu_buffer_a->buffer = buffer_b;
[...]
// 4. Reserve event from 'cpu_buffer_a'.
ring_buffer_unlock_commit()
[...]
cpu_buffer = buffer->buffers[cpu]; // 5. Now find 'cpu_buffer_b' !!!
rb_commit(cpu_buffer)
rb_end_commit() // 6. WARN for the wrong 'committing' state !!!
Based on above analysis, we can easily reproduce by following testcase:
``` bash
#!/bin/bash
dmesg -n 7
sysctl -w kernel.panic_on_warn=1
TR=/sys/kernel/tracing
echo 7 > ${TR}/buffer_size_kb
echo "sched:sched_switch" > ${TR}/set_event
while [ true ]; do
echo 1 > ${TR}/per_cpu/cpu0/snapshot
done &
while [ true ]; do
echo 1 > ${TR}/per_cpu/cpu0/snapshot
done &
while [ true ]; do
echo 1 > ${TR}/per_cpu/cpu0/snapshot
done &
```
To fix it, IIUC, we can use smp_call_function_single() to do the swap on
the target cpu where the buffer is located, so that above race would be
avoided. |