CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
ring-buffer: Do not attempt to read past "commit"
When iterating over the ring buffer while the ring buffer is active, the
writer can corrupt the reader. There's barriers to help detect this and
handle it, but that code missed the case where the last event was at the
very end of the page and has only 4 bytes left.
The checks to detect the corruption by the writer to reads needs to see the
length of the event. If the length in the first 4 bytes is zero then the
length is stored in the second 4 bytes. But if the writer is in the process
of updating that code, there's a small window where the length in the first
4 bytes could be zero even though the length is only 4 bytes. That will
cause rb_event_length() to read the next 4 bytes which could happen to be off the
allocated page.
To protect against this, fail immediately if the next event pointer is
less than 8 bytes from the end of the commit (last byte of data), as all
events must be a minimum of 8 bytes anyway. |
In the Linux kernel, the following vulnerability has been resolved:
ACPI: APEI: Fix integer overflow in ghes_estatus_pool_init()
Change num_ghes from int to unsigned int, preventing an overflow
and causing subsequent vmalloc() to fail.
The overflow happens in ghes_estatus_pool_init() when calculating
len during execution of the statement below as both multiplication
operands here are signed int:
len += (num_ghes * GHES_ESOURCE_PREALLOC_MAX_SIZE);
The following call trace is observed because of this bug:
[ 9.317108] swapper/0: vmalloc error: size 18446744071562596352, exceeds total pages, mode:0xcc0(GFP_KERNEL), nodemask=(null),cpuset=/,mems_allowed=0-1
[ 9.317131] Call Trace:
[ 9.317134] <TASK>
[ 9.317137] dump_stack_lvl+0x49/0x5f
[ 9.317145] dump_stack+0x10/0x12
[ 9.317146] warn_alloc.cold+0x7b/0xdf
[ 9.317150] ? __device_attach+0x16a/0x1b0
[ 9.317155] __vmalloc_node_range+0x702/0x740
[ 9.317160] ? device_add+0x17f/0x920
[ 9.317164] ? dev_set_name+0x53/0x70
[ 9.317166] ? platform_device_add+0xf9/0x240
[ 9.317168] __vmalloc_node+0x49/0x50
[ 9.317170] ? ghes_estatus_pool_init+0x43/0xa0
[ 9.317176] vmalloc+0x21/0x30
[ 9.317177] ghes_estatus_pool_init+0x43/0xa0
[ 9.317179] acpi_hest_init+0x129/0x19c
[ 9.317185] acpi_init+0x434/0x4a4
[ 9.317188] ? acpi_sleep_proc_init+0x2a/0x2a
[ 9.317190] do_one_initcall+0x48/0x200
[ 9.317195] kernel_init_freeable+0x221/0x284
[ 9.317200] ? rest_init+0xe0/0xe0
[ 9.317204] kernel_init+0x1a/0x130
[ 9.317205] ret_from_fork+0x22/0x30
[ 9.317208] </TASK>
[ rjw: Subject and changelog edits ] |
In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: fix queue selection for mesh/OCB interfaces
When using iTXQ, the code assumes that there is only one vif queue for
broadcast packets, using the BE queue. Allowing non-BE queue marking
violates that assumption and txq->ac == skb_queue_mapping is no longer
guaranteed. This can cause issues with queue handling in the driver and
also causes issues with the recent ATF change, resulting in an AQL
underflow warning. |
In the Linux kernel, the following vulnerability has been resolved:
ext4: filter out EXT4_FC_REPLAY from on-disk superblock field s_state
The EXT4_FC_REPLAY bit in sbi->s_mount_state is used to indicate that
we are in the middle of replay the fast commit journal. This was
actually a mistake, since the sbi->s_mount_info is initialized from
es->s_state. Arguably s_mount_state is misleadingly named, but the
name is historical --- s_mount_state and s_state dates back to ext2.
What should have been used is the ext4_{set,clear,test}_mount_flag()
inline functions, which sets EXT4_MF_* bits in sbi->s_mount_flags.
The problem with using EXT4_FC_REPLAY is that a maliciously corrupted
superblock could result in EXT4_FC_REPLAY getting set in
s_mount_state. This bypasses some sanity checks, and this can trigger
a BUG() in ext4_es_cache_extent(). As a easy-to-backport-fix, filter
out the EXT4_FC_REPLAY bit for now. We should eventually transition
away from EXT4_FC_REPLAY to something like EXT4_MF_REPLAY. |
In the Linux kernel, the following vulnerability has been resolved:
NFSv4: Don't hold the layoutget locks across multiple RPC calls
When doing layoutget as part of the open() compound, we have to be
careful to release the layout locks before we can call any further RPC
calls, such as setattr(). The reason is that those calls could trigger
a recall, which could deadlock. |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: use memset avoid memory leaks
Use memset to initialize structs to prevent memory leaks
in l2cap_ecred_connect |
In the Linux kernel, the following vulnerability has been resolved:
hwmon: (w83791d) Fix NULL pointer dereference by removing unnecessary structure field
If driver read val value sufficient for
(val & 0x08) && (!(val & 0x80)) && ((val & 0x7) == ((val >> 4) & 0x7))
from device then Null pointer dereference occurs.
(It is possible if tmp = 0b0xyz1xyz, where same literals mean same numbers)
Also lm75[] does not serve a purpose anymore after switching to
devm_i2c_new_dummy_device() in w83791d_detect_subclients().
The patch fixes possible NULL pointer dereference by removing lm75[].
Found by Linux Driver Verification project (linuxtesting.org).
[groeck: Dropped unnecessary continuation lines, fixed multi-line alignment] |
In the Linux kernel, the following vulnerability has been resolved:
hwmon: (w83792d) Fix NULL pointer dereference by removing unnecessary structure field
If driver read val value sufficient for
(val & 0x08) && (!(val & 0x80)) && ((val & 0x7) == ((val >> 4) & 0x7))
from device then Null pointer dereference occurs.
(It is possible if tmp = 0b0xyz1xyz, where same literals mean same numbers)
Also lm75[] does not serve a purpose anymore after switching to
devm_i2c_new_dummy_device() in w83791d_detect_subclients().
The patch fixes possible NULL pointer dereference by removing lm75[].
Found by Linux Driver Verification project (linuxtesting.org).
[groeck: Dropped unnecessary continuation lines, fixed multipline alignment] |
In the Linux kernel, the following vulnerability has been resolved:
hwmon: (w83793) Fix NULL pointer dereference by removing unnecessary structure field
If driver read tmp value sufficient for
(tmp & 0x08) && (!(tmp & 0x80)) && ((tmp & 0x7) == ((tmp >> 4) & 0x7))
from device then Null pointer dereference occurs.
(It is possible if tmp = 0b0xyz1xyz, where same literals mean same numbers)
Also lm75[] does not serve a purpose anymore after switching to
devm_i2c_new_dummy_device() in w83791d_detect_subclients().
The patch fixes possible NULL pointer dereference by removing lm75[].
Found by Linux Driver Verification project (linuxtesting.org).
[groeck: Dropped unnecessary continuation lines, fixed multi-line alignments] |
In PHP version 8.1.* before 8.1.28, 8.2.* before 8.2.18, 8.3.* before 8.3.5, if a password stored with password_hash() starts with a null byte (\x00), testing a blank string as the password via password_verify() will incorrectly return true. |
In the linux kernel, if IMA appraisal is used with the "ima_appraise=log" boot param, lockdown can be defeated with kexec on any machine when Secure Boot is disabled or unavailable. IMA prevents setting "ima_appraise=log" from the boot param when Secure Boot is enabled, but this does not cover cases where lockdown is used without Secure Boot. CVSS 3.1 Base Score 6.7 (Confidentiality, Integrity, Availability impacts). CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:H/A:H). |
Vulnerability in Oracle Java SE (component: Hotspot). Supported versions that are affected are Oracle Java SE: 8u421, 8u421-perf, 11.0.24, 17.0.12, 21.0.4 and 23. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Oracle Java SE accessible data. Note: This vulnerability can be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. This vulnerability also applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. CVSS 3.1 Base Score 3.7 (Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:N). |
Vulnerability in the Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Networking). Supported versions that are affected are Oracle Java SE: 8u421, 8u421-perf, 11.0.24, 17.0.12, 21.0.4, 23; Oracle GraalVM for JDK: 17.0.12, 21.0.4, 23; Oracle GraalVM Enterprise Edition: 20.3.15 and 21.3.11. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.1 Base Score 3.7 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:L). |
Vulnerability in the Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Hotspot). Supported versions that are affected are Oracle Java SE: 8u431-perf, 11.0.25, 17.0.13, 21.0.5, 23.0.1; Oracle GraalVM for JDK: 17.0.13, 21.0.5, 23.0.1; Oracle GraalVM Enterprise Edition: 20.3.16 and 21.3.12. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data as well as unauthorized read access to a subset of Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data. Note: This vulnerability can be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. This vulnerability also applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. CVSS 3.1 Base Score 4.8 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:N). |
nscd: Stack-based buffer overflow in netgroup cache
If the Name Service Cache Daemon's (nscd) fixed size cache is exhausted
by client requests then a subsequent client request for netgroup data
may result in a stack-based buffer overflow. This flaw was introduced
in glibc 2.15 when the cache was added to nscd.
This vulnerability is only present in the nscd binary. |
nscd: Null pointer crashes after notfound response
If the Name Service Cache Daemon's (nscd) cache fails to add a not-found
netgroup response to the cache, the client request can result in a null
pointer dereference. This flaw was introduced in glibc 2.15 when the
cache was added to nscd.
This vulnerability is only present in the nscd binary. |
nscd: netgroup cache assumes NSS callback uses in-buffer strings
The Name Service Cache Daemon's (nscd) netgroup cache can corrupt memory
when the NSS callback does not store all strings in the provided buffer.
The flaw was introduced in glibc 2.15 when the cache was added to nscd.
This vulnerability is only present in the nscd binary. |
An issue was discovered in GNOME GLib before 2.78.5, and 2.79.x and 2.80.x before 2.80.1. When a GDBus-based client subscribes to signals from a trusted system service such as NetworkManager on a shared computer, other users of the same computer can send spoofed D-Bus signals that the GDBus-based client will wrongly interpret as having been sent by the trusted system service. This could lead to the GDBus-based client behaving incorrectly, with an application-dependent impact. |
In the Linux kernel, the following vulnerability has been resolved:
ftrace: Fix NULL pointer dereference in is_ftrace_trampoline when ftrace is dead
ftrace_startup does not remove ops from ftrace_ops_list when
ftrace_startup_enable fails:
register_ftrace_function
ftrace_startup
__register_ftrace_function
...
add_ftrace_ops(&ftrace_ops_list, ops)
...
...
ftrace_startup_enable // if ftrace failed to modify, ftrace_disabled is set to 1
...
return 0 // ops is in the ftrace_ops_list.
When ftrace_disabled = 1, unregister_ftrace_function simply returns without doing anything:
unregister_ftrace_function
ftrace_shutdown
if (unlikely(ftrace_disabled))
return -ENODEV; // return here, __unregister_ftrace_function is not executed,
// as a result, ops is still in the ftrace_ops_list
__unregister_ftrace_function
...
If ops is dynamically allocated, it will be free later, in this case,
is_ftrace_trampoline accesses NULL pointer:
is_ftrace_trampoline
ftrace_ops_trampoline
do_for_each_ftrace_op(op, ftrace_ops_list) // OOPS! op may be NULL!
Syzkaller reports as follows:
[ 1203.506103] BUG: kernel NULL pointer dereference, address: 000000000000010b
[ 1203.508039] #PF: supervisor read access in kernel mode
[ 1203.508798] #PF: error_code(0x0000) - not-present page
[ 1203.509558] PGD 800000011660b067 P4D 800000011660b067 PUD 130fb8067 PMD 0
[ 1203.510560] Oops: 0000 [#1] SMP KASAN PTI
[ 1203.511189] CPU: 6 PID: 29532 Comm: syz-executor.2 Tainted: G B W 5.10.0 #8
[ 1203.512324] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[ 1203.513895] RIP: 0010:is_ftrace_trampoline+0x26/0xb0
[ 1203.514644] Code: ff eb d3 90 41 55 41 54 49 89 fc 55 53 e8 f2 00 fd ff 48 8b 1d 3b 35 5d 03 e8 e6 00 fd ff 48 8d bb 90 00 00 00 e8 2a 81 26 00 <48> 8b ab 90 00 00 00 48 85 ed 74 1d e8 c9 00 fd ff 48 8d bb 98 00
[ 1203.518838] RSP: 0018:ffffc900012cf960 EFLAGS: 00010246
[ 1203.520092] RAX: 0000000000000000 RBX: 000000000000007b RCX: ffffffff8a331866
[ 1203.521469] RDX: 0000000000000000 RSI: 0000000000000008 RDI: 000000000000010b
[ 1203.522583] RBP: 0000000000000000 R08: 0000000000000000 R09: ffffffff8df18b07
[ 1203.523550] R10: fffffbfff1be3160 R11: 0000000000000001 R12: 0000000000478399
[ 1203.524596] R13: 0000000000000000 R14: ffff888145088000 R15: 0000000000000008
[ 1203.525634] FS: 00007f429f5f4700(0000) GS:ffff8881daf00000(0000) knlGS:0000000000000000
[ 1203.526801] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 1203.527626] CR2: 000000000000010b CR3: 0000000170e1e001 CR4: 00000000003706e0
[ 1203.528611] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 1203.529605] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Therefore, when ftrace_startup_enable fails, we need to rollback registration
process and remove ops from ftrace_ops_list. |
In the Linux kernel, the following vulnerability has been resolved:
firmware_loader: Fix use-after-free during unregister
In the following code within firmware_upload_unregister(), the call to
device_unregister() could result in the dev_release function freeing the
fw_upload_priv structure before it is dereferenced for the call to
module_put(). This bug was found by the kernel test robot using
CONFIG_KASAN while running the firmware selftests.
device_unregister(&fw_sysfs->dev);
module_put(fw_upload_priv->module);
The problem is fixed by copying fw_upload_priv->module to a local variable
for use when calling device_unregister(). |