| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A stack overflow in the org.json.JSONTokener.nextValue::JSONTokener.java component of hutool-json v5.8.10 allows attackers to cause a Denial of Service (DoS) via crafted JSON or XML data. |
| A flaw was found in polkit. When processing an XML policy with 32 or more nested elements in depth, an out-of-bounds write can be triggered. This issue can lead to a crash or other unexpected behavior, and arbitrary code execution is not discarded. To exploit this flaw, a high-privilege account is needed as it's required to place the malicious policy file properly. |
| There's a vulnerability in the libssh package where when a libssh consumer passes in an unexpectedly large input buffer to ssh_get_fingerprint_hash() function. In such cases the bin_to_base64() function can experience an integer overflow leading to a memory under allocation, when that happens it's possible that the program perform out of bounds write leading to a heap corruption.
This issue affects only 32-bits builds of libssh. |
| NanoMQ 0.17.5 has a one-byte heap-based buffer over-read in the conn_handler function of mqtt_parser.c when it processes malformed messages. |
| In the Linux kernel, the following vulnerability has been resolved:
nvmem: Fix shift-out-of-bound (UBSAN) with byte size cells
If a cell has 'nbits' equal to a multiple of BITS_PER_BYTE the logic
*p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
will become undefined behavior because nbits modulo BITS_PER_BYTE is 0, and we
subtract one from that making a large number that is then shifted more than the
number of bits that fit into an unsigned long.
UBSAN reports this problem:
UBSAN: shift-out-of-bounds in drivers/nvmem/core.c:1386:8
shift exponent 64 is too large for 64-bit type 'unsigned long'
CPU: 6 PID: 7 Comm: kworker/u16:0 Not tainted 5.15.0-rc3+ #9
Hardware name: Google Lazor (rev3+) with KB Backlight (DT)
Workqueue: events_unbound deferred_probe_work_func
Call trace:
dump_backtrace+0x0/0x170
show_stack+0x24/0x30
dump_stack_lvl+0x64/0x7c
dump_stack+0x18/0x38
ubsan_epilogue+0x10/0x54
__ubsan_handle_shift_out_of_bounds+0x180/0x194
__nvmem_cell_read+0x1ec/0x21c
nvmem_cell_read+0x58/0x94
nvmem_cell_read_variable_common+0x4c/0xb0
nvmem_cell_read_variable_le_u32+0x40/0x100
a6xx_gpu_init+0x170/0x2f4
adreno_bind+0x174/0x284
component_bind_all+0xf0/0x264
msm_drm_bind+0x1d8/0x7a0
try_to_bring_up_master+0x164/0x1ac
__component_add+0xbc/0x13c
component_add+0x20/0x2c
dp_display_probe+0x340/0x384
platform_probe+0xc0/0x100
really_probe+0x110/0x304
__driver_probe_device+0xb8/0x120
driver_probe_device+0x4c/0xfc
__device_attach_driver+0xb0/0x128
bus_for_each_drv+0x90/0xdc
__device_attach+0xc8/0x174
device_initial_probe+0x20/0x2c
bus_probe_device+0x40/0xa4
deferred_probe_work_func+0x7c/0xb8
process_one_work+0x128/0x21c
process_scheduled_works+0x40/0x54
worker_thread+0x1ec/0x2a8
kthread+0x138/0x158
ret_from_fork+0x10/0x20
Fix it by making sure there are any bits to mask out. |
| In the Linux kernel, the following vulnerability has been resolved:
net/tls: Fix flipped sign in tls_err_abort() calls
sk->sk_err appears to expect a positive value, a convention that ktls
doesn't always follow and that leads to memory corruption in other code.
For instance,
[kworker]
tls_encrypt_done(..., err=<negative error from crypto request>)
tls_err_abort(.., err)
sk->sk_err = err;
[task]
splice_from_pipe_feed
...
tls_sw_do_sendpage
if (sk->sk_err) {
ret = -sk->sk_err; // ret is positive
splice_from_pipe_feed (continued)
ret = actor(...) // ret is still positive and interpreted as bytes
// written, resulting in underflow of buf->len and
// sd->len, leading to huge buf->offset and bogus
// addresses computed in later calls to actor()
Fix all tls_err_abort() callers to pass a negative error code
consistently and centralize the error-prone sign flip there, throwing in
a warning to catch future misuse and uninlining the function so it
really does only warn once. |
| In the Linux kernel, the following vulnerability has been resolved:
comedi: dt9812: fix DMA buffers on stack
USB transfer buffers are typically mapped for DMA and must not be
allocated on the stack or transfers will fail.
Allocate proper transfer buffers in the various command helpers and
return an error on short transfers instead of acting on random stack
data.
Note that this also fixes a stack info leak on systems where DMA is not
used as 32 bytes are always sent to the device regardless of how short
the command is. |
| In the Linux kernel, the following vulnerability has been resolved:
comedi: vmk80xx: fix transfer-buffer overflows
The driver uses endpoint-sized USB transfer buffers but up until
recently had no sanity checks on the sizes.
Commit e1f13c879a7c ("staging: comedi: check validity of wMaxPacketSize
of usb endpoints found") inadvertently fixed NULL-pointer dereferences
when accessing the transfer buffers in case a malicious device has a
zero wMaxPacketSize.
Make sure to allocate buffers large enough to handle also the other
accesses that are done without a size check (e.g. byte 18 in
vmk80xx_cnt_insn_read() for the VMK8061_MODEL) to avoid writing beyond
the buffers, for example, when doing descriptor fuzzing.
The original driver was for a low-speed device with 8-byte buffers.
Support was later added for a device that uses bulk transfers and is
presumably a full-speed device with a maximum 64-byte wMaxPacketSize. |
| In the Linux kernel, the following vulnerability has been resolved:
comedi: vmk80xx: fix bulk-buffer overflow
The driver is using endpoint-sized buffers but must not assume that the
tx and rx buffers are of equal size or a malicious device could overflow
the slab-allocated receive buffer when doing bulk transfers. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/radeon: possible buffer overflow
Buffer 'afmt_status' of size 6 could overflow, since index 'afmt_idx' is
checked after access. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86: wmi: Fix opening of char device
Since commit fa1f68db6ca7 ("drivers: misc: pass miscdevice pointer via
file private data"), the miscdevice stores a pointer to itself inside
filp->private_data, which means that private_data will not be NULL when
wmi_char_open() is called. This might cause memory corruption should
wmi_char_open() be unable to find its driver, something which can
happen when the associated WMI device is deleted in wmi_free_devices().
Fix the problem by using the miscdevice pointer to retrieve the WMI
device data associated with a char device using container_of(). This
also avoids wmi_char_open() picking a wrong WMI device bound to a
driver with the same name as the original driver. |
| In the Linux kernel, the following vulnerability has been resolved:
locking/ww_mutex/test: Fix potential workqueue corruption
In some cases running with the test-ww_mutex code, I was seeing
odd behavior where sometimes it seemed flush_workqueue was
returning before all the work threads were finished.
Often this would cause strange crashes as the mutexes would be
freed while they were being used.
Looking at the code, there is a lifetime problem as the
controlling thread that spawns the work allocates the
"struct stress" structures that are passed to the workqueue
threads. Then when the workqueue threads are finished,
they free the stress struct that was passed to them.
Unfortunately the workqueue work_struct node is in the stress
struct. Which means the work_struct is freed before the work
thread returns and while flush_workqueue is waiting.
It seems like a better idea to have the controlling thread
both allocate and free the stress structures, so that we can
be sure we don't corrupt the workqueue by freeing the structure
prematurely.
So this patch reworks the test to do so, and with this change
I no longer see the early flush_workqueue returns. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: Fix shift out-of-bounds issue
[ 567.613292] shift exponent 255 is too large for 64-bit type 'long unsigned int'
[ 567.614498] CPU: 5 PID: 238 Comm: kworker/5:1 Tainted: G OE 6.2.0-34-generic #34~22.04.1-Ubuntu
[ 567.614502] Hardware name: AMD Splinter/Splinter-RPL, BIOS WS43927N_871 09/25/2023
[ 567.614504] Workqueue: events send_exception_work_handler [amdgpu]
[ 567.614748] Call Trace:
[ 567.614750] <TASK>
[ 567.614753] dump_stack_lvl+0x48/0x70
[ 567.614761] dump_stack+0x10/0x20
[ 567.614763] __ubsan_handle_shift_out_of_bounds+0x156/0x310
[ 567.614769] ? srso_alias_return_thunk+0x5/0x7f
[ 567.614773] ? update_sd_lb_stats.constprop.0+0xf2/0x3c0
[ 567.614780] svm_range_split_by_granularity.cold+0x2b/0x34 [amdgpu]
[ 567.615047] ? srso_alias_return_thunk+0x5/0x7f
[ 567.615052] svm_migrate_to_ram+0x185/0x4d0 [amdgpu]
[ 567.615286] do_swap_page+0x7b6/0xa30
[ 567.615291] ? srso_alias_return_thunk+0x5/0x7f
[ 567.615294] ? __free_pages+0x119/0x130
[ 567.615299] handle_pte_fault+0x227/0x280
[ 567.615303] __handle_mm_fault+0x3c0/0x720
[ 567.615311] handle_mm_fault+0x119/0x330
[ 567.615314] ? lock_mm_and_find_vma+0x44/0x250
[ 567.615318] do_user_addr_fault+0x1a9/0x640
[ 567.615323] exc_page_fault+0x81/0x1b0
[ 567.615328] asm_exc_page_fault+0x27/0x30
[ 567.615332] RIP: 0010:__get_user_8+0x1c/0x30 |
| In the Linux kernel, the following vulnerability has been resolved:
ocfs2: mount fails with buffer overflow in strlen
Starting with kernel 5.11 built with CONFIG_FORTIFY_SOURCE mouting an
ocfs2 filesystem with either o2cb or pcmk cluster stack fails with the
trace below. Problem seems to be that strings for cluster stack and
cluster name are not guaranteed to be null terminated in the disk
representation, while strlcpy assumes that the source string is always
null terminated. This causes a read outside of the source string
triggering the buffer overflow detection.
detected buffer overflow in strlen
------------[ cut here ]------------
kernel BUG at lib/string.c:1149!
invalid opcode: 0000 [#1] SMP PTI
CPU: 1 PID: 910 Comm: mount.ocfs2 Not tainted 5.14.0-1-amd64 #1
Debian 5.14.6-2
RIP: 0010:fortify_panic+0xf/0x11
...
Call Trace:
ocfs2_initialize_super.isra.0.cold+0xc/0x18 [ocfs2]
ocfs2_fill_super+0x359/0x19b0 [ocfs2]
mount_bdev+0x185/0x1b0
legacy_get_tree+0x27/0x40
vfs_get_tree+0x25/0xb0
path_mount+0x454/0xa20
__x64_sys_mount+0x103/0x140
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae |
| In the Linux kernel, the following vulnerability has been resolved:
ipvlan: add ipvlan_route_v6_outbound() helper
Inspired by syzbot reports using a stack of multiple ipvlan devices.
Reduce stack size needed in ipvlan_process_v6_outbound() by moving
the flowi6 struct used for the route lookup in an non inlined
helper. ipvlan_route_v6_outbound() needs 120 bytes on the stack,
immediately reclaimed.
Also make sure ipvlan_process_v4_outbound() is not inlined.
We might also have to lower MAX_NEST_DEV, because only syzbot uses
setups with more than four stacked devices.
BUG: TASK stack guard page was hit at ffffc9000e803ff8 (stack is ffffc9000e804000..ffffc9000e808000)
stack guard page: 0000 [#1] SMP KASAN
CPU: 0 PID: 13442 Comm: syz-executor.4 Not tainted 6.1.52-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/09/2023
RIP: 0010:kasan_check_range+0x4/0x2a0 mm/kasan/generic.c:188
Code: 48 01 c6 48 89 c7 e8 db 4e c1 03 31 c0 5d c3 cc 0f 0b eb 02 0f 0b b8 ea ff ff ff 5d c3 cc 00 00 cc cc 00 00 cc cc 55 48 89 e5 <41> 57 41 56 41 55 41 54 53 b0 01 48 85 f6 0f 84 a4 01 00 00 48 89
RSP: 0018:ffffc9000e804000 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffff817e5bf2
RDX: 0000000000000000 RSI: 0000000000000008 RDI: ffffffff887c6568
RBP: ffffc9000e804000 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: dffffc0000000001 R12: 1ffff92001d0080c
R13: dffffc0000000000 R14: ffffffff87e6b100 R15: 0000000000000000
FS: 00007fd0c55826c0(0000) GS:ffff8881f6800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffc9000e803ff8 CR3: 0000000170ef7000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<#DF>
</#DF>
<TASK>
[<ffffffff81f281d1>] __kasan_check_read+0x11/0x20 mm/kasan/shadow.c:31
[<ffffffff817e5bf2>] instrument_atomic_read include/linux/instrumented.h:72 [inline]
[<ffffffff817e5bf2>] _test_bit include/asm-generic/bitops/instrumented-non-atomic.h:141 [inline]
[<ffffffff817e5bf2>] cpumask_test_cpu include/linux/cpumask.h:506 [inline]
[<ffffffff817e5bf2>] cpu_online include/linux/cpumask.h:1092 [inline]
[<ffffffff817e5bf2>] trace_lock_acquire include/trace/events/lock.h:24 [inline]
[<ffffffff817e5bf2>] lock_acquire+0xe2/0x590 kernel/locking/lockdep.c:5632
[<ffffffff8563221e>] rcu_lock_acquire+0x2e/0x40 include/linux/rcupdate.h:306
[<ffffffff8561464d>] rcu_read_lock include/linux/rcupdate.h:747 [inline]
[<ffffffff8561464d>] ip6_pol_route+0x15d/0x1440 net/ipv6/route.c:2221
[<ffffffff85618120>] ip6_pol_route_output+0x50/0x80 net/ipv6/route.c:2606
[<ffffffff856f65b5>] pol_lookup_func include/net/ip6_fib.h:584 [inline]
[<ffffffff856f65b5>] fib6_rule_lookup+0x265/0x620 net/ipv6/fib6_rules.c:116
[<ffffffff85618009>] ip6_route_output_flags_noref+0x2d9/0x3a0 net/ipv6/route.c:2638
[<ffffffff8561821a>] ip6_route_output_flags+0xca/0x340 net/ipv6/route.c:2651
[<ffffffff838bd5a3>] ip6_route_output include/net/ip6_route.h:100 [inline]
[<ffffffff838bd5a3>] ipvlan_process_v6_outbound drivers/net/ipvlan/ipvlan_core.c:473 [inline]
[<ffffffff838bd5a3>] ipvlan_process_outbound drivers/net/ipvlan/ipvlan_core.c:529 [inline]
[<ffffffff838bd5a3>] ipvlan_xmit_mode_l3 drivers/net/ipvlan/ipvlan_core.c:602 [inline]
[<ffffffff838bd5a3>] ipvlan_queue_xmit+0xc33/0x1be0 drivers/net/ipvlan/ipvlan_core.c:677
[<ffffffff838c2909>] ipvlan_start_xmit+0x49/0x100 drivers/net/ipvlan/ipvlan_main.c:229
[<ffffffff84d03900>] netdev_start_xmit include/linux/netdevice.h:4966 [inline]
[<ffffffff84d03900>] xmit_one net/core/dev.c:3644 [inline]
[<ffffffff84d03900>] dev_hard_start_xmit+0x320/0x980 net/core/dev.c:3660
[<ffffffff84d080e2>] __dev_queue_xmit+0x16b2/0x3370 net/core/dev.c:4324
[<ffffffff855ce4cd>] dev_queue_xmit include/linux/netdevice.h:3067 [inline]
[<ffffffff855ce4cd>] neigh_hh_output include/net/neighbour.h:529 [inline]
[<f
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
swiotlb: fix out-of-bounds TLB allocations with CONFIG_SWIOTLB_DYNAMIC
Limit the free list length to the size of the IO TLB. Transient pool can be
smaller than IO_TLB_SEGSIZE, but the free list is initialized with the
assumption that the total number of slots is a multiple of IO_TLB_SEGSIZE.
As a result, swiotlb_area_find_slots() may allocate slots past the end of
a transient IO TLB buffer. |
| In the Linux kernel, the following vulnerability has been resolved:
net/smc: avoid data corruption caused by decline
We found a data corruption issue during testing of SMC-R on Redis
applications.
The benchmark has a low probability of reporting a strange error as
shown below.
"Error: Protocol error, got "\xe2" as reply type byte"
Finally, we found that the retrieved error data was as follows:
0xE2 0xD4 0xC3 0xD9 0x04 0x00 0x2C 0x20 0xA6 0x56 0x00 0x16 0x3E 0x0C
0xCB 0x04 0x02 0x01 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0xE2
It is quite obvious that this is a SMC DECLINE message, which means that
the applications received SMC protocol message.
We found that this was caused by the following situations:
client server
¦ clc proposal
------------->
¦ clc accept
<-------------
¦ clc confirm
------------->
wait llc confirm
send llc confirm
¦failed llc confirm
¦ x------
(after 2s)timeout
wait llc confirm rsp
wait decline
(after 1s) timeout
(after 2s) timeout
¦ decline
-------------->
¦ decline
<--------------
As a result, a decline message was sent in the implementation, and this
message was read from TCP by the already-fallback connection.
This patch double the client timeout as 2x of the server value,
With this simple change, the Decline messages should never cross or
collide (during Confirm link timeout).
This issue requires an immediate solution, since the protocol updates
involve a more long-term solution. |
| In the Linux kernel, the following vulnerability has been resolved:
media: gspca: cpia1: shift-out-of-bounds in set_flicker
Syzkaller reported the following issue:
UBSAN: shift-out-of-bounds in drivers/media/usb/gspca/cpia1.c:1031:27
shift exponent 245 is too large for 32-bit type 'int'
When the value of the variable "sd->params.exposure.gain" exceeds the
number of bits in an integer, a shift-out-of-bounds error is reported. It
is triggered because the variable "currentexp" cannot be left-shifted by
more than the number of bits in an integer. In order to avoid invalid
range during left-shift, the conditional expression is added. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: avoid format-overflow warning
With gcc and W=1 option, there's a warning like this:
fs/f2fs/compress.c: In function ‘f2fs_init_page_array_cache’:
fs/f2fs/compress.c:1984:47: error: ‘%u’ directive writing between
1 and 7 bytes into a region of size between 5 and 8
[-Werror=format-overflow=]
1984 | sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev),
MINOR(dev));
| ^~
String "f2fs_page_array_entry-%u:%u" can up to 35. The first "%u" can up
to 4 and the second "%u" can up to 7, so total size is "24 + 4 + 7 = 35".
slab_name's size should be 35 rather than 32. |
| In the Linux kernel, the following vulnerability has been resolved:
video: fbdev: nvidiafb: Use strscpy() to prevent buffer overflow
Coverity complains of a possible buffer overflow. However,
given the 'static' scope of nvidia_setup_i2c_bus() it looks
like that can't happen after examiniing the call sites.
CID 19036 (#1 of 1): Copy into fixed size buffer (STRING_OVERFLOW)
1. fixed_size_dest: You might overrun the 48-character fixed-size string
chan->adapter.name by copying name without checking the length.
2. parameter_as_source: Note: This defect has an elevated risk because the
source argument is a parameter of the current function.
89 strcpy(chan->adapter.name, name);
Fix this warning by using strscpy() which will silence the warning and
prevent any future buffer overflows should the names used to identify the
channel become much longer. |