| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
mm/sparsemem: fix race in accessing memory_section->usage
The below race is observed on a PFN which falls into the device memory
region with the system memory configuration where PFN's are such that
[ZONE_NORMAL ZONE_DEVICE ZONE_NORMAL]. Since normal zone start and end
pfn contains the device memory PFN's as well, the compaction triggered
will try on the device memory PFN's too though they end up in NOP(because
pfn_to_online_page() returns NULL for ZONE_DEVICE memory sections). When
from other core, the section mappings are being removed for the
ZONE_DEVICE region, that the PFN in question belongs to, on which
compaction is currently being operated is resulting into the kernel crash
with CONFIG_SPASEMEM_VMEMAP enabled. The crash logs can be seen at [1].
compact_zone() memunmap_pages
------------- ---------------
__pageblock_pfn_to_page
......
(a)pfn_valid():
valid_section()//return true
(b)__remove_pages()->
sparse_remove_section()->
section_deactivate():
[Free the array ms->usage and set
ms->usage = NULL]
pfn_section_valid()
[Access ms->usage which
is NULL]
NOTE: From the above it can be said that the race is reduced to between
the pfn_valid()/pfn_section_valid() and the section deactivate with
SPASEMEM_VMEMAP enabled.
The commit b943f045a9af("mm/sparse: fix kernel crash with
pfn_section_valid check") tried to address the same problem by clearing
the SECTION_HAS_MEM_MAP with the expectation of valid_section() returns
false thus ms->usage is not accessed.
Fix this issue by the below steps:
a) Clear SECTION_HAS_MEM_MAP before freeing the ->usage.
b) RCU protected read side critical section will either return NULL
when SECTION_HAS_MEM_MAP is cleared or can successfully access ->usage.
c) Free the ->usage with kfree_rcu() and set ms->usage = NULL. No
attempt will be made to access ->usage after this as the
SECTION_HAS_MEM_MAP is cleared thus valid_section() return false.
Thanks to David/Pavan for their inputs on this patch.
[1] https://lore.kernel.org/linux-mm/994410bb-89aa-d987-1f50-f514903c55aa@quicinc.com/
On Snapdragon SoC, with the mentioned memory configuration of PFN's as
[ZONE_NORMAL ZONE_DEVICE ZONE_NORMAL], we are able to see bunch of
issues daily while testing on a device farm.
For this particular issue below is the log. Though the below log is
not directly pointing to the pfn_section_valid(){ ms->usage;}, when we
loaded this dump on T32 lauterbach tool, it is pointing.
[ 540.578056] Unable to handle kernel NULL pointer dereference at
virtual address 0000000000000000
[ 540.578068] Mem abort info:
[ 540.578070] ESR = 0x0000000096000005
[ 540.578073] EC = 0x25: DABT (current EL), IL = 32 bits
[ 540.578077] SET = 0, FnV = 0
[ 540.578080] EA = 0, S1PTW = 0
[ 540.578082] FSC = 0x05: level 1 translation fault
[ 540.578085] Data abort info:
[ 540.578086] ISV = 0, ISS = 0x00000005
[ 540.578088] CM = 0, WnR = 0
[ 540.579431] pstate: 82400005 (Nzcv daif +PAN -UAO +TCO -DIT -SSBSBTYPE=--)
[ 540.579436] pc : __pageblock_pfn_to_page+0x6c/0x14c
[ 540.579454] lr : compact_zone+0x994/0x1058
[ 540.579460] sp : ffffffc03579b510
[ 540.579463] x29: ffffffc03579b510 x28: 0000000000235800 x27:000000000000000c
[ 540.579470] x26: 0000000000235c00 x25: 0000000000000068 x24:ffffffc03579b640
[ 540.579477] x23: 0000000000000001 x22: ffffffc03579b660 x21:0000000000000000
[ 540.579483] x20: 0000000000235bff x19: ffffffdebf7e3940 x18:ffffffdebf66d140
[ 540.579489] x17: 00000000739ba063 x16: 00000000739ba063 x15:00000000009f4bff
[ 540.579495] x14: 0000008000000000 x13: 0000000000000000 x12:0000000000000001
[ 540.579501] x11: 0000000000000000 x10: 0000000000000000 x9 :ffffff897d2cd440
[ 540.579507] x8 : 0000000000000000 x7 : 0000000000000000 x6 :ffffffc03579b5b4
[ 540.579512] x5 : 0000000000027f25 x4 : ffffffc03579b5b8 x3 :0000000000000
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
serial: sc16is7xx: convert from _raw_ to _noinc_ regmap functions for FIFO
The SC16IS7XX IC supports a burst mode to access the FIFOs where the
initial register address is sent ($00), followed by all the FIFO data
without having to resend the register address each time. In this mode, the
IC doesn't increment the register address for each R/W byte.
The regmap_raw_read() and regmap_raw_write() are functions which can
perform IO over multiple registers. They are currently used to read/write
from/to the FIFO, and although they operate correctly in this burst mode on
the SPI bus, they would corrupt the regmap cache if it was not disabled
manually. The reason is that when the R/W size is more than 1 byte, these
functions assume that the register address is incremented and handle the
cache accordingly.
Convert FIFO R/W functions to use the regmap _noinc_ versions in order to
remove the manual cache control which was a workaround when using the
_raw_ versions. FIFO registers are properly declared as volatile so
cache will not be used/updated for FIFO accesses. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Fix peer flow lists handling
The cited change refactored mlx5e_tc_del_fdb_peer_flow() to only clear DUP
flag when list of peer flows has become empty. However, if any concurrent
user holds a reference to a peer flow (for example, the neighbor update
workqueue task is updating peer flow's parent encap entry concurrently),
then the flow will not be removed from the peer list and, consecutively,
DUP flag will remain set. Since mlx5e_tc_del_fdb_peers_flow() calls
mlx5e_tc_del_fdb_peer_flow() for every possible peer index the algorithm
will try to remove the flow from eswitch instances that it has never peered
with causing either NULL pointer dereference when trying to remove the flow
peer list head of peer_index that was never initialized or a warning if the
list debug config is enabled[0].
Fix the issue by always removing the peer flow from the list even when not
releasing the last reference to it.
[0]:
[ 3102.985806] ------------[ cut here ]------------
[ 3102.986223] list_del corruption, ffff888139110698->next is NULL
[ 3102.986757] WARNING: CPU: 2 PID: 22109 at lib/list_debug.c:53 __list_del_entry_valid_or_report+0x4f/0xc0
[ 3102.987561] Modules linked in: act_ct nf_flow_table bonding act_tunnel_key act_mirred act_skbedit vxlan cls_matchall nfnetlink_cttimeout act_gact cls_flower sch_ingress mlx5_vdpa vringh vhost_iotlb vdpa openvswitch nsh xt_MASQUERADE nf_conntrack_netlink nfnetlink iptable_nat xt_addrtype xt_conntrack nf_nat br_netfilter rpcsec_gss_krb5 auth_rpcg
ss oid_registry overlay rpcrdma rdma_ucm ib_iser libiscsi scsi_transport_iscsi ib_umad rdma_cm ib_ipoib iw_cm ib_cm mlx5_ib ib_uverbs ib_core mlx5_core [last unloaded: bonding]
[ 3102.991113] CPU: 2 PID: 22109 Comm: revalidator28 Not tainted 6.6.0-rc6+ #3
[ 3102.991695] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
[ 3102.992605] RIP: 0010:__list_del_entry_valid_or_report+0x4f/0xc0
[ 3102.993122] Code: 39 c2 74 56 48 8b 32 48 39 fe 75 62 48 8b 51 08 48 39 f2 75 73 b8 01 00 00 00 c3 48 89 fe 48 c7 c7 48 fd 0a 82 e8 41 0b ad ff <0f> 0b 31 c0 c3 48 89 fe 48 c7 c7 70 fd 0a 82 e8 2d 0b ad ff 0f 0b
[ 3102.994615] RSP: 0018:ffff8881383e7710 EFLAGS: 00010286
[ 3102.995078] RAX: 0000000000000000 RBX: 0000000000000002 RCX: 0000000000000000
[ 3102.995670] RDX: 0000000000000001 RSI: ffff88885f89b640 RDI: ffff88885f89b640
[ 3102.997188] DEL flow 00000000be367878 on port 0
[ 3102.998594] RBP: dead000000000122 R08: 0000000000000000 R09: c0000000ffffdfff
[ 3102.999604] R10: 0000000000000008 R11: ffff8881383e7598 R12: dead000000000100
[ 3103.000198] R13: 0000000000000002 R14: ffff888139110000 R15: ffff888101901240
[ 3103.000790] FS: 00007f424cde4700(0000) GS:ffff88885f880000(0000) knlGS:0000000000000000
[ 3103.001486] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 3103.001986] CR2: 00007fd42e8dcb70 CR3: 000000011e68a003 CR4: 0000000000370ea0
[ 3103.002596] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 3103.003190] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 3103.003787] Call Trace:
[ 3103.004055] <TASK>
[ 3103.004297] ? __warn+0x7d/0x130
[ 3103.004623] ? __list_del_entry_valid_or_report+0x4f/0xc0
[ 3103.005094] ? report_bug+0xf1/0x1c0
[ 3103.005439] ? console_unlock+0x4a/0xd0
[ 3103.005806] ? handle_bug+0x3f/0x70
[ 3103.006149] ? exc_invalid_op+0x13/0x60
[ 3103.006531] ? asm_exc_invalid_op+0x16/0x20
[ 3103.007430] ? __list_del_entry_valid_or_report+0x4f/0xc0
[ 3103.007910] mlx5e_tc_del_fdb_peers_flow+0xcf/0x240 [mlx5_core]
[ 3103.008463] mlx5e_tc_del_flow+0x46/0x270 [mlx5_core]
[ 3103.008944] mlx5e_flow_put+0x26/0x50 [mlx5_core]
[ 3103.009401] mlx5e_delete_flower+0x25f/0x380 [mlx5_core]
[ 3103.009901] tc_setup_cb_destroy+0xab/0x180
[ 3103.010292] fl_hw_destroy_filter+0x99/0xc0 [cls_flower]
[ 3103.010779] __fl_delete+0x2d4/0x2f0 [cls_flower]
[ 3103.0
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm: Don't unref the same fb many times by mistake due to deadlock handling
If we get a deadlock after the fb lookup in drm_mode_page_flip_ioctl()
we proceed to unref the fb and then retry the whole thing from the top.
But we forget to reset the fb pointer back to NULL, and so if we then
get another error during the retry, before the fb lookup, we proceed
the unref the same fb again without having gotten another reference.
The end result is that the fb will (eventually) end up being freed
while it's still in use.
Reset fb to NULL once we've unreffed it to avoid doing it again
until we've done another fb lookup.
This turned out to be pretty easy to hit on a DG2 when doing async
flips (and CONFIG_DEBUG_WW_MUTEX_SLOWPATH=y). The first symptom I
saw that drm_closefb() simply got stuck in a busy loop while walking
the framebuffer list. Fortunately I was able to convince it to oops
instead, and from there it was easier to track down the culprit. |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/arm-smmu-v3: Fix soft lockup triggered by arm_smmu_mm_invalidate_range
When running an SVA case, the following soft lockup is triggered:
--------------------------------------------------------------------
watchdog: BUG: soft lockup - CPU#244 stuck for 26s!
pstate: 83400009 (Nzcv daif +PAN -UAO +TCO +DIT -SSBS BTYPE=--)
pc : arm_smmu_cmdq_issue_cmdlist+0x178/0xa50
lr : arm_smmu_cmdq_issue_cmdlist+0x150/0xa50
sp : ffff8000d83ef290
x29: ffff8000d83ef290 x28: 000000003b9aca00 x27: 0000000000000000
x26: ffff8000d83ef3c0 x25: da86c0812194a0e8 x24: 0000000000000000
x23: 0000000000000040 x22: ffff8000d83ef340 x21: ffff0000c63980c0
x20: 0000000000000001 x19: ffff0000c6398080 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000 x15: ffff3000b4a3bbb0
x14: ffff3000b4a30888 x13: ffff3000b4a3cf60 x12: 0000000000000000
x11: 0000000000000000 x10: 0000000000000000 x9 : ffffc08120e4d6bc
x8 : 0000000000000000 x7 : 0000000000000000 x6 : 0000000000048cfa
x5 : 0000000000000000 x4 : 0000000000000001 x3 : 000000000000000a
x2 : 0000000080000000 x1 : 0000000000000000 x0 : 0000000000000001
Call trace:
arm_smmu_cmdq_issue_cmdlist+0x178/0xa50
__arm_smmu_tlb_inv_range+0x118/0x254
arm_smmu_tlb_inv_range_asid+0x6c/0x130
arm_smmu_mm_invalidate_range+0xa0/0xa4
__mmu_notifier_invalidate_range_end+0x88/0x120
unmap_vmas+0x194/0x1e0
unmap_region+0xb4/0x144
do_mas_align_munmap+0x290/0x490
do_mas_munmap+0xbc/0x124
__vm_munmap+0xa8/0x19c
__arm64_sys_munmap+0x28/0x50
invoke_syscall+0x78/0x11c
el0_svc_common.constprop.0+0x58/0x1c0
do_el0_svc+0x34/0x60
el0_svc+0x2c/0xd4
el0t_64_sync_handler+0x114/0x140
el0t_64_sync+0x1a4/0x1a8
--------------------------------------------------------------------
Note that since 6.6-rc1 the arm_smmu_mm_invalidate_range above is renamed
to "arm_smmu_mm_arch_invalidate_secondary_tlbs", yet the problem remains.
The commit 06ff87bae8d3 ("arm64: mm: remove unused functions and variable
protoypes") fixed a similar lockup on the CPU MMU side. Yet, it can occur
to SMMU too, since arm_smmu_mm_arch_invalidate_secondary_tlbs() is called
typically next to MMU tlb flush function, e.g.
tlb_flush_mmu_tlbonly {
tlb_flush {
__flush_tlb_range {
// check MAX_TLBI_OPS
}
}
mmu_notifier_arch_invalidate_secondary_tlbs {
arm_smmu_mm_arch_invalidate_secondary_tlbs {
// does not check MAX_TLBI_OPS
}
}
}
Clone a CMDQ_MAX_TLBI_OPS from the MAX_TLBI_OPS in tlbflush.h, since in an
SVA case SMMU uses the CPU page table, so it makes sense to align with the
tlbflush code. Then, replace per-page TLBI commands with a single per-asid
TLBI command, if the request size hits this threshold. |
| In the Linux kernel, the following vulnerability has been resolved:
mctp: perform route lookups under a RCU read-side lock
Our current route lookups (mctp_route_lookup and mctp_route_lookup_null)
traverse the net's route list without the RCU read lock held. This means
the route lookup is subject to preemption, resulting in an potential
grace period expiry, and so an eventual kfree() while we still have the
route pointer.
Add the proper read-side critical section locks around the route
lookups, preventing premption and a possible parallel kfree.
The remaining net->mctp.routes accesses are already under a
rcu_read_lock, or protected by the RTNL for updates.
Based on an analysis from Sili Luo <rootlab@huawei.com>, where
introducing a delay in the route lookup could cause a UAF on
simultaneous sendmsg() and route deletion. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix race condition between session lookup and expire
Thread A + Thread B
ksmbd_session_lookup | smb2_sess_setup
sess = xa_load |
|
| xa_erase(&conn->sessions, sess->id);
|
| ksmbd_session_destroy(sess) --> kfree(sess)
|
// UAF! |
sess->last_active = jiffies |
+
This patch add rwsem to fix race condition between ksmbd_session_lookup
and ksmbd_expire_session. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix uaf in smb20_oplock_break_ack
drop reference after use opinfo. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: logitech-hidpp: Fix kernel crash on receiver USB disconnect
hidpp_connect_event() has *four* time-of-check vs time-of-use (TOCTOU)
races when it races with itself.
hidpp_connect_event() primarily runs from a workqueue but it also runs
on probe() and if a "device-connected" packet is received by the hw
when the thread running hidpp_connect_event() from probe() is waiting on
the hw, then a second thread running hidpp_connect_event() will be
started from the workqueue.
This opens the following races (note the below code is simplified):
1. Retrieving + printing the protocol (harmless race):
if (!hidpp->protocol_major) {
hidpp_root_get_protocol_version()
hidpp->protocol_major = response.rap.params[0];
}
We can actually see this race hit in the dmesg in the abrt output
attached to rhbz#2227968:
[ 3064.624215] logitech-hidpp-device 0003:046D:4071.0049: HID++ 4.5 device connected.
[ 3064.658184] logitech-hidpp-device 0003:046D:4071.0049: HID++ 4.5 device connected.
Testing with extra logging added has shown that after this the 2 threads
take turn grabbing the hw access mutex (send_mutex) so they ping-pong
through all the other TOCTOU cases managing to hit all of them:
2. Updating the name to the HIDPP name (harmless race):
if (hidpp->name == hdev->name) {
...
hidpp->name = new_name;
}
3. Initializing the power_supply class for the battery (problematic!):
hidpp_initialize_battery()
{
if (hidpp->battery.ps)
return 0;
probe_battery(); /* Blocks, threads take turns executing this */
hidpp->battery.desc.properties =
devm_kmemdup(dev, hidpp_battery_props, cnt, GFP_KERNEL);
hidpp->battery.ps =
devm_power_supply_register(&hidpp->hid_dev->dev,
&hidpp->battery.desc, cfg);
}
4. Creating delayed input_device (potentially problematic):
if (hidpp->delayed_input)
return;
hidpp->delayed_input = hidpp_allocate_input(hdev);
The really big problem here is 3. Hitting the race leads to the following
sequence:
hidpp->battery.desc.properties =
devm_kmemdup(dev, hidpp_battery_props, cnt, GFP_KERNEL);
hidpp->battery.ps =
devm_power_supply_register(&hidpp->hid_dev->dev,
&hidpp->battery.desc, cfg);
...
hidpp->battery.desc.properties =
devm_kmemdup(dev, hidpp_battery_props, cnt, GFP_KERNEL);
hidpp->battery.ps =
devm_power_supply_register(&hidpp->hid_dev->dev,
&hidpp->battery.desc, cfg);
So now we have registered 2 power supplies for the same battery,
which looks a bit weird from userspace's pov but this is not even
the really big problem.
Notice how:
1. This is all devm-maganaged
2. The hidpp->battery.desc struct is shared between the 2 power supplies
3. hidpp->battery.desc.properties points to the result from the second
devm_kmemdup()
This causes a use after free scenario on USB disconnect of the receiver:
1. The last registered power supply class device gets unregistered
2. The memory from the last devm_kmemdup() call gets freed,
hidpp->battery.desc.properties now points to freed memory
3. The first registered power supply class device gets unregistered,
this involves sending a remove uevent to userspace which invokes
power_supply_uevent() to fill the uevent data
4. power_supply_uevent() uses hidpp->battery.desc.properties which
now points to freed memory leading to backtraces like this one:
Sep 22 20:01:35 eric kernel: BUG: unable to handle page fault for address: ffffb2140e017f08
...
Sep 22 20:01:35 eric kernel: Workqueue: usb_hub_wq hub_event
Sep 22 20:01:35 eric kernel: RIP: 0010:power_supply_uevent+0xee/0x1d0
...
Sep 22 20:01:35 eric kernel: ? asm_exc_page_fault+0x26/0x30
Sep 22 20:01:35 eric kernel: ? power_supply_uevent+0xee/0x1d0
Sep 22 20:01:35 eric kernel: ? power_supply_uevent+0x10d/0x1d0
Sep 22 20:01:35 eric kernel: dev_uevent+0x10f/0x2d0
Sep 22 20:01:35 eric kernel: kobject_uevent_env+0x291/0x680
Sep 22 20:01:35 eric kernel:
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
usb: hub: Guard against accesses to uninitialized BOS descriptors
Many functions in drivers/usb/core/hub.c and drivers/usb/core/hub.h
access fields inside udev->bos without checking if it was allocated and
initialized. If usb_get_bos_descriptor() fails for whatever
reason, udev->bos will be NULL and those accesses will result in a
crash:
BUG: kernel NULL pointer dereference, address: 0000000000000018
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 5 PID: 17818 Comm: kworker/5:1 Tainted: G W 5.15.108-18910-gab0e1cb584e1 #1 <HASH:1f9e 1>
Hardware name: Google Kindred/Kindred, BIOS Google_Kindred.12672.413.0 02/03/2021
Workqueue: usb_hub_wq hub_event
RIP: 0010:hub_port_reset+0x193/0x788
Code: 89 f7 e8 20 f7 15 00 48 8b 43 08 80 b8 96 03 00 00 03 75 36 0f b7 88 92 03 00 00 81 f9 10 03 00 00 72 27 48 8b 80 a8 03 00 00 <48> 83 78 18 00 74 19 48 89 df 48 8b 75 b0 ba 02 00 00 00 4c 89 e9
RSP: 0018:ffffab740c53fcf8 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffffa1bc5f678000 RCX: 0000000000000310
RDX: fffffffffffffdff RSI: 0000000000000286 RDI: ffffa1be9655b840
RBP: ffffab740c53fd70 R08: 00001b7d5edaa20c R09: ffffffffb005e060
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: ffffab740c53fd3e R14: 0000000000000032 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffffa1be96540000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000018 CR3: 000000022e80c005 CR4: 00000000003706e0
Call Trace:
hub_event+0x73f/0x156e
? hub_activate+0x5b7/0x68f
process_one_work+0x1a2/0x487
worker_thread+0x11a/0x288
kthread+0x13a/0x152
? process_one_work+0x487/0x487
? kthread_associate_blkcg+0x70/0x70
ret_from_fork+0x1f/0x30
Fall back to a default behavior if the BOS descriptor isn't accessible
and skip all the functionalities that depend on it: LPM support checks,
Super Speed capabilitiy checks, U1/U2 states setup. |
| In the Linux kernel, the following vulnerability has been resolved:
perf/x86/lbr: Filter vsyscall addresses
We found that a panic can occur when a vsyscall is made while LBR sampling
is active. If the vsyscall is interrupted (NMI) for perf sampling, this
call sequence can occur (most recent at top):
__insn_get_emulate_prefix()
insn_get_emulate_prefix()
insn_get_prefixes()
insn_get_opcode()
decode_branch_type()
get_branch_type()
intel_pmu_lbr_filter()
intel_pmu_handle_irq()
perf_event_nmi_handler()
Within __insn_get_emulate_prefix() at frame 0, a macro is called:
peek_nbyte_next(insn_byte_t, insn, i)
Within this macro, this dereference occurs:
(insn)->next_byte
Inspecting registers at this point, the value of the next_byte field is the
address of the vsyscall made, for example the location of the vsyscall
version of gettimeofday() at 0xffffffffff600000. The access to an address
in the vsyscall region will trigger an oops due to an unhandled page fault.
To fix the bug, filtering for vsyscalls can be done when
determining the branch type. This patch will return
a "none" branch if a kernel address if found to lie in the
vsyscall region. |
| In the Linux kernel, the following vulnerability has been resolved:
Input: powermate - fix use-after-free in powermate_config_complete
syzbot has found a use-after-free bug [1] in the powermate driver. This
happens when the device is disconnected, which leads to a memory free from
the powermate_device struct. When an asynchronous control message
completes after the kfree and its callback is invoked, the lock does not
exist anymore and hence the bug.
Use usb_kill_urb() on pm->config to cancel any in-progress requests upon
device disconnection.
[1] https://syzkaller.appspot.com/bug?extid=0434ac83f907a1dbdd1e |
| In the Linux kernel, the following vulnerability has been resolved:
IB/hfi1: Fix bugs with non-PAGE_SIZE-end multi-iovec user SDMA requests
hfi1 user SDMA request processing has two bugs that can cause data
corruption for user SDMA requests that have multiple payload iovecs
where an iovec other than the tail iovec does not run up to the page
boundary for the buffer pointed to by that iovec.a
Here are the specific bugs:
1. user_sdma_txadd() does not use struct user_sdma_iovec->iov.iov_len.
Rather, user_sdma_txadd() will add up to PAGE_SIZE bytes from iovec
to the packet, even if some of those bytes are past
iovec->iov.iov_len and are thus not intended to be in the packet.
2. user_sdma_txadd() and user_sdma_send_pkts() fail to advance to the
next iovec in user_sdma_request->iovs when the current iovec
is not PAGE_SIZE and does not contain enough data to complete the
packet. The transmitted packet will contain the wrong data from the
iovec pages.
This has not been an issue with SDMA packets from hfi1 Verbs or PSM2
because they only produce iovecs that end short of PAGE_SIZE as the tail
iovec of an SDMA request.
Fixing these bugs exposes other bugs with the SDMA pin cache
(struct mmu_rb_handler) that get in way of supporting user SDMA requests
with multiple payload iovecs whose buffers do not end at PAGE_SIZE. So
this commit fixes those issues as well.
Here are the mmu_rb_handler bugs that non-PAGE_SIZE-end multi-iovec
payload user SDMA requests can hit:
1. Overlapping memory ranges in mmu_rb_handler will result in duplicate
pinnings.
2. When extending an existing mmu_rb_handler entry (struct mmu_rb_node),
the mmu_rb code (1) removes the existing entry under a lock, (2)
releases that lock, pins the new pages, (3) then reacquires the lock
to insert the extended mmu_rb_node.
If someone else comes in and inserts an overlapping entry between (2)
and (3), insert in (3) will fail.
The failure path code in this case unpins _all_ pages in either the
original mmu_rb_node or the new mmu_rb_node that was inserted between
(2) and (3).
3. In hfi1_mmu_rb_remove_unless_exact(), mmu_rb_node->refcount is
incremented outside of mmu_rb_handler->lock. As a result, mmu_rb_node
could be evicted by another thread that gets mmu_rb_handler->lock and
checks mmu_rb_node->refcount before mmu_rb_node->refcount is
incremented.
4. Related to #2 above, SDMA request submission failure path does not
check mmu_rb_node->refcount before freeing mmu_rb_node object.
If there are other SDMA requests in progress whose iovecs have
pointers to the now-freed mmu_rb_node(s), those pointers to the
now-freed mmu_rb nodes will be dereferenced when those SDMA requests
complete. |
| In the Linux kernel, the following vulnerability has been resolved:
thermal: core: Fix NULL pointer dereference in zone registration error path
If device_register() in thermal_zone_device_register_with_trips()
returns an error, the tz variable is set to NULL and subsequently
dereferenced in kfree(tz->tzp).
Commit adc8749b150c ("thermal/drivers/core: Use put_device() if
device_register() fails") added the tz = NULL assignment in question to
avoid a possible double-free after dropping the reference to the zone
device. However, after commit 4649620d9404 ("thermal: core: Make
thermal_zone_device_unregister() return after freeing the zone"), that
assignment has become redundant, because dropping the reference to the
zone device does not cause the zone object to be freed any more.
Drop it to address the NULL pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: rsa - add a check for allocation failure
Static checkers insist that the mpi_alloc() allocation can fail so add
a check to prevent a NULL dereference. Small allocations like this
can't actually fail in current kernels, but adding a check is very
simple and makes the static checkers happy. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: Fix some null pointer dereference issues in ice_ptp.c
devm_kasprintf() returns a pointer to dynamically allocated memory
which can be NULL upon failure. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/radeon: check the alloc_workqueue return value in radeon_crtc_init()
check the alloc_workqueue return value in radeon_crtc_init()
to avoid null-ptr-deref. |
| In the Linux kernel, the following vulnerability has been resolved:
drivers/amd/pm: fix a use-after-free in kv_parse_power_table
When ps allocated by kzalloc equals to NULL, kv_parse_power_table
frees adev->pm.dpm.ps that allocated before. However, after the control
flow goes through the following call chains:
kv_parse_power_table
|-> kv_dpm_init
|-> kv_dpm_sw_init
|-> kv_dpm_fini
The adev->pm.dpm.ps is used in the for loop of kv_dpm_fini after its
first free in kv_parse_power_table and causes a use-after-free bug. |
| In the Linux kernel, the following vulnerability has been resolved:
class: fix use-after-free in class_register()
The lock_class_key is still registered and can be found in
lock_keys_hash hlist after subsys_private is freed in error
handler path.A task who iterate over the lock_keys_hash
later may cause use-after-free.So fix that up and unregister
the lock_class_key before kfree(cp).
On our platform, a driver fails to kset_register because of
creating duplicate filename '/class/xxx'.With Kasan enabled,
it prints a invalid-access bug report.
KASAN bug report:
BUG: KASAN: invalid-access in lockdep_register_key+0x19c/0x1bc
Write of size 8 at addr 15ffff808b8c0368 by task modprobe/252
Pointer tag: [15], memory tag: [fe]
CPU: 7 PID: 252 Comm: modprobe Tainted: G W
6.6.0-mainline-maybe-dirty #1
Call trace:
dump_backtrace+0x1b0/0x1e4
show_stack+0x2c/0x40
dump_stack_lvl+0xac/0xe0
print_report+0x18c/0x4d8
kasan_report+0xe8/0x148
__hwasan_store8_noabort+0x88/0x98
lockdep_register_key+0x19c/0x1bc
class_register+0x94/0x1ec
init_module+0xbc/0xf48 [rfkill]
do_one_initcall+0x17c/0x72c
do_init_module+0x19c/0x3f8
...
Memory state around the buggy address:
ffffff808b8c0100: 8a 8a 8a 8a 8a 8a 8a 8a 8a 8a 8a 8a 8a 8a 8a 8a
ffffff808b8c0200: 8a 8a 8a 8a 8a 8a 8a 8a fe fe fe fe fe fe fe fe
>ffffff808b8c0300: fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe
^
ffffff808b8c0400: 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03
As CONFIG_KASAN_GENERIC is not set, Kasan reports invalid-access
not use-after-free here.In this case, modprobe is manipulating
the corrupted lock_keys_hash hlish where lock_class_key is already
freed before.
It's worth noting that this only can happen if lockdep is enabled,
which is not true for normal system. |
| In the Linux kernel, the following vulnerability has been resolved:
mfd: syscon: Fix null pointer dereference in of_syscon_register()
kasprintf() returns a pointer to dynamically allocated memory
which can be NULL upon failure. |