Search

Search Results (310799 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-10061 1 Mongodb 1 Mongodb 2025-09-18 6.5 Medium
An authorized user can cause a crash in the MongoDB Server through a specially crafted $group query. This vulnerability is related to the incorrect handling of certain accumulator functions when additional parameters are specified within the $group operation. This vulnerability could lead to denial of service if triggered repeatedly. This issue affects MongoDB Server v6.0 versions prior to 6.0.25, MongoDB Server v7.0 versions prior to 7.0.22, MongoDB Server v8.0 versions prior to 8.0.12 and MongoDB Server v8.1 versions prior to 8.1.2
CVE-2021-47532 1 Linux 1 Linux Kernel 2025-09-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/msm/devfreq: Fix OPP refcnt leak
CVE-2025-58446 1 Mlc-ai 1 Xgrammar 2025-09-18 7.5 High
xgrammar is an open-source library for efficient, flexible, and portable structured generation. A grammar optimizer introduced in 0.1.23 processes large grammars (>100k characters) at very low rates, and can be used for DOS of model providers. This issue is fixed in version 0.1.24.
CVE-2021-47533 1 Linux 1 Linux Kernel 2025-09-18 7.8 High
In the Linux kernel, the following vulnerability has been resolved: drm/vc4: kms: Clear the HVS FIFO commit pointer once done Commit 9ec03d7f1ed3 ("drm/vc4: kms: Wait on previous FIFO users before a commit") introduced a wait on the previous commit done on a given HVS FIFO. However, we never cleared that pointer once done. Since drm_crtc_commit_put can free the drm_crtc_commit structure directly if we were the last user, this means that it can lead to a use-after free if we were to duplicate the state, and that stale pointer would even be copied to the new state. Set the pointer to NULL once we're done with the wait so that we don't carry over a pointer to a free'd structure.
CVE-2021-47536 1 Linux 1 Linux Kernel 2025-09-18 7.8 High
In the Linux kernel, the following vulnerability has been resolved: net/smc: fix wrong list_del in smc_lgr_cleanup_early smc_lgr_cleanup_early() meant to delete the link group from the link group list, but it deleted the list head by mistake. This may cause memory corruption since we didn't remove the real link group from the list and later memseted the link group structure. We got a list corruption panic when testing: [  231.277259] list_del corruption. prev->next should be ffff8881398a8000, but was 0000000000000000 [  231.278222] ------------[ cut here ]------------ [  231.278726] kernel BUG at lib/list_debug.c:53! [  231.279326] invalid opcode: 0000 [#1] SMP NOPTI [  231.279803] CPU: 0 PID: 5 Comm: kworker/0:0 Not tainted 5.10.46+ #435 [  231.280466] Hardware name: Alibaba Cloud ECS, BIOS 8c24b4c 04/01/2014 [  231.281248] Workqueue: events smc_link_down_work [  231.281732] RIP: 0010:__list_del_entry_valid+0x70/0x90 [  231.282258] Code: 4c 60 82 e8 7d cc 6a 00 0f 0b 48 89 fe 48 c7 c7 88 4c 60 82 e8 6c cc 6a 00 0f 0b 48 89 fe 48 c7 c7 c0 4c 60 82 e8 5b cc 6a 00 <0f> 0b 48 89 fe 48 c7 c7 00 4d 60 82 e8 4a cc 6a 00 0f 0b cc cc cc [  231.284146] RSP: 0018:ffffc90000033d58 EFLAGS: 00010292 [  231.284685] RAX: 0000000000000054 RBX: ffff8881398a8000 RCX: 0000000000000000 [  231.285415] RDX: 0000000000000001 RSI: ffff88813bc18040 RDI: ffff88813bc18040 [  231.286141] RBP: ffffffff8305ad40 R08: 0000000000000003 R09: 0000000000000001 [  231.286873] R10: ffffffff82803da0 R11: ffffc90000033b90 R12: 0000000000000001 [  231.287606] R13: 0000000000000000 R14: ffff8881398a8000 R15: 0000000000000003 [  231.288337] FS:  0000000000000000(0000) GS:ffff88813bc00000(0000) knlGS:0000000000000000 [  231.289160] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [  231.289754] CR2: 0000000000e72058 CR3: 000000010fa96006 CR4: 00000000003706f0 [  231.290485] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [  231.291211] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [  231.291940] Call Trace: [  231.292211]  smc_lgr_terminate_sched+0x53/0xa0 [  231.292677]  smc_switch_conns+0x75/0x6b0 [  231.293085]  ? update_load_avg+0x1a6/0x590 [  231.293517]  ? ttwu_do_wakeup+0x17/0x150 [  231.293907]  ? update_load_avg+0x1a6/0x590 [  231.294317]  ? newidle_balance+0xca/0x3d0 [  231.294716]  smcr_link_down+0x50/0x1a0 [  231.295090]  ? __wake_up_common_lock+0x77/0x90 [  231.295534]  smc_link_down_work+0x46/0x60 [  231.295933]  process_one_work+0x18b/0x350
CVE-2021-47538 1 Linux 1 Linux Kernel 2025-09-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: rxrpc: Fix rxrpc_local leak in rxrpc_lookup_peer() Need to call rxrpc_put_local() for peer candidate before kfree() as it holds a ref to rxrpc_local. [DH: v2: Changed to abstract the peer freeing code out into a function]
CVE-2021-47539 1 Linux 1 Linux Kernel 2025-09-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: rxrpc: Fix rxrpc_peer leak in rxrpc_look_up_bundle() Need to call rxrpc_put_peer() for bundle candidate before kfree() as it holds a ref to rxrpc_peer. [DH: v2: Changed to abstract out the bundle freeing code into a function]
CVE-2025-10079 1 Phpgurukul 1 Small Crm 2025-09-18 7.3 High
A flaw has been found in PHPGurukul Small CRM 4.0. Affected by this vulnerability is an unknown functionality of the file /get-quote.php. Executing manipulation of the argument Contact can lead to sql injection. The attack can be executed remotely. The exploit has been published and may be used.
CVE-2024-36019 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-09-18 7.1 High
In the Linux kernel, the following vulnerability has been resolved: regmap: maple: Fix cache corruption in regcache_maple_drop() When keeping the upper end of a cache block entry, the entry[] array must be indexed by the offset from the base register of the block, i.e. max - mas.index. The code was indexing entry[] by only the register address, leading to an out-of-bounds access that copied some part of the kernel memory over the cache contents. This bug was not detected by the regmap KUnit test because it only tests with a block of registers starting at 0, so mas.index == 0.
CVE-2024-36015 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-09-18 7.8 High
In the Linux kernel, the following vulnerability has been resolved: ppdev: Add an error check in register_device In register_device, the return value of ida_simple_get is unchecked, in witch ida_simple_get will use an invalid index value. To address this issue, index should be checked after ida_simple_get. When the index value is abnormal, a warning message should be printed, the port should be dropped, and the value should be recorded.
CVE-2025-58782 1 Apache 2 Jackrabbit, Jackrabbit Jcr Commons 2025-09-18 6.5 Medium
Deserialization of Untrusted Data vulnerability in Apache Jackrabbit Core and Apache Jackrabbit JCR Commons. This issue affects Apache Jackrabbit Core: from 1.0.0 through 2.22.1; Apache Jackrabbit JCR Commons: from 1.0.0 through 2.22.1. Deployments that accept JNDI URIs for JCR lookup from untrusted users allows them to inject malicious JNDI references, potentially leading to arbitrary code execution through deserialization of untrusted data. Users are recommended to upgrade to version 2.22.2. JCR lookup through JNDI has been disabled by default in 2.22.2. Users of this feature need to enable it explicitly and are adviced to review their use of JNDI URI for JCR lookup.
CVE-2024-27063 1 Linux 1 Linux Kernel 2025-09-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: leds: trigger: netdev: Fix kernel panic on interface rename trig notify Commit d5e01266e7f5 ("leds: trigger: netdev: add additional specific link speed mode") in the various changes, reworked the way to set the LINKUP mode in commit cee4bd16c319 ("leds: trigger: netdev: Recheck NETDEV_LED_MODE_LINKUP on dev rename") and moved it to a generic function. This changed the logic where, in the previous implementation the dev from the trigger event was used to check if the carrier was ok, but in the new implementation with the generic function, the dev in trigger_data is used instead. This is problematic and cause a possible kernel panic due to the fact that the dev in the trigger_data still reference the old one as the new one (passed from the trigger event) still has to be hold and saved in the trigger_data struct (done in the NETDEV_REGISTER case). On calling of get_device_state(), an invalid net_dev is used and this cause a kernel panic. To handle this correctly, move the call to get_device_state() after the new net_dev is correctly set in trigger_data (in the NETDEV_REGISTER case) and correctly parse the new dev.
CVE-2024-27039 1 Linux 1 Linux Kernel 2025-09-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: clk: hisilicon: hi3559a: Fix an erroneous devm_kfree() 'p_clk' is an array allocated just before the for loop for all clk that need to be registered. It is incremented at each loop iteration. If a clk_register() call fails, 'p_clk' may point to something different from what should be freed. The best we can do, is to avoid this wrong release of memory.
CVE-2021-47567 1 Linux 1 Linux Kernel 2025-09-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: powerpc/32: Fix hardlockup on vmap stack overflow Since the commit c118c7303ad5 ("powerpc/32: Fix vmap stack - Do not activate MMU before reading task struct") a vmap stack overflow results in a hard lockup. This is because emergency_ctx is still addressed with its virtual address allthough data MMU is not active anymore at that time. Fix it by using a physical address instead.
CVE-2025-59340 1 Hubspot 1 Jinjava 2025-09-18 9.8 Critical
jinjava is a Java-based template engine based on django template syntax, adapted to render jinja templates. Priori to 2.8.1, by using mapper.getTypeFactory().constructFromCanonical(), it is possible to instruct the underlying ObjectMapper to deserialize attacker-controlled input into arbitrary classes. This enables the creation of semi-arbitrary class instances without directly invoking restricted methods or class literals. As a result, an attacker can escape the sandbox and instantiate classes such as java.net.URL, opening up the ability to access local files and URLs(e.g., file:///etc/passwd). With further chaining, this primitive can potentially lead to remote code execution (RCE). This vulnerability is fixed in 2.8.1.
CVE-2024-48341 2 Dingfanzu, Geeeeeeeek 2 Cms, Dingfanzu 2025-09-18 3.7 Low
dingfanzu CMS V1.0 was discovered to contain a Cross-Site Request Forgery (CSRF) via the component /admin/doAdminAction.php?act=addShop
CVE-2021-47566 2 Linux, Redhat 5 Linux Kernel, Rhel Aus, Rhel E4s and 2 more 2025-09-18 7.8 High
In the Linux kernel, the following vulnerability has been resolved: proc/vmcore: fix clearing user buffer by properly using clear_user() To clear a user buffer we cannot simply use memset, we have to use clear_user(). With a virtio-mem device that registers a vmcore_cb and has some logically unplugged memory inside an added Linux memory block, I can easily trigger a BUG by copying the vmcore via "cp": systemd[1]: Starting Kdump Vmcore Save Service... kdump[420]: Kdump is using the default log level(3). kdump[453]: saving to /sysroot/var/crash/127.0.0.1-2021-11-11-14:59:22/ kdump[458]: saving vmcore-dmesg.txt to /sysroot/var/crash/127.0.0.1-2021-11-11-14:59:22/ kdump[465]: saving vmcore-dmesg.txt complete kdump[467]: saving vmcore BUG: unable to handle page fault for address: 00007f2374e01000 #PF: supervisor write access in kernel mode #PF: error_code(0x0003) - permissions violation PGD 7a523067 P4D 7a523067 PUD 7a528067 PMD 7a525067 PTE 800000007048f867 Oops: 0003 [#1] PREEMPT SMP NOPTI CPU: 0 PID: 468 Comm: cp Not tainted 5.15.0+ #6 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.14.0-27-g64f37cc530f1-prebuilt.qemu.org 04/01/2014 RIP: 0010:read_from_oldmem.part.0.cold+0x1d/0x86 Code: ff ff ff e8 05 ff fe ff e9 b9 e9 7f ff 48 89 de 48 c7 c7 38 3b 60 82 e8 f1 fe fe ff 83 fd 08 72 3c 49 8d 7d 08 4c 89 e9 89 e8 <49> c7 45 00 00 00 00 00 49 c7 44 05 f8 00 00 00 00 48 83 e7 f81 RSP: 0018:ffffc9000073be08 EFLAGS: 00010212 RAX: 0000000000001000 RBX: 00000000002fd000 RCX: 00007f2374e01000 RDX: 0000000000000001 RSI: 00000000ffffdfff RDI: 00007f2374e01008 RBP: 0000000000001000 R08: 0000000000000000 R09: ffffc9000073bc50 R10: ffffc9000073bc48 R11: ffffffff829461a8 R12: 000000000000f000 R13: 00007f2374e01000 R14: 0000000000000000 R15: ffff88807bd421e8 FS: 00007f2374e12140(0000) GS:ffff88807f000000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f2374e01000 CR3: 000000007a4aa000 CR4: 0000000000350eb0 Call Trace: read_vmcore+0x236/0x2c0 proc_reg_read+0x55/0xa0 vfs_read+0x95/0x190 ksys_read+0x4f/0xc0 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae Some x86-64 CPUs have a CPU feature called "Supervisor Mode Access Prevention (SMAP)", which is used to detect wrong access from the kernel to user buffers like this: SMAP triggers a permissions violation on wrong access. In the x86-64 variant of clear_user(), SMAP is properly handled via clac()+stac(). To fix, properly use clear_user() when we're dealing with a user buffer.
CVE-2021-47565 1 Linux 1 Linux Kernel 2025-09-18 7.8 High
In the Linux kernel, the following vulnerability has been resolved: scsi: mpt3sas: Fix kernel panic during drive powercycle test While looping over shost's sdev list it is possible that one of the drives is getting removed and its sas_target object is freed but its sdev object remains intact. Consequently, a kernel panic can occur while the driver is trying to access the sas_address field of sas_target object without also checking the sas_target object for NULL.
CVE-2021-47561 1 Linux 1 Linux Kernel 2025-09-18 7.8 High
In the Linux kernel, the following vulnerability has been resolved: i2c: virtio: disable timeout handling If a timeout is hit, it can result is incorrect data on the I2C bus and/or memory corruptions in the guest since the device can still be operating on the buffers it was given while the guest has freed them. Here is, for example, the start of a slub_debug splat which was triggered on the next transfer after one transfer was forced to timeout by setting a breakpoint in the backend (rust-vmm/vhost-device): BUG kmalloc-1k (Not tainted): Poison overwritten First byte 0x1 instead of 0x6b Allocated in virtio_i2c_xfer+0x65/0x35c age=350 cpu=0 pid=29 __kmalloc+0xc2/0x1c9 virtio_i2c_xfer+0x65/0x35c __i2c_transfer+0x429/0x57d i2c_transfer+0x115/0x134 i2cdev_ioctl_rdwr+0x16a/0x1de i2cdev_ioctl+0x247/0x2ed vfs_ioctl+0x21/0x30 sys_ioctl+0xb18/0xb41 Freed in virtio_i2c_xfer+0x32e/0x35c age=244 cpu=0 pid=29 kfree+0x1bd/0x1cc virtio_i2c_xfer+0x32e/0x35c __i2c_transfer+0x429/0x57d i2c_transfer+0x115/0x134 i2cdev_ioctl_rdwr+0x16a/0x1de i2cdev_ioctl+0x247/0x2ed vfs_ioctl+0x21/0x30 sys_ioctl+0xb18/0xb41 There is no simple fix for this (the driver would have to always create bounce buffers and hold on to them until the device eventually returns the buffers), so just disable the timeout support for now.
CVE-2021-47558 1 Linux 1 Linux Kernel 2025-09-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: stmmac: Disable Tx queues when reconfiguring the interface The Tx queues were not disabled in situations where the driver needed to stop the interface to apply a new configuration. This could result in a kernel panic when doing any of the 3 following actions: * reconfiguring the number of queues (ethtool -L) * reconfiguring the size of the ring buffers (ethtool -G) * installing/removing an XDP program (ip l set dev ethX xdp) Prevent the panic by making sure netif_tx_disable is called when stopping an interface. Without this patch, the following kernel panic can be observed when doing any of the actions above: Unable to handle kernel paging request at virtual address ffff80001238d040 [....] Call trace: dwmac4_set_addr+0x8/0x10 dev_hard_start_xmit+0xe4/0x1ac sch_direct_xmit+0xe8/0x39c __dev_queue_xmit+0x3ec/0xaf0 dev_queue_xmit+0x14/0x20 [...] [ end trace 0000000000000002 ]---