CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
ALSA: us122l: Use snd_card_free_when_closed() at disconnection
The USB disconnect callback is supposed to be short and not too-long
waiting. OTOH, the current code uses snd_card_free() at
disconnection, but this waits for the close of all used fds, hence it
can take long. It eventually blocks the upper layer USB ioctls, which
may trigger a soft lockup.
An easy workaround is to replace snd_card_free() with
snd_card_free_when_closed(). This variant returns immediately while
the release of resources is done asynchronously by the card device
release at the last close.
The loop of us122l->mmap_count check is dropped as well. The check is
useless for the asynchronous operation with *_when_closed(). |
In the Linux kernel, the following vulnerability has been resolved:
ALSA: caiaq: Use snd_card_free_when_closed() at disconnection
The USB disconnect callback is supposed to be short and not too-long
waiting. OTOH, the current code uses snd_card_free() at
disconnection, but this waits for the close of all used fds, hence it
can take long. It eventually blocks the upper layer USB ioctls, which
may trigger a soft lockup.
An easy workaround is to replace snd_card_free() with
snd_card_free_when_closed(). This variant returns immediately while
the release of resources is done asynchronously by the card device
release at the last close.
This patch also splits the code to the disconnect and the free phases;
the former is called immediately at the USB disconnect callback while
the latter is called from the card destructor. |
In the Linux kernel, the following vulnerability has been resolved:
drm/modes: Avoid divide by zero harder in drm_mode_vrefresh()
drm_mode_vrefresh() is trying to avoid divide by zero
by checking whether htotal or vtotal are zero. But we may
still end up with a div-by-zero of vtotal*htotal*... |
In the Linux kernel, the following vulnerability has been resolved:
Drivers: hv: util: Avoid accessing a ringbuffer not initialized yet
If the KVP (or VSS) daemon starts before the VMBus channel's ringbuffer is
fully initialized, we can hit the panic below:
hv_utils: Registering HyperV Utility Driver
hv_vmbus: registering driver hv_utils
...
BUG: kernel NULL pointer dereference, address: 0000000000000000
CPU: 44 UID: 0 PID: 2552 Comm: hv_kvp_daemon Tainted: G E 6.11.0-rc3+ #1
RIP: 0010:hv_pkt_iter_first+0x12/0xd0
Call Trace:
...
vmbus_recvpacket
hv_kvp_onchannelcallback
vmbus_on_event
tasklet_action_common
tasklet_action
handle_softirqs
irq_exit_rcu
sysvec_hyperv_stimer0
</IRQ>
<TASK>
asm_sysvec_hyperv_stimer0
...
kvp_register_done
hvt_op_read
vfs_read
ksys_read
__x64_sys_read
This can happen because the KVP/VSS channel callback can be invoked
even before the channel is fully opened:
1) as soon as hv_kvp_init() -> hvutil_transport_init() creates
/dev/vmbus/hv_kvp, the kvp daemon can open the device file immediately and
register itself to the driver by writing a message KVP_OP_REGISTER1 to the
file (which is handled by kvp_on_msg() ->kvp_handle_handshake()) and
reading the file for the driver's response, which is handled by
hvt_op_read(), which calls hvt->on_read(), i.e. kvp_register_done().
2) the problem with kvp_register_done() is that it can cause the
channel callback to be called even before the channel is fully opened,
and when the channel callback is starting to run, util_probe()->
vmbus_open() may have not initialized the ringbuffer yet, so the
callback can hit the panic of NULL pointer dereference.
To reproduce the panic consistently, we can add a "ssleep(10)" for KVP in
__vmbus_open(), just before the first hv_ringbuffer_init(), and then we
unload and reload the driver hv_utils, and run the daemon manually within
the 10 seconds.
Fix the panic by reordering the steps in util_probe() so the char dev
entry used by the KVP or VSS daemon is not created until after
vmbus_open() has completed. This reordering prevents the race condition
from happening. |
In the Linux kernel, the following vulnerability has been resolved:
block: Prevent potential deadlocks in zone write plug error recovery
Zone write plugging for handling writes to zones of a zoned block
device always execute a zone report whenever a write BIO to a zone
fails. The intent of this is to ensure that the tracking of a zone write
pointer is always correct to ensure that the alignment to a zone write
pointer of write BIOs can be checked on submission and that we can
always correctly emulate zone append operations using regular write
BIOs.
However, this error recovery scheme introduces a potential deadlock if a
device queue freeze is initiated while BIOs are still plugged in a zone
write plug and one of these write operation fails. In such case, the
disk zone write plug error recovery work is scheduled and executes a
report zone. This in turn can result in a request allocation in the
underlying driver to issue the report zones command to the device. But
with the device queue freeze already started, this allocation will
block, preventing the report zone execution and the continuation of the
processing of the plugged BIOs. As plugged BIOs hold a queue usage
reference, the queue freeze itself will never complete, resulting in a
deadlock.
Avoid this problem by completely removing from the zone write plugging
code the use of report zones operations after a failed write operation,
instead relying on the device user to either execute a report zones,
reset the zone, finish the zone, or give up writing to the device (which
is a fairly common pattern for file systems which degrade to read-only
after write failures). This is not an unreasonnable requirement as all
well-behaved applications, FSes and device mapper already use report
zones to recover from write errors whenever possible by comparing the
current position of a zone write pointer with what their assumption
about the position is.
The changes to remove the automatic error recovery are as follows:
- Completely remove the error recovery work and its associated
resources (zone write plug list head, disk error list, and disk
zone_wplugs_work work struct). This also removes the functions
disk_zone_wplug_set_error() and disk_zone_wplug_clear_error().
- Change the BLK_ZONE_WPLUG_ERROR zone write plug flag into
BLK_ZONE_WPLUG_NEED_WP_UPDATE. This new flag is set for a zone write
plug whenever a write opration targetting the zone of the zone write
plug fails. This flag indicates that the zone write pointer offset is
not reliable and that it must be updated when the next report zone,
reset zone, finish zone or disk revalidation is executed.
- Modify blk_zone_write_plug_bio_endio() to set the
BLK_ZONE_WPLUG_NEED_WP_UPDATE flag for the target zone of a failed
write BIO.
- Modify the function disk_zone_wplug_set_wp_offset() to clear this
new flag, thus implementing recovery of a correct write pointer
offset with the reset (all) zone and finish zone operations.
- Modify blkdev_report_zones() to always use the disk_report_zones_cb()
callback so that disk_zone_wplug_sync_wp_offset() can be called for
any zone marked with the BLK_ZONE_WPLUG_NEED_WP_UPDATE flag.
This implements recovery of a correct write pointer offset for zone
write plugs marked with BLK_ZONE_WPLUG_NEED_WP_UPDATE and within
the range of the report zones operation executed by the user.
- Modify blk_revalidate_seq_zone() to call
disk_zone_wplug_sync_wp_offset() for all sequential write required
zones when a zoned block device is revalidated, thus always resolving
any inconsistency between the write pointer offset of zone write
plugs and the actual write pointer position of sequential zones. |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: IDLETIMER: Fix for possible ABBA deadlock
Deletion of the last rule referencing a given idletimer may happen at
the same time as a read of its file in sysfs:
| ======================================================
| WARNING: possible circular locking dependency detected
| 6.12.0-rc7-01692-g5e9a28f41134-dirty #594 Not tainted
| ------------------------------------------------------
| iptables/3303 is trying to acquire lock:
| ffff8881057e04b8 (kn->active#48){++++}-{0:0}, at: __kernfs_remove+0x20
|
| but task is already holding lock:
| ffffffffa0249068 (list_mutex){+.+.}-{3:3}, at: idletimer_tg_destroy_v]
|
| which lock already depends on the new lock.
A simple reproducer is:
| #!/bin/bash
|
| while true; do
| iptables -A INPUT -i foo -j IDLETIMER --timeout 10 --label "testme"
| iptables -D INPUT -i foo -j IDLETIMER --timeout 10 --label "testme"
| done &
| while true; do
| cat /sys/class/xt_idletimer/timers/testme >/dev/null
| done
Avoid this by freeing list_mutex right after deleting the element from
the list, then continuing with the teardown. |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: iso: Fix circular lock in iso_listen_bis
This fixes the circular locking dependency warning below, by
releasing the socket lock before enterning iso_listen_bis, to
avoid any potential deadlock with hdev lock.
[ 75.307983] ======================================================
[ 75.307984] WARNING: possible circular locking dependency detected
[ 75.307985] 6.12.0-rc6+ #22 Not tainted
[ 75.307987] ------------------------------------------------------
[ 75.307987] kworker/u81:2/2623 is trying to acquire lock:
[ 75.307988] ffff8fde1769da58 (sk_lock-AF_BLUETOOTH-BTPROTO_ISO)
at: iso_connect_cfm+0x253/0x840 [bluetooth]
[ 75.308021]
but task is already holding lock:
[ 75.308022] ffff8fdd61a10078 (&hdev->lock)
at: hci_le_per_adv_report_evt+0x47/0x2f0 [bluetooth]
[ 75.308053]
which lock already depends on the new lock.
[ 75.308054]
the existing dependency chain (in reverse order) is:
[ 75.308055]
-> #1 (&hdev->lock){+.+.}-{3:3}:
[ 75.308057] __mutex_lock+0xad/0xc50
[ 75.308061] mutex_lock_nested+0x1b/0x30
[ 75.308063] iso_sock_listen+0x143/0x5c0 [bluetooth]
[ 75.308085] __sys_listen_socket+0x49/0x60
[ 75.308088] __x64_sys_listen+0x4c/0x90
[ 75.308090] x64_sys_call+0x2517/0x25f0
[ 75.308092] do_syscall_64+0x87/0x150
[ 75.308095] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[ 75.308098]
-> #0 (sk_lock-AF_BLUETOOTH-BTPROTO_ISO){+.+.}-{0:0}:
[ 75.308100] __lock_acquire+0x155e/0x25f0
[ 75.308103] lock_acquire+0xc9/0x300
[ 75.308105] lock_sock_nested+0x32/0x90
[ 75.308107] iso_connect_cfm+0x253/0x840 [bluetooth]
[ 75.308128] hci_connect_cfm+0x6c/0x190 [bluetooth]
[ 75.308155] hci_le_per_adv_report_evt+0x27b/0x2f0 [bluetooth]
[ 75.308180] hci_le_meta_evt+0xe7/0x200 [bluetooth]
[ 75.308206] hci_event_packet+0x21f/0x5c0 [bluetooth]
[ 75.308230] hci_rx_work+0x3ae/0xb10 [bluetooth]
[ 75.308254] process_one_work+0x212/0x740
[ 75.308256] worker_thread+0x1bd/0x3a0
[ 75.308258] kthread+0xe4/0x120
[ 75.308259] ret_from_fork+0x44/0x70
[ 75.308261] ret_from_fork_asm+0x1a/0x30
[ 75.308263]
other info that might help us debug this:
[ 75.308264] Possible unsafe locking scenario:
[ 75.308264] CPU0 CPU1
[ 75.308265] ---- ----
[ 75.308265] lock(&hdev->lock);
[ 75.308267] lock(sk_lock-
AF_BLUETOOTH-BTPROTO_ISO);
[ 75.308268] lock(&hdev->lock);
[ 75.308269] lock(sk_lock-AF_BLUETOOTH-BTPROTO_ISO);
[ 75.308270]
*** DEADLOCK ***
[ 75.308271] 4 locks held by kworker/u81:2/2623:
[ 75.308272] #0: ffff8fdd66e52148 ((wq_completion)hci0#2){+.+.}-{0:0},
at: process_one_work+0x443/0x740
[ 75.308276] #1: ffffafb488b7fe48 ((work_completion)(&hdev->rx_work)),
at: process_one_work+0x1ce/0x740
[ 75.308280] #2: ffff8fdd61a10078 (&hdev->lock){+.+.}-{3:3}
at: hci_le_per_adv_report_evt+0x47/0x2f0 [bluetooth]
[ 75.308304] #3: ffffffffb6ba4900 (rcu_read_lock){....}-{1:2},
at: hci_connect_cfm+0x29/0x190 [bluetooth] |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: iso: Fix circular lock in iso_conn_big_sync
This fixes the circular locking dependency warning below, by reworking
iso_sock_recvmsg, to ensure that the socket lock is always released
before calling a function that locks hdev.
[ 561.670344] ======================================================
[ 561.670346] WARNING: possible circular locking dependency detected
[ 561.670349] 6.12.0-rc6+ #26 Not tainted
[ 561.670351] ------------------------------------------------------
[ 561.670353] iso-tester/3289 is trying to acquire lock:
[ 561.670355] ffff88811f600078 (&hdev->lock){+.+.}-{3:3},
at: iso_conn_big_sync+0x73/0x260 [bluetooth]
[ 561.670405]
but task is already holding lock:
[ 561.670407] ffff88815af58258 (sk_lock-AF_BLUETOOTH){+.+.}-{0:0},
at: iso_sock_recvmsg+0xbf/0x500 [bluetooth]
[ 561.670450]
which lock already depends on the new lock.
[ 561.670452]
the existing dependency chain (in reverse order) is:
[ 561.670453]
-> #2 (sk_lock-AF_BLUETOOTH){+.+.}-{0:0}:
[ 561.670458] lock_acquire+0x7c/0xc0
[ 561.670463] lock_sock_nested+0x3b/0xf0
[ 561.670467] bt_accept_dequeue+0x1a5/0x4d0 [bluetooth]
[ 561.670510] iso_sock_accept+0x271/0x830 [bluetooth]
[ 561.670547] do_accept+0x3dd/0x610
[ 561.670550] __sys_accept4+0xd8/0x170
[ 561.670553] __x64_sys_accept+0x74/0xc0
[ 561.670556] x64_sys_call+0x17d6/0x25f0
[ 561.670559] do_syscall_64+0x87/0x150
[ 561.670563] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[ 561.670567]
-> #1 (sk_lock-AF_BLUETOOTH-BTPROTO_ISO){+.+.}-{0:0}:
[ 561.670571] lock_acquire+0x7c/0xc0
[ 561.670574] lock_sock_nested+0x3b/0xf0
[ 561.670577] iso_sock_listen+0x2de/0xf30 [bluetooth]
[ 561.670617] __sys_listen_socket+0xef/0x130
[ 561.670620] __x64_sys_listen+0xe1/0x190
[ 561.670623] x64_sys_call+0x2517/0x25f0
[ 561.670626] do_syscall_64+0x87/0x150
[ 561.670629] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[ 561.670632]
-> #0 (&hdev->lock){+.+.}-{3:3}:
[ 561.670636] __lock_acquire+0x32ad/0x6ab0
[ 561.670639] lock_acquire.part.0+0x118/0x360
[ 561.670642] lock_acquire+0x7c/0xc0
[ 561.670644] __mutex_lock+0x18d/0x12f0
[ 561.670647] mutex_lock_nested+0x1b/0x30
[ 561.670651] iso_conn_big_sync+0x73/0x260 [bluetooth]
[ 561.670687] iso_sock_recvmsg+0x3e9/0x500 [bluetooth]
[ 561.670722] sock_recvmsg+0x1d5/0x240
[ 561.670725] sock_read_iter+0x27d/0x470
[ 561.670727] vfs_read+0x9a0/0xd30
[ 561.670731] ksys_read+0x1a8/0x250
[ 561.670733] __x64_sys_read+0x72/0xc0
[ 561.670736] x64_sys_call+0x1b12/0x25f0
[ 561.670738] do_syscall_64+0x87/0x150
[ 561.670741] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[ 561.670744]
other info that might help us debug this:
[ 561.670745] Chain exists of:
&hdev->lock --> sk_lock-AF_BLUETOOTH-BTPROTO_ISO --> sk_lock-AF_BLUETOOTH
[ 561.670751] Possible unsafe locking scenario:
[ 561.670753] CPU0 CPU1
[ 561.670754] ---- ----
[ 561.670756] lock(sk_lock-AF_BLUETOOTH);
[ 561.670758] lock(sk_lock
AF_BLUETOOTH-BTPROTO_ISO);
[ 561.670761] lock(sk_lock-AF_BLUETOOTH);
[ 561.670764] lock(&hdev->lock);
[ 561.670767]
*** DEADLOCK *** |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: btmtk: adjust the position to init iso data anchor
MediaTek iso data anchor init should be moved to where MediaTek
claims iso data interface.
If there is an unexpected BT usb disconnect during setup flow,
it will cause a NULL pointer crash issue when releasing iso
anchor since the anchor wasn't been init yet. Adjust the position
to do iso data anchor init.
[ 17.137991] pc : usb_kill_anchored_urbs+0x60/0x168
[ 17.137998] lr : usb_kill_anchored_urbs+0x44/0x168
[ 17.137999] sp : ffffffc0890cb5f0
[ 17.138000] x29: ffffffc0890cb5f0 x28: ffffff80bb6c2e80
[ 17.144081] gpio gpiochip0: registered chardev handle for 1 lines
[ 17.148421] x27: 0000000000000000
[ 17.148422] x26: ffffffd301ff4298 x25: 0000000000000003 x24: 00000000000000f0
[ 17.148424] x23: 0000000000000000 x22: 00000000ffffffff x21: 0000000000000001
[ 17.148425] x20: ffffffffffffffd8 x19: ffffff80c0f25560 x18: 0000000000000000
[ 17.148427] x17: ffffffd33864e408 x16: ffffffd33808f7c8 x15: 0000000000200000
[ 17.232789] x14: e0cd73cf80ffffff x13: 50f2137c0a0338c9 x12: 0000000000000001
[ 17.239912] x11: 0000000080150011 x10: 0000000000000002 x9 : 0000000000000001
[ 17.247035] x8 : 0000000000000000 x7 : 0000000000008080 x6 : 8080000000000000
[ 17.254158] x5 : ffffffd33808ebc0 x4 : fffffffe033dcf20 x3 : 0000000080150011
[ 17.261281] x2 : ffffff8087a91400 x1 : 0000000000000000 x0 : ffffff80c0f25588
[ 17.268404] Call trace:
[ 17.270841] usb_kill_anchored_urbs+0x60/0x168
[ 17.275274] btusb_mtk_release_iso_intf+0x2c/0xd8 [btusb (HASH:5afe 6)]
[ 17.284226] btusb_mtk_disconnect+0x14/0x28 [btusb (HASH:5afe 6)]
[ 17.292652] btusb_disconnect+0x70/0x140 [btusb (HASH:5afe 6)]
[ 17.300818] usb_unbind_interface+0xc4/0x240
[ 17.305079] device_release_driver_internal+0x18c/0x258
[ 17.310296] device_release_driver+0x1c/0x30
[ 17.314557] bus_remove_device+0x140/0x160
[ 17.318643] device_del+0x1c0/0x330
[ 17.322121] usb_disable_device+0x80/0x180
[ 17.326207] usb_disconnect+0xec/0x300
[ 17.329948] hub_quiesce+0x80/0xd0
[ 17.333339] hub_disconnect+0x44/0x190
[ 17.337078] usb_unbind_interface+0xc4/0x240
[ 17.341337] device_release_driver_internal+0x18c/0x258
[ 17.346551] device_release_driver+0x1c/0x30
[ 17.350810] usb_driver_release_interface+0x70/0x88
[ 17.355677] proc_ioctl+0x13c/0x228
[ 17.359157] proc_ioctl_default+0x50/0x80
[ 17.363155] usbdev_ioctl+0x830/0xd08
[ 17.366808] __arm64_sys_ioctl+0x94/0xd0
[ 17.370723] invoke_syscall+0x6c/0xf8
[ 17.374377] el0_svc_common+0x84/0xe0
[ 17.378030] do_el0_svc+0x20/0x30
[ 17.381334] el0_svc+0x34/0x60
[ 17.384382] el0t_64_sync_handler+0x88/0xf0
[ 17.388554] el0t_64_sync+0x180/0x188
[ 17.392208] Code: f9400677 f100a2f4 54fffea0 d503201f (b8350288)
[ 17.398289] ---[ end trace 0000000000000000 ]--- |
In the Linux kernel, the following vulnerability has been resolved:
erofs: fix file-backed mounts over FUSE
syzbot reported a null-ptr-deref in fuse_read_args_fill:
fuse_read_folio+0xb0/0x100 fs/fuse/file.c:905
filemap_read_folio+0xc6/0x2a0 mm/filemap.c:2367
do_read_cache_folio+0x263/0x5c0 mm/filemap.c:3825
read_mapping_folio include/linux/pagemap.h:1011 [inline]
erofs_bread+0x34d/0x7e0 fs/erofs/data.c:41
erofs_read_superblock fs/erofs/super.c:281 [inline]
erofs_fc_fill_super+0x2b9/0x2500 fs/erofs/super.c:625
Unlike most filesystems, some network filesystems and FUSE need
unavoidable valid `file` pointers for their read I/Os [1].
Anyway, those use cases need to be supported too.
[1] https://docs.kernel.org/filesystems/vfs.html |
In the Linux kernel, the following vulnerability has been resolved:
unicode: Fix utf8_load() error path
utf8_load() requests the symbol "utf8_data_table" and then checks if the
requested UTF-8 version is supported. If it's unsupported, it tries to
put the data table using symbol_put(). If an unsupported version is
requested, symbol_put() fails like this:
kernel BUG at kernel/module/main.c:786!
RIP: 0010:__symbol_put+0x93/0xb0
Call Trace:
<TASK>
? __die_body.cold+0x19/0x27
? die+0x2e/0x50
? do_trap+0xca/0x110
? do_error_trap+0x65/0x80
? __symbol_put+0x93/0xb0
? exc_invalid_op+0x51/0x70
? __symbol_put+0x93/0xb0
? asm_exc_invalid_op+0x1a/0x20
? __pfx_cmp_name+0x10/0x10
? __symbol_put+0x93/0xb0
? __symbol_put+0x62/0xb0
utf8_load+0xf8/0x150
That happens because symbol_put() expects the unique string that
identify the symbol, instead of a pointer to the loaded symbol. Fix that
by using such string. |
In the Linux kernel, the following vulnerability has been resolved:
cpufreq: CPPC: Fix possible null-ptr-deref for cpufreq_cpu_get_raw()
cpufreq_cpu_get_raw() may return NULL if the cpu is not in
policy->cpus cpu mask and it will cause null pointer dereference. |
In the Linux kernel, the following vulnerability has been resolved:
cpufreq: CPPC: Fix possible null-ptr-deref for cppc_get_cpu_cost()
cpufreq_cpu_get_raw() may return NULL if the cpu is not in
policy->cpus cpu mask and it will cause null pointer dereference,
so check NULL for cppc_get_cpu_cost(). |
In the Linux kernel, the following vulnerability has been resolved:
riscv: kvm: Fix out-of-bounds array access
In kvm_riscv_vcpu_sbi_init() the entry->ext_idx can contain an
out-of-bound index. This is used as a special marker for the base
extensions, that cannot be disabled. However, when traversing the
extensions, that special marker is not checked prior indexing the
array.
Add an out-of-bounds check to the function. |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/hns: Fix NULL pointer derefernce in hns_roce_map_mr_sg()
ib_map_mr_sg() allows ULPs to specify NULL as the sg_offset argument.
The driver needs to check whether it is a NULL pointer before
dereferencing it. |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/mlx5: Move events notifier registration to be after device registration
Move pkey change work initialization and cleanup from device resources
stage to notifier stage, since this is the stage which handles this work
events.
Fix a race between the device deregistration and pkey change work by moving
MLX5_IB_STAGE_DEVICE_NOTIFIER to be after MLX5_IB_STAGE_IB_REG in order to
ensure that the notifier is deregistered before the device during cleanup.
Which ensures there are no works that are being executed after the
device has already unregistered which can cause the panic below.
BUG: kernel NULL pointer dereference, address: 0000000000000000
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 1 PID: 630071 Comm: kworker/1:2 Kdump: loaded Tainted: G W OE --------- --- 5.14.0-162.6.1.el9_1.x86_64 #1
Hardware name: Microsoft Corporation Virtual Machine/Virtual Machine, BIOS 090008 02/27/2023
Workqueue: events pkey_change_handler [mlx5_ib]
RIP: 0010:setup_qp+0x38/0x1f0 [mlx5_ib]
Code: ee 41 54 45 31 e4 55 89 f5 53 48 89 fb 48 83 ec 20 8b 77 08 65 48 8b 04 25 28 00 00 00 48 89 44 24 18 48 8b 07 48 8d 4c 24 16 <4c> 8b 38 49 8b 87 80 0b 00 00 4c 89 ff 48 8b 80 08 05 00 00 8b 40
RSP: 0018:ffffbcc54068be20 EFLAGS: 00010282
RAX: 0000000000000000 RBX: ffff954054494128 RCX: ffffbcc54068be36
RDX: ffff954004934000 RSI: 0000000000000001 RDI: ffff954054494128
RBP: 0000000000000023 R08: ffff954001be2c20 R09: 0000000000000001
R10: ffff954001be2c20 R11: ffff9540260133c0 R12: 0000000000000000
R13: 0000000000000023 R14: 0000000000000000 R15: ffff9540ffcb0905
FS: 0000000000000000(0000) GS:ffff9540ffc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 000000010625c001 CR4: 00000000003706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
mlx5_ib_gsi_pkey_change+0x20/0x40 [mlx5_ib]
process_one_work+0x1e8/0x3c0
worker_thread+0x50/0x3b0
? rescuer_thread+0x380/0x380
kthread+0x149/0x170
? set_kthread_struct+0x50/0x50
ret_from_fork+0x22/0x30
Modules linked in: rdma_ucm(OE) rdma_cm(OE) iw_cm(OE) ib_ipoib(OE) ib_cm(OE) ib_umad(OE) mlx5_ib(OE) mlx5_fwctl(OE) fwctl(OE) ib_uverbs(OE) mlx5_core(OE) mlxdevm(OE) ib_core(OE) mlx_compat(OE) psample mlxfw(OE) tls knem(OE) netconsole nfsv3 nfs_acl nfs lockd grace fscache netfs qrtr rfkill sunrpc intel_rapl_msr intel_rapl_common rapl hv_balloon hv_utils i2c_piix4 pcspkr joydev fuse ext4 mbcache jbd2 sr_mod sd_mod cdrom t10_pi sg ata_generic pci_hyperv pci_hyperv_intf hyperv_drm drm_shmem_helper drm_kms_helper hv_storvsc syscopyarea hv_netvsc sysfillrect sysimgblt hid_hyperv fb_sys_fops scsi_transport_fc hyperv_keyboard drm ata_piix crct10dif_pclmul crc32_pclmul crc32c_intel libata ghash_clmulni_intel hv_vmbus serio_raw [last unloaded: ib_core]
CR2: 0000000000000000
---[ end trace f6f8be4eae12f7bc ]--- |
In the Linux kernel, the following vulnerability has been resolved:
virtiofs: use pages instead of pointer for kernel direct IO
When trying to insert a 10MB kernel module kept in a virtio-fs with cache
disabled, the following warning was reported:
------------[ cut here ]------------
WARNING: CPU: 1 PID: 404 at mm/page_alloc.c:4551 ......
Modules linked in:
CPU: 1 PID: 404 Comm: insmod Not tainted 6.9.0-rc5+ #123
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) ......
RIP: 0010:__alloc_pages+0x2bf/0x380
......
Call Trace:
<TASK>
? __warn+0x8e/0x150
? __alloc_pages+0x2bf/0x380
__kmalloc_large_node+0x86/0x160
__kmalloc+0x33c/0x480
virtio_fs_enqueue_req+0x240/0x6d0
virtio_fs_wake_pending_and_unlock+0x7f/0x190
queue_request_and_unlock+0x55/0x60
fuse_simple_request+0x152/0x2b0
fuse_direct_io+0x5d2/0x8c0
fuse_file_read_iter+0x121/0x160
__kernel_read+0x151/0x2d0
kernel_read+0x45/0x50
kernel_read_file+0x1a9/0x2a0
init_module_from_file+0x6a/0xe0
idempotent_init_module+0x175/0x230
__x64_sys_finit_module+0x5d/0xb0
x64_sys_call+0x1c3/0x9e0
do_syscall_64+0x3d/0xc0
entry_SYSCALL_64_after_hwframe+0x4b/0x53
......
</TASK>
---[ end trace 0000000000000000 ]---
The warning is triggered as follows:
1) syscall finit_module() handles the module insertion and it invokes
kernel_read_file() to read the content of the module first.
2) kernel_read_file() allocates a 10MB buffer by using vmalloc() and
passes it to kernel_read(). kernel_read() constructs a kvec iter by
using iov_iter_kvec() and passes it to fuse_file_read_iter().
3) virtio-fs disables the cache, so fuse_file_read_iter() invokes
fuse_direct_io(). As for now, the maximal read size for kvec iter is
only limited by fc->max_read. For virtio-fs, max_read is UINT_MAX, so
fuse_direct_io() doesn't split the 10MB buffer. It saves the address and
the size of the 10MB-sized buffer in out_args[0] of a fuse request and
passes the fuse request to virtio_fs_wake_pending_and_unlock().
4) virtio_fs_wake_pending_and_unlock() uses virtio_fs_enqueue_req() to
queue the request. Because virtiofs need DMA-able address, so
virtio_fs_enqueue_req() uses kmalloc() to allocate a bounce buffer for
all fuse args, copies these args into the bounce buffer and passed the
physical address of the bounce buffer to virtiofsd. The total length of
these fuse args for the passed fuse request is about 10MB, so
copy_args_to_argbuf() invokes kmalloc() with a 10MB size parameter and
it triggers the warning in __alloc_pages():
if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
return NULL;
5) virtio_fs_enqueue_req() will retry the memory allocation in a
kworker, but it won't help, because kmalloc() will always return NULL
due to the abnormal size and finit_module() will hang forever.
A feasible solution is to limit the value of max_read for virtio-fs, so
the length passed to kmalloc() will be limited. However it will affect
the maximal read size for normal read. And for virtio-fs write initiated
from kernel, it has the similar problem but now there is no way to limit
fc->max_write in kernel.
So instead of limiting both the values of max_read and max_write in
kernel, introducing use_pages_for_kvec_io in fuse_conn and setting it as
true in virtiofs. When use_pages_for_kvec_io is enabled, fuse will use
pages instead of pointer to pass the KVEC_IO data.
After switching to pages for KVEC_IO data, these pages will be used for
DMA through virtio-fs. If these pages are backed by vmalloc(),
{flush|invalidate}_kernel_vmap_range() are necessary to flush or
invalidate the cache before the DMA operation. So add two new fields in
fuse_args_pages to record the base address of vmalloc area and the
condition indicating whether invalidation is needed. Perform the flush
in fuse_get_user_pages() for write operations and the invalidation in
fuse_release_user_pages() for read operations.
It may seem necessary to introduce another fie
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
NFSD: Prevent NULL dereference in nfsd4_process_cb_update()
@ses is initialized to NULL. If __nfsd4_find_backchannel() finds no
available backchannel session, setup_callback_client() will try to
dereference @ses and segfault. |
In the Linux kernel, the following vulnerability has been resolved:
svcrdma: fix miss destroy percpu_counter in svc_rdma_proc_init()
There's issue as follows:
RPC: Registered rdma transport module.
RPC: Registered rdma backchannel transport module.
RPC: Unregistered rdma transport module.
RPC: Unregistered rdma backchannel transport module.
BUG: unable to handle page fault for address: fffffbfff80c609a
PGD 123fee067 P4D 123fee067 PUD 123fea067 PMD 10c624067 PTE 0
Oops: Oops: 0000 [#1] PREEMPT SMP KASAN NOPTI
RIP: 0010:percpu_counter_destroy_many+0xf7/0x2a0
Call Trace:
<TASK>
__die+0x1f/0x70
page_fault_oops+0x2cd/0x860
spurious_kernel_fault+0x36/0x450
do_kern_addr_fault+0xca/0x100
exc_page_fault+0x128/0x150
asm_exc_page_fault+0x26/0x30
percpu_counter_destroy_many+0xf7/0x2a0
mmdrop+0x209/0x350
finish_task_switch.isra.0+0x481/0x840
schedule_tail+0xe/0xd0
ret_from_fork+0x23/0x80
ret_from_fork_asm+0x1a/0x30
</TASK>
If register_sysctl() return NULL, then svc_rdma_proc_cleanup() will not
destroy the percpu counters which init in svc_rdma_proc_init().
If CONFIG_HOTPLUG_CPU is enabled, residual nodes may be in the
'percpu_counters' list. The above issue may occur once the module is
removed. If the CONFIG_HOTPLUG_CPU configuration is not enabled, memory
leakage occurs.
To solve above issue just destroy all percpu counters when
register_sysctl() return NULL. |
In the Linux kernel, the following vulnerability has been resolved:
vfio/pci: Properly hide first-in-list PCIe extended capability
There are cases where a PCIe extended capability should be hidden from
the user. For example, an unknown capability (i.e., capability with ID
greater than PCI_EXT_CAP_ID_MAX) or a capability that is intentionally
chosen to be hidden from the user.
Hiding a capability is done by virtualizing and modifying the 'Next
Capability Offset' field of the previous capability so it points to the
capability after the one that should be hidden.
The special case where the first capability in the list should be hidden
is handled differently because there is no previous capability that can
be modified. In this case, the capability ID and version are zeroed
while leaving the next pointer intact. This hides the capability and
leaves an anchor for the rest of the capability list.
However, today, hiding the first capability in the list is not done
properly if the capability is unknown, as struct
vfio_pci_core_device->pci_config_map is set to the capability ID during
initialization but the capability ID is not properly checked later when
used in vfio_config_do_rw(). This leads to the following warning [1] and
to an out-of-bounds access to ecap_perms array.
Fix it by checking cap_id in vfio_config_do_rw(), and if it is greater
than PCI_EXT_CAP_ID_MAX, use an alternative struct perm_bits for direct
read only access instead of the ecap_perms array.
Note that this is safe since the above is the only case where cap_id can
exceed PCI_EXT_CAP_ID_MAX (except for the special capabilities, which
are already checked before).
[1]
WARNING: CPU: 118 PID: 5329 at drivers/vfio/pci/vfio_pci_config.c:1900 vfio_pci_config_rw+0x395/0x430 [vfio_pci_core]
CPU: 118 UID: 0 PID: 5329 Comm: simx-qemu-syste Not tainted 6.12.0+ #1
(snip)
Call Trace:
<TASK>
? show_regs+0x69/0x80
? __warn+0x8d/0x140
? vfio_pci_config_rw+0x395/0x430 [vfio_pci_core]
? report_bug+0x18f/0x1a0
? handle_bug+0x63/0xa0
? exc_invalid_op+0x19/0x70
? asm_exc_invalid_op+0x1b/0x20
? vfio_pci_config_rw+0x395/0x430 [vfio_pci_core]
? vfio_pci_config_rw+0x244/0x430 [vfio_pci_core]
vfio_pci_rw+0x101/0x1b0 [vfio_pci_core]
vfio_pci_core_read+0x1d/0x30 [vfio_pci_core]
vfio_device_fops_read+0x27/0x40 [vfio]
vfs_read+0xbd/0x340
? vfio_device_fops_unl_ioctl+0xbb/0x740 [vfio]
? __rseq_handle_notify_resume+0xa4/0x4b0
__x64_sys_pread64+0x96/0xc0
x64_sys_call+0x1c3d/0x20d0
do_syscall_64+0x4d/0x120
entry_SYSCALL_64_after_hwframe+0x76/0x7e |