| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
iavf: use internal state to free traffic IRQs
If the system tries to close the netdev while iavf_reset_task() is
running, __LINK_STATE_START will be cleared and netif_running() will
return false in iavf_reinit_interrupt_scheme(). This will result in
iavf_free_traffic_irqs() not being called and a leak as follows:
[7632.489326] remove_proc_entry: removing non-empty directory 'irq/999', leaking at least 'iavf-enp24s0f0v0-TxRx-0'
[7632.490214] WARNING: CPU: 0 PID: 10 at fs/proc/generic.c:718 remove_proc_entry+0x19b/0x1b0
is shown when pci_disable_msix() is later called. Fix by using the
internal adapter state. The traffic IRQs will always exist if
state == __IAVF_RUNNING. |
| In the Linux kernel, the following vulnerability has been resolved:
md/raid5-cache: fix a deadlock in r5l_exit_log()
Commit b13015af94cf ("md/raid5-cache: Clear conf->log after finishing
work") introduce a new problem:
// caller hold reconfig_mutex
r5l_exit_log
flush_work(&log->disable_writeback_work)
r5c_disable_writeback_async
wait_event
/*
* conf->log is not NULL, and mddev_trylock()
* will fail, wait_event() can never pass.
*/
conf->log = NULL
Fix this problem by setting 'config->log' to NULL before wake_up() as it
used to be, so that wait_event() from r5c_disable_writeback_async() can
exist. In the meantime, move forward md_unregister_thread() so that
null-ptr-deref this commit fixed can still be fixed. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/ttm: Don't leak a resource on swapout move error
If moving the bo to system for swapout failed, we were leaking
a resource. Fix. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: codecs: wcd-mbhc-v2: fix resource leaks on component remove
The MBHC resources must be released on component probe failure and
removal so can not be tied to the lifetime of the component device.
This is specifically needed to allow probe deferrals of the sound card
which otherwise fails when reprobing the codec component:
snd-sc8280xp sound: ASoC: failed to instantiate card -517
genirq: Flags mismatch irq 299. 00002001 (mbhc sw intr) vs. 00002001 (mbhc sw intr)
wcd938x_codec audio-codec: Failed to request mbhc interrupts -16
wcd938x_codec audio-codec: mbhc initialization failed
wcd938x_codec audio-codec: ASoC: error at snd_soc_component_probe on audio-codec: -16
snd-sc8280xp sound: ASoC: failed to instantiate card -16 |
| In the Linux kernel, the following vulnerability has been resolved:
kcm: Fix error handling for SOCK_DGRAM in kcm_sendmsg().
syzkaller found a memory leak in kcm_sendmsg(), and commit c821a88bd720
("kcm: Fix memory leak in error path of kcm_sendmsg()") suppressed it by
updating kcm_tx_msg(head)->last_skb if partial data is copied so that the
following sendmsg() will resume from the skb.
However, we cannot know how many bytes were copied when we get the error.
Thus, we could mess up the MSG_MORE queue.
When kcm_sendmsg() fails for SOCK_DGRAM, we should purge the queue as we
do so for UDP by udp_flush_pending_frames().
Even without this change, when the error occurred, the following sendmsg()
resumed from a wrong skb and the queue was messed up. However, we have
yet to get such a report, and only syzkaller stumbled on it. So, this
can be changed safely.
Note this does not change SOCK_SEQPACKET behaviour. |
| In the Linux kernel, the following vulnerability has been resolved:
dccp: fix data-race around dp->dccps_mss_cache
dccp_sendmsg() reads dp->dccps_mss_cache before locking the socket.
Same thing in do_dccp_getsockopt().
Add READ_ONCE()/WRITE_ONCE() annotations,
and change dccp_sendmsg() to check again dccps_mss_cache
after socket is locked. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: synchronize atomic write aborts
To fix a race condition between atomic write aborts, I use the inode
lock and make COW inode to be re-usable thoroughout the whole
atomic file inode lifetime. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm: fix NULL-deref on snapshot tear down
In case of early initialisation errors and on platforms that do not use
the DPU controller, the deinitilisation code can be called with the kms
pointer set to NULL.
Patchwork: https://patchwork.freedesktop.org/patch/525099/ |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915: Fix NULL ptr deref by checking new_crtc_state
intel_atomic_get_new_crtc_state can return NULL, unless crtc state wasn't
obtained previously with intel_atomic_get_crtc_state, so we must check it
for NULLness here, just as in many other places, where we can't guarantee
that intel_atomic_get_crtc_state was called.
We are currently getting NULL ptr deref because of that, so this fix was
confirmed to help.
(cherry picked from commit 1d5b09f8daf859247a1ea65b0d732a24d88980d8) |
| In the Linux kernel, the following vulnerability has been resolved:
net: read sk->sk_family once in sk_mc_loop()
syzbot is playing with IPV6_ADDRFORM quite a lot these days,
and managed to hit the WARN_ON_ONCE(1) in sk_mc_loop()
We have many more similar issues to fix.
WARNING: CPU: 1 PID: 1593 at net/core/sock.c:782 sk_mc_loop+0x165/0x260
Modules linked in:
CPU: 1 PID: 1593 Comm: kworker/1:3 Not tainted 6.1.40-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/26/2023
Workqueue: events_power_efficient gc_worker
RIP: 0010:sk_mc_loop+0x165/0x260 net/core/sock.c:782
Code: 34 1b fd 49 81 c7 18 05 00 00 4c 89 f8 48 c1 e8 03 42 80 3c 20 00 74 08 4c 89 ff e8 25 36 6d fd 4d 8b 37 eb 13 e8 db 33 1b fd <0f> 0b b3 01 eb 34 e8 d0 33 1b fd 45 31 f6 49 83 c6 38 4c 89 f0 48
RSP: 0018:ffffc90000388530 EFLAGS: 00010246
RAX: ffffffff846d9b55 RBX: 0000000000000011 RCX: ffff88814f884980
RDX: 0000000000000102 RSI: ffffffff87ae5160 RDI: 0000000000000011
RBP: ffffc90000388550 R08: 0000000000000003 R09: ffffffff846d9a65
R10: 0000000000000002 R11: ffff88814f884980 R12: dffffc0000000000
R13: ffff88810dbee000 R14: 0000000000000010 R15: ffff888150084000
FS: 0000000000000000(0000) GS:ffff8881f6b00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000020000180 CR3: 000000014ee5b000 CR4: 00000000003506e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<IRQ>
[<ffffffff8507734f>] ip6_finish_output2+0x33f/0x1ae0 net/ipv6/ip6_output.c:83
[<ffffffff85062766>] __ip6_finish_output net/ipv6/ip6_output.c:200 [inline]
[<ffffffff85062766>] ip6_finish_output+0x6c6/0xb10 net/ipv6/ip6_output.c:211
[<ffffffff85061f8c>] NF_HOOK_COND include/linux/netfilter.h:298 [inline]
[<ffffffff85061f8c>] ip6_output+0x2bc/0x3d0 net/ipv6/ip6_output.c:232
[<ffffffff852071cf>] dst_output include/net/dst.h:444 [inline]
[<ffffffff852071cf>] ip6_local_out+0x10f/0x140 net/ipv6/output_core.c:161
[<ffffffff83618fb4>] ipvlan_process_v6_outbound drivers/net/ipvlan/ipvlan_core.c:483 [inline]
[<ffffffff83618fb4>] ipvlan_process_outbound drivers/net/ipvlan/ipvlan_core.c:529 [inline]
[<ffffffff83618fb4>] ipvlan_xmit_mode_l3 drivers/net/ipvlan/ipvlan_core.c:602 [inline]
[<ffffffff83618fb4>] ipvlan_queue_xmit+0x1174/0x1be0 drivers/net/ipvlan/ipvlan_core.c:677
[<ffffffff8361ddd9>] ipvlan_start_xmit+0x49/0x100 drivers/net/ipvlan/ipvlan_main.c:229
[<ffffffff84763fc0>] netdev_start_xmit include/linux/netdevice.h:4925 [inline]
[<ffffffff84763fc0>] xmit_one net/core/dev.c:3644 [inline]
[<ffffffff84763fc0>] dev_hard_start_xmit+0x320/0x980 net/core/dev.c:3660
[<ffffffff8494c650>] sch_direct_xmit+0x2a0/0x9c0 net/sched/sch_generic.c:342
[<ffffffff8494d883>] qdisc_restart net/sched/sch_generic.c:407 [inline]
[<ffffffff8494d883>] __qdisc_run+0xb13/0x1e70 net/sched/sch_generic.c:415
[<ffffffff8478c426>] qdisc_run+0xd6/0x260 include/net/pkt_sched.h:125
[<ffffffff84796eac>] net_tx_action+0x7ac/0x940 net/core/dev.c:5247
[<ffffffff858002bd>] __do_softirq+0x2bd/0x9bd kernel/softirq.c:599
[<ffffffff814c3fe8>] invoke_softirq kernel/softirq.c:430 [inline]
[<ffffffff814c3fe8>] __irq_exit_rcu+0xc8/0x170 kernel/softirq.c:683
[<ffffffff814c3f09>] irq_exit_rcu+0x9/0x20 kernel/softirq.c:695 |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86: think-lmi: Fix memory leak when showing current settings
When retriving a item string with tlmi_setting(), the result has to be
freed using kfree(). In current_value_show() however, malformed
item strings are not freed, causing a memory leak.
Fix this by eliminating the early return responsible for this. |
| In the Linux kernel, the following vulnerability has been resolved:
posix-timers: Prevent RT livelock in itimer_delete()
itimer_delete() has a retry loop when the timer is concurrently expired. On
non-RT kernels this just spin-waits until the timer callback has completed,
except for posix CPU timers which have HAVE_POSIX_CPU_TIMERS_TASK_WORK
enabled.
In that case and on RT kernels the existing task could live lock when
preempting the task which does the timer delivery.
Replace spin_unlock() with an invocation of timer_wait_running() to handle
it the same way as the other retry loops in the posix timer code. |
| In the Linux kernel, the following vulnerability has been resolved:
amdgpu: validate offset_in_bo of drm_amdgpu_gem_va
This is motivated by OOB access in amdgpu_vm_update_range when
offset_in_bo+map_size overflows.
v2: keep the validations in amdgpu_vm_bo_map
v3: add the validations to amdgpu_vm_bo_map/amdgpu_vm_bo_replace_map
rather than to amdgpu_gem_va_ioctl |
| In the Linux kernel, the following vulnerability has been resolved:
ARM: zynq: Fix refcount leak in zynq_early_slcr_init
of_find_compatible_node() returns a node pointer with refcount incremented,
we should use of_node_put() on error path.
Add missing of_node_put() to avoid refcount leak. |
| In the Linux kernel, the following vulnerability has been resolved:
media: mediatek: vcodec: fix decoder disable pm crash
Can't call pm_runtime_disable when the architecture support sub device for
'dev->pm.dev' is NUll, or will get below crash log.
[ 10.771551] pc : _raw_spin_lock_irq+0x4c/0xa0
[ 10.771556] lr : __pm_runtime_disable+0x30/0x130
[ 10.771558] sp : ffffffc01e4cb800
[ 10.771559] x29: ffffffc01e4cb800 x28: ffffffdf082108a8
[ 10.771563] x27: ffffffc01e4cbd70 x26: ffffff8605df55f0
[ 10.771567] x25: 0000000000000002 x24: 0000000000000002
[ 10.771570] x23: ffffff85c0dc9c00 x22: 0000000000000001
[ 10.771573] x21: 0000000000000001 x20: 0000000000000000
[ 10.771577] x19: 00000000000000f4 x18: ffffffdf2e9fbe18
[ 10.771580] x17: 0000000000000000 x16: ffffffdf2df13c74
[ 10.771583] x15: 00000000000002ea x14: 0000000000000058
[ 10.771587] x13: ffffffdf2de1b62c x12: ffffffdf2e9e30e4
[ 10.771590] x11: 0000000000000000 x10: 0000000000000001
[ 10.771593] x9 : 0000000000000000 x8 : 00000000000000f4
[ 10.771596] x7 : 6bff6264632c6264 x6 : 0000000000008000
[ 10.771600] x5 : 0080000000000000 x4 : 0000000000000001
[ 10.771603] x3 : 0000000000000008 x2 : 0000000000000001
[ 10.771608] x1 : 0000000000000000 x0 : 00000000000000f4
[ 10.771613] Call trace:
[ 10.771617] _raw_spin_lock_irq+0x4c/0xa0
[ 10.771620] __pm_runtime_disable+0x30/0x130
[ 10.771657] mtk_vcodec_probe+0x69c/0x728 [mtk_vcodec_dec 800cc929d6631f79f9b273254c8db94d0d3500dc]
[ 10.771662] platform_drv_probe+0x9c/0xbc
[ 10.771665] really_probe+0x13c/0x3a0
[ 10.771668] driver_probe_device+0x84/0xc0
[ 10.771671] device_driver_attach+0x54/0x78 |
| In the Linux kernel, the following vulnerability has been resolved:
l2tp: Avoid possible recursive deadlock in l2tp_tunnel_register()
When a file descriptor of pppol2tp socket is passed as file descriptor
of UDP socket, a recursive deadlock occurs in l2tp_tunnel_register().
This situation is reproduced by the following program:
int main(void)
{
int sock;
struct sockaddr_pppol2tp addr;
sock = socket(AF_PPPOX, SOCK_DGRAM, PX_PROTO_OL2TP);
if (sock < 0) {
perror("socket");
return 1;
}
addr.sa_family = AF_PPPOX;
addr.sa_protocol = PX_PROTO_OL2TP;
addr.pppol2tp.pid = 0;
addr.pppol2tp.fd = sock;
addr.pppol2tp.addr.sin_family = PF_INET;
addr.pppol2tp.addr.sin_port = htons(0);
addr.pppol2tp.addr.sin_addr.s_addr = inet_addr("192.168.0.1");
addr.pppol2tp.s_tunnel = 1;
addr.pppol2tp.s_session = 0;
addr.pppol2tp.d_tunnel = 0;
addr.pppol2tp.d_session = 0;
if (connect(sock, (const struct sockaddr *)&addr, sizeof(addr)) < 0) {
perror("connect");
return 1;
}
return 0;
}
This program causes the following lockdep warning:
============================================
WARNING: possible recursive locking detected
6.2.0-rc5-00205-gc96618275234 #56 Not tainted
--------------------------------------------
repro/8607 is trying to acquire lock:
ffff8880213c8130 (sk_lock-AF_PPPOX){+.+.}-{0:0}, at: l2tp_tunnel_register+0x2b7/0x11c0
but task is already holding lock:
ffff8880213c8130 (sk_lock-AF_PPPOX){+.+.}-{0:0}, at: pppol2tp_connect+0xa82/0x1a30
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(sk_lock-AF_PPPOX);
lock(sk_lock-AF_PPPOX);
*** DEADLOCK ***
May be due to missing lock nesting notation
1 lock held by repro/8607:
#0: ffff8880213c8130 (sk_lock-AF_PPPOX){+.+.}-{0:0}, at: pppol2tp_connect+0xa82/0x1a30
stack backtrace:
CPU: 0 PID: 8607 Comm: repro Not tainted 6.2.0-rc5-00205-gc96618275234 #56
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.1-2.fc37 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x100/0x178
__lock_acquire.cold+0x119/0x3b9
? lockdep_hardirqs_on_prepare+0x410/0x410
lock_acquire+0x1e0/0x610
? l2tp_tunnel_register+0x2b7/0x11c0
? lock_downgrade+0x710/0x710
? __fget_files+0x283/0x3e0
lock_sock_nested+0x3a/0xf0
? l2tp_tunnel_register+0x2b7/0x11c0
l2tp_tunnel_register+0x2b7/0x11c0
? sprintf+0xc4/0x100
? l2tp_tunnel_del_work+0x6b0/0x6b0
? debug_object_deactivate+0x320/0x320
? lockdep_init_map_type+0x16d/0x7a0
? lockdep_init_map_type+0x16d/0x7a0
? l2tp_tunnel_create+0x2bf/0x4b0
? l2tp_tunnel_create+0x3c6/0x4b0
pppol2tp_connect+0x14e1/0x1a30
? pppol2tp_put_sk+0xd0/0xd0
? aa_sk_perm+0x2b7/0xa80
? aa_af_perm+0x260/0x260
? bpf_lsm_socket_connect+0x9/0x10
? pppol2tp_put_sk+0xd0/0xd0
__sys_connect_file+0x14f/0x190
__sys_connect+0x133/0x160
? __sys_connect_file+0x190/0x190
? lockdep_hardirqs_on+0x7d/0x100
? ktime_get_coarse_real_ts64+0x1b7/0x200
? ktime_get_coarse_real_ts64+0x147/0x200
? __audit_syscall_entry+0x396/0x500
__x64_sys_connect+0x72/0xb0
do_syscall_64+0x38/0xb0
entry_SYSCALL_64_after_hwframe+0x63/0xcd
This patch fixes the issue by getting/creating the tunnel before
locking the pppol2tp socket. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mwifiex: fix memory leak in mwifiex_histogram_read()
Always free the zeroed page on return from 'mwifiex_histogram_read()'. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: api - Use work queue in crypto_destroy_instance
The function crypto_drop_spawn expects to be called in process
context. However, when an instance is unregistered while it still
has active users, the last user may cause the instance to be freed
in atomic context.
Fix this by delaying the freeing to a work queue. |
| In the Linux kernel, the following vulnerability has been resolved:
iommufd: IOMMUFD_DESTROY should not increase the refcount
syzkaller found a race where IOMMUFD_DESTROY increments the refcount:
obj = iommufd_get_object(ucmd->ictx, cmd->id, IOMMUFD_OBJ_ANY);
if (IS_ERR(obj))
return PTR_ERR(obj);
iommufd_ref_to_users(obj);
/* See iommufd_ref_to_users() */
if (!iommufd_object_destroy_user(ucmd->ictx, obj))
As part of the sequence to join the two existing primitives together.
Allowing the refcount the be elevated without holding the destroy_rwsem
violates the assumption that all temporary refcount elevations are
protected by destroy_rwsem. Racing IOMMUFD_DESTROY with
iommufd_object_destroy_user() will cause spurious failures:
WARNING: CPU: 0 PID: 3076 at drivers/iommu/iommufd/device.c:477 iommufd_access_destroy+0x18/0x20 drivers/iommu/iommufd/device.c:478
Modules linked in:
CPU: 0 PID: 3076 Comm: syz-executor.0 Not tainted 6.3.0-rc1-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/03/2023
RIP: 0010:iommufd_access_destroy+0x18/0x20 drivers/iommu/iommufd/device.c:477
Code: e8 3d 4e 00 00 84 c0 74 01 c3 0f 0b c3 0f 1f 44 00 00 f3 0f 1e fa 48 89 fe 48 8b bf a8 00 00 00 e8 1d 4e 00 00 84 c0 74 01 c3 <0f> 0b c3 0f 1f 44 00 00 41 57 41 56 41 55 4c 8d ae d0 00 00 00 41
RSP: 0018:ffffc90003067e08 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff888109ea0300 RCX: 0000000000000000
RDX: 0000000000000001 RSI: 0000000000000000 RDI: 00000000ffffffff
RBP: 0000000000000004 R08: 0000000000000000 R09: ffff88810bbb3500
R10: ffff88810bbb3e48 R11: 0000000000000000 R12: ffffc90003067e88
R13: ffffc90003067ea8 R14: ffff888101249800 R15: 00000000fffffffe
FS: 00007ff7254fe6c0(0000) GS:ffff888237c00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000555557262da8 CR3: 000000010a6fd000 CR4: 0000000000350ef0
Call Trace:
<TASK>
iommufd_test_create_access drivers/iommu/iommufd/selftest.c:596 [inline]
iommufd_test+0x71c/0xcf0 drivers/iommu/iommufd/selftest.c:813
iommufd_fops_ioctl+0x10f/0x1b0 drivers/iommu/iommufd/main.c:337
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:870 [inline]
__se_sys_ioctl fs/ioctl.c:856 [inline]
__x64_sys_ioctl+0x84/0xc0 fs/ioctl.c:856
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x38/0x80 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
The solution is to not increment the refcount on the IOMMUFD_DESTROY path
at all. Instead use the xa_lock to serialize everything. The refcount
check == 1 and xa_erase can be done under a single critical region. This
avoids the need for any refcount incrementing.
It has the downside that if userspace races destroy with other operations
it will get an EBUSY instead of waiting, but this is kind of racing is
already dangerous. |
| In the Linux kernel, the following vulnerability has been resolved:
perf tool x86: Fix perf_env memory leak
Found by leak sanitizer:
```
==1632594==ERROR: LeakSanitizer: detected memory leaks
Direct leak of 21 byte(s) in 1 object(s) allocated from:
#0 0x7f2953a7077b in __interceptor_strdup ../../../../src/libsanitizer/asan/asan_interceptors.cpp:439
#1 0x556701d6fbbf in perf_env__read_cpuid util/env.c:369
#2 0x556701d70589 in perf_env__cpuid util/env.c:465
#3 0x55670204bba2 in x86__is_amd_cpu arch/x86/util/env.c:14
#4 0x5567020487a2 in arch__post_evsel_config arch/x86/util/evsel.c:83
#5 0x556701d8f78b in evsel__config util/evsel.c:1366
#6 0x556701ef5872 in evlist__config util/record.c:108
#7 0x556701cd6bcd in test__PERF_RECORD tests/perf-record.c:112
#8 0x556701cacd07 in run_test tests/builtin-test.c:236
#9 0x556701cacfac in test_and_print tests/builtin-test.c:265
#10 0x556701cadddb in __cmd_test tests/builtin-test.c:402
#11 0x556701caf2aa in cmd_test tests/builtin-test.c:559
#12 0x556701d3b557 in run_builtin tools/perf/perf.c:323
#13 0x556701d3bac8 in handle_internal_command tools/perf/perf.c:377
#14 0x556701d3be90 in run_argv tools/perf/perf.c:421
#15 0x556701d3c3f8 in main tools/perf/perf.c:537
#16 0x7f2952a46189 in __libc_start_call_main ../sysdeps/nptl/libc_start_call_main.h:58
SUMMARY: AddressSanitizer: 21 byte(s) leaked in 1 allocation(s).
``` |