| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix address removal logic in mptcp_pm_nl_rm_addr
Fix inverted WARN_ON_ONCE condition that prevented normal address
removal counter updates. The current code only executes decrement
logic when the counter is already 0 (abnormal state), while
normal removals (counter > 0) are ignored. |
| In the Linux kernel, the following vulnerability has been resolved:
idpf: fix possible vport_config NULL pointer deref in remove
Attempting to remove the driver will cause a crash in cases where
the vport failed to initialize. Following trace is from an instance where
the driver failed during an attempt to create a VF:
[ 1661.543624] idpf 0000:84:00.7: Device HW Reset initiated
[ 1722.923726] idpf 0000:84:00.7: Transaction timed-out (op:1 cookie:2900 vc_op:1 salt:29 timeout:60000ms)
[ 1723.353263] BUG: kernel NULL pointer dereference, address: 0000000000000028
...
[ 1723.358472] RIP: 0010:idpf_remove+0x11c/0x200 [idpf]
...
[ 1723.364973] Call Trace:
[ 1723.365475] <TASK>
[ 1723.365972] pci_device_remove+0x42/0xb0
[ 1723.366481] device_release_driver_internal+0x1a9/0x210
[ 1723.366987] pci_stop_bus_device+0x6d/0x90
[ 1723.367488] pci_stop_and_remove_bus_device+0x12/0x20
[ 1723.367971] pci_iov_remove_virtfn+0xbd/0x120
[ 1723.368309] sriov_disable+0x34/0xe0
[ 1723.368643] idpf_sriov_configure+0x58/0x140 [idpf]
[ 1723.368982] sriov_numvfs_store+0xda/0x1c0
Avoid the NULL pointer dereference by adding NULL pointer check for
vport_config[i], before freeing user_config.q_coalesce. |
| A vulnerability exists in multiple Radiometer products that allow an attacker with physical access to the analyzer possibility to extract credential information. The vulnerability is due to a weakness in the design and insufficient credential protection in operating system.
Other related CVE's are CVE-2025-14095 & CVE-2025-14097.
Affected customers have been informed about this vulnerability. This CVE is being published to provide transparency.
Required Configuration for Exposure:
Attacker requires physical access to the analyzer.
Temporary work Around:
Only authorized people can physically access the analyzer.
Permanent solution:
Local Radiometer representatives will contact all affected customers to discuss a permanent solution.
Exploit Status:
Researchers have provided a working proof-of-concept (PoC). Radiometer is not aware of any public exploit code at the time of this publication. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv4: route: Prevent rt_bind_exception() from rebinding stale fnhe
The sit driver's packet transmission path calls: sit_tunnel_xmit() ->
update_or_create_fnhe(), which lead to fnhe_remove_oldest() being called
to delete entries exceeding FNHE_RECLAIM_DEPTH+random.
The race window is between fnhe_remove_oldest() selecting fnheX for
deletion and the subsequent kfree_rcu(). During this time, the
concurrent path's __mkroute_output() -> find_exception() can fetch the
soon-to-be-deleted fnheX, and rt_bind_exception() then binds it with a
new dst using a dst_hold(). When the original fnheX is freed via RCU,
the dst reference remains permanently leaked.
CPU 0 CPU 1
__mkroute_output()
find_exception() [fnheX]
update_or_create_fnhe()
fnhe_remove_oldest() [fnheX]
rt_bind_exception() [bind dst]
RCU callback [fnheX freed, dst leak]
This issue manifests as a device reference count leak and a warning in
dmesg when unregistering the net device:
unregister_netdevice: waiting for sitX to become free. Usage count = N
Ido Schimmel provided the simple test validation method [1].
The fix clears 'oldest->fnhe_daddr' before calling fnhe_flush_routes().
Since rt_bind_exception() checks this field, setting it to zero prevents
the stale fnhe from being reused and bound to a new dst just before it
is freed.
[1]
ip netns add ns1
ip -n ns1 link set dev lo up
ip -n ns1 address add 192.0.2.1/32 dev lo
ip -n ns1 link add name dummy1 up type dummy
ip -n ns1 route add 192.0.2.2/32 dev dummy1
ip -n ns1 link add name gretap1 up arp off type gretap \
local 192.0.2.1 remote 192.0.2.2
ip -n ns1 route add 198.51.0.0/16 dev gretap1
taskset -c 0 ip netns exec ns1 mausezahn gretap1 \
-A 198.51.100.1 -B 198.51.0.0/16 -t udp -p 1000 -c 0 -q &
taskset -c 2 ip netns exec ns1 mausezahn gretap1 \
-A 198.51.100.1 -B 198.51.0.0/16 -t udp -p 1000 -c 0 -q &
sleep 10
ip netns pids ns1 | xargs kill
ip netns del ns1 |
| The Ninja Forms – The Contact Form Builder That Grows With You plugin for WordPress is vulnerable to Insecure Direct Object Reference in versions up to, and including, 3.13.2. This is due to the plugin not properly verifying that a user is authorized before the `ninja-forms-views` REST endpoints return form metadata and submission content. This makes it possible for unauthenticated attackers to read arbitrary form definitions and submission records via a leaked bearer token granted they can load any page containing the Submissions Table block. NOTE: The developer released a patch for this issue in 3.13.1, but inadvertently introduced a REST API endpoint in which a valid bearer token could be minted for arbitrary form IDs, making this patch ineffective. |
| Server-Side Request Forgery (SSRF) vulnerability in Ctera Portal 8.1.x (8.1.1417.24) allows remote attackers to induce the server to make arbitrary HTTP requests via a crafted HTML file containing an iframe. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: Initialise rcv_mss before calling tcp_send_active_reset() in mptcp_do_fastclose().
syzbot reported divide-by-zero in __tcp_select_window() by
MPTCP socket. [0]
We had a similar issue for the bare TCP and fixed in commit
499350a5a6e7 ("tcp: initialize rcv_mss to TCP_MIN_MSS instead
of 0").
Let's apply the same fix to mptcp_do_fastclose().
[0]:
Oops: divide error: 0000 [#1] SMP KASAN PTI
CPU: 0 UID: 0 PID: 6068 Comm: syz.0.17 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025
RIP: 0010:__tcp_select_window+0x824/0x1320 net/ipv4/tcp_output.c:3336
Code: ff ff ff 44 89 f1 d3 e0 89 c1 f7 d1 41 01 cc 41 21 c4 e9 a9 00 00 00 e8 ca 49 01 f8 e9 9c 00 00 00 e8 c0 49 01 f8 44 89 e0 99 <f7> 7c 24 1c 41 29 d4 48 bb 00 00 00 00 00 fc ff df e9 80 00 00 00
RSP: 0018:ffffc90003017640 EFLAGS: 00010293
RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffff88807b469e40
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffffc90003017730 R08: ffff888033268143 R09: 1ffff1100664d028
R10: dffffc0000000000 R11: ffffed100664d029 R12: 0000000000000000
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
FS: 000055557faa0500(0000) GS:ffff888126135000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f64a1912ff8 CR3: 0000000072122000 CR4: 00000000003526f0
Call Trace:
<TASK>
tcp_select_window net/ipv4/tcp_output.c:281 [inline]
__tcp_transmit_skb+0xbc7/0x3aa0 net/ipv4/tcp_output.c:1568
tcp_transmit_skb net/ipv4/tcp_output.c:1649 [inline]
tcp_send_active_reset+0x2d1/0x5b0 net/ipv4/tcp_output.c:3836
mptcp_do_fastclose+0x27e/0x380 net/mptcp/protocol.c:2793
mptcp_disconnect+0x238/0x710 net/mptcp/protocol.c:3253
mptcp_sendmsg_fastopen+0x2f8/0x580 net/mptcp/protocol.c:1776
mptcp_sendmsg+0x1774/0x1980 net/mptcp/protocol.c:1855
sock_sendmsg_nosec net/socket.c:727 [inline]
__sock_sendmsg+0xe5/0x270 net/socket.c:742
__sys_sendto+0x3bd/0x520 net/socket.c:2244
__do_sys_sendto net/socket.c:2251 [inline]
__se_sys_sendto net/socket.c:2247 [inline]
__x64_sys_sendto+0xde/0x100 net/socket.c:2247
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0xfa0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f66e998f749
Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007ffff9acedb8 EFLAGS: 00000246 ORIG_RAX: 000000000000002c
RAX: ffffffffffffffda RBX: 00007f66e9be5fa0 RCX: 00007f66e998f749
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003
RBP: 00007ffff9acee10 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000001
R13: 00007f66e9be5fa0 R14: 00007f66e9be5fa0 R15: 0000000000000006
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
ice: fix PTP cleanup on driver removal in error path
Improve the cleanup on releasing PTP resources in error path.
The error case might happen either at the driver probe and PTP
feature initialization or on PTP restart (errors in reset handling, NVM
update etc). In both cases, calls to PF PTP cleanup (ice_ptp_cleanup_pf
function) and 'ps_lock' mutex deinitialization were missed.
Additionally, ptp clock was not unregistered in the latter case.
Keep PTP state as 'uninitialized' on init to distinguish between error
scenarios and to avoid resource release duplication at driver removal.
The consequence of missing ice_ptp_cleanup_pf call is the following call
trace dumped when ice_adapter object is freed (port list is not empty,
as it is required at this stage):
[ T93022] ------------[ cut here ]------------
[ T93022] WARNING: CPU: 10 PID: 93022 at
ice/ice_adapter.c:67 ice_adapter_put+0xef/0x100 [ice]
...
[ T93022] RIP: 0010:ice_adapter_put+0xef/0x100 [ice]
...
[ T93022] Call Trace:
[ T93022] <TASK>
[ T93022] ? ice_adapter_put+0xef/0x100 [ice
33d2647ad4f6d866d41eefff1806df37c68aef0c]
[ T93022] ? __warn.cold+0xb0/0x10e
[ T93022] ? ice_adapter_put+0xef/0x100 [ice
33d2647ad4f6d866d41eefff1806df37c68aef0c]
[ T93022] ? report_bug+0xd8/0x150
[ T93022] ? handle_bug+0xe9/0x110
[ T93022] ? exc_invalid_op+0x17/0x70
[ T93022] ? asm_exc_invalid_op+0x1a/0x20
[ T93022] ? ice_adapter_put+0xef/0x100 [ice
33d2647ad4f6d866d41eefff1806df37c68aef0c]
[ T93022] pci_device_remove+0x42/0xb0
[ T93022] device_release_driver_internal+0x19f/0x200
[ T93022] driver_detach+0x48/0x90
[ T93022] bus_remove_driver+0x70/0xf0
[ T93022] pci_unregister_driver+0x42/0xb0
[ T93022] ice_module_exit+0x10/0xdb0 [ice
33d2647ad4f6d866d41eefff1806df37c68aef0c]
...
[ T93022] ---[ end trace 0000000000000000 ]---
[ T93022] ice: module unloaded |
| An out-of-bounds read vulnerability exists in the Overlay::GrabOverlayFromPixelData functionality of Grassroot DICOM 3.024. A specially crafted DICOM file can lead to an information leak. An attacker can provide a malicious file to trigger this vulnerability. |
| Expr is an expression language and expression evaluation for Go. Prior to version 1.17.7, several builtin functions in Expr, including `flatten`, `min`, `max`, `mean`, and `median`, perform recursive traversal over user-provided data structures without enforcing a maximum recursion depth. If the evaluation environment contains deeply nested or cyclic data structures, these functions may recurse indefinitely until exceed the Go runtime stack limit. This results in a stack overflow panic, causing the host application to crash. While exploitability depends on whether an attacker can influence or inject cyclic or pathologically deep data into the
evaluation environment, this behavior represents a denial-of-service (DoS) risk and affects overall library robustness. Instead of returning a recoverable evaluation error, the process may terminate unexpectedly. In affected versions, evaluation of expressions that invoke certain builtin functions on untrusted or insufficiently validated data structures can lead to a process-level crash due to stack exhaustion. This issue is most relevant in scenarios where Expr is used to evaluate expressions against externally supplied or dynamically constructed environments; cyclic references (directly or indirectly) can be introduced into arrays, maps, or structs; and there are no application-level safeguards preventing deeply nested input data. In typical use cases with controlled, acyclic data, the issue may not manifest. However, when present, the resulting panic can be used to reliably crash the application, constituting a denial of service. The issue has been fixed in the v1.17.7 versions of Expr. The patch introduces a maximum recursion depth limit for affected builtin functions. When this limit is exceeded, evaluation aborts gracefully and returns a descriptive error instead of panicking. Additionally, the maximum depth can be customized by users via `builtin.MaxDepth`, allowing applications with legitimate deep structures to raise the limit in a controlled manner. Users are strongly encouraged to upgrade to the patched release, which includes both the recursion guard and comprehensive test coverage to prevent regressions. For users who cannot immediately upgrade, some mitigations are recommended. Ensure that evaluation environments cannot contain cyclic references, validate or sanitize externally supplied data structures before passing them to Expr, and/or wrap expression evaluation with panic recovery to prevent a full process crash (as a last-resort defensive measure). These workarounds reduce risk but do not fully eliminate the issue without the patch. |
| In the Linux kernel, the following vulnerability has been resolved:
mm: don't spin in add_stack_record when gfp flags don't allow
syzbot was able to find the following path:
add_stack_record_to_list mm/page_owner.c:182 [inline]
inc_stack_record_count mm/page_owner.c:214 [inline]
__set_page_owner+0x2c3/0x4a0 mm/page_owner.c:333
set_page_owner include/linux/page_owner.h:32 [inline]
post_alloc_hook+0x240/0x2a0 mm/page_alloc.c:1851
prep_new_page mm/page_alloc.c:1859 [inline]
get_page_from_freelist+0x21e4/0x22c0 mm/page_alloc.c:3858
alloc_pages_nolock_noprof+0x94/0x120 mm/page_alloc.c:7554
Don't spin in add_stack_record_to_list() when it is called
from *_nolock() context. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_sock: Prevent race in socket write iter and sock bind
There is a potential race condition between sock bind and socket write
iter. bind may free the same cmd via mgmt_pending before write iter sends
the cmd, just as syzbot reported in UAF[1].
Here we use hci_dev_lock to synchronize the two, thereby avoiding the
UAF mentioned in [1].
[1]
syzbot reported:
BUG: KASAN: slab-use-after-free in mgmt_pending_remove+0x3b/0x210 net/bluetooth/mgmt_util.c:316
Read of size 8 at addr ffff888077164818 by task syz.0.17/5989
Call Trace:
mgmt_pending_remove+0x3b/0x210 net/bluetooth/mgmt_util.c:316
set_link_security+0x5c2/0x710 net/bluetooth/mgmt.c:1918
hci_mgmt_cmd+0x9c9/0xef0 net/bluetooth/hci_sock.c:1719
hci_sock_sendmsg+0x6ca/0xef0 net/bluetooth/hci_sock.c:1839
sock_sendmsg_nosec net/socket.c:727 [inline]
__sock_sendmsg+0x21c/0x270 net/socket.c:742
sock_write_iter+0x279/0x360 net/socket.c:1195
Allocated by task 5989:
mgmt_pending_add+0x35/0x140 net/bluetooth/mgmt_util.c:296
set_link_security+0x557/0x710 net/bluetooth/mgmt.c:1910
hci_mgmt_cmd+0x9c9/0xef0 net/bluetooth/hci_sock.c:1719
hci_sock_sendmsg+0x6ca/0xef0 net/bluetooth/hci_sock.c:1839
sock_sendmsg_nosec net/socket.c:727 [inline]
__sock_sendmsg+0x21c/0x270 net/socket.c:742
sock_write_iter+0x279/0x360 net/socket.c:1195
Freed by task 5991:
mgmt_pending_free net/bluetooth/mgmt_util.c:311 [inline]
mgmt_pending_foreach+0x30d/0x380 net/bluetooth/mgmt_util.c:257
mgmt_index_removed+0x112/0x2f0 net/bluetooth/mgmt.c:9477
hci_sock_bind+0xbe9/0x1000 net/bluetooth/hci_sock.c:1314 |
| ListCheck.exe developed by Acer has a Local Privilege Escalation vulnerability. Authenticated local attackers can replace ListCheck.exe with a malicious executable of the same name, which will be executed by the system and result in privilege escalation. |
| In the Linux kernel, the following vulnerability has been resolved:
usbnet: Prevents free active kevent
The root cause of this issue are:
1. When probing the usbnet device, executing usbnet_link_change(dev, 0, 0);
put the kevent work in global workqueue. However, the kevent has not yet
been scheduled when the usbnet device is unregistered. Therefore, executing
free_netdev() results in the "free active object (kevent)" error reported
here.
2. Another factor is that when calling usbnet_disconnect()->unregister_netdev(),
if the usbnet device is up, ndo_stop() is executed to cancel the kevent.
However, because the device is not up, ndo_stop() is not executed.
The solution to this problem is to cancel the kevent before executing
free_netdev(). |
| In the Linux kernel, the following vulnerability has been resolved:
NFS: Fix LTP test failures when timestamps are delegated
The utimes01 and utime06 tests fail when delegated timestamps are
enabled, specifically in subtests that modify the atime and mtime
fields using the 'nobody' user ID.
The problem can be reproduced as follow:
# echo "/media *(rw,no_root_squash,sync)" >> /etc/exports
# export -ra
# mount -o rw,nfsvers=4.2 127.0.0.1:/media /tmpdir
# cd /opt/ltp
# ./runltp -d /tmpdir -s utimes01
# ./runltp -d /tmpdir -s utime06
This issue occurs because nfs_setattr does not verify the inode's
UID against the caller's fsuid when delegated timestamps are
permitted for the inode.
This patch adds the UID check and if it does not match then the
request is sent to the server for permission checking. |
| Authorization Bypass Through User-Controlled Key vulnerability in GG Soft Software Services Inc. PaperWork allows Exploitation of Trusted Identifiers.This issue affects PaperWork: from 5.2.0.9427 before 6.0. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/mempool: fix poisoning order>0 pages with HIGHMEM
The kernel test has reported:
BUG: unable to handle page fault for address: fffba000
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
*pde = 03171067 *pte = 00000000
Oops: Oops: 0002 [#1]
CPU: 0 UID: 0 PID: 1 Comm: swapper/0 Tainted: G T 6.18.0-rc2-00031-gec7f31b2a2d3 #1 NONE a1d066dfe789f54bc7645c7989957d2bdee593ca
Tainted: [T]=RANDSTRUCT
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
EIP: memset (arch/x86/include/asm/string_32.h:168 arch/x86/lib/memcpy_32.c:17)
Code: a5 8b 4d f4 83 e1 03 74 02 f3 a4 83 c4 04 5e 5f 5d 2e e9 73 41 01 00 90 90 90 3e 8d 74 26 00 55 89 e5 57 56 89 c6 89 d0 89 f7 <f3> aa 89 f0 5e 5f 5d 2e e9 53 41 01 00 cc cc cc 55 89 e5 53 57 56
EAX: 0000006b EBX: 00000015 ECX: 001fefff EDX: 0000006b
ESI: fffb9000 EDI: fffba000 EBP: c611fbf0 ESP: c611fbe8
DS: 007b ES: 007b FS: 0000 GS: 0000 SS: 0068 EFLAGS: 00010287
CR0: 80050033 CR2: fffba000 CR3: 0316e000 CR4: 00040690
Call Trace:
poison_element (mm/mempool.c:83 mm/mempool.c:102)
mempool_init_node (mm/mempool.c:142 mm/mempool.c:226)
mempool_init_noprof (mm/mempool.c:250 (discriminator 1))
? mempool_alloc_pages (mm/mempool.c:640)
bio_integrity_initfn (block/bio-integrity.c:483 (discriminator 8))
? mempool_alloc_pages (mm/mempool.c:640)
do_one_initcall (init/main.c:1283)
Christoph found out this is due to the poisoning code not dealing
properly with CONFIG_HIGHMEM because only the first page is mapped but
then the whole potentially high-order page is accessed.
We could give up on HIGHMEM here, but it's straightforward to fix this
with a loop that's mapping, poisoning or checking and unmapping
individual pages. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_core: lookup hci_conn on RX path on protocol side
The hdev lock/lookup/unlock/use pattern in the packet RX path doesn't
ensure hci_conn* is not concurrently modified/deleted. This locking
appears to be leftover from before conn_hash started using RCU
commit bf4c63252490b ("Bluetooth: convert conn hash to RCU")
and not clear if it had purpose since then.
Currently, there are code paths that delete hci_conn* from elsewhere
than the ordered hdev->workqueue where the RX work runs in. E.g.
commit 5af1f84ed13a ("Bluetooth: hci_sync: Fix UAF on hci_abort_conn_sync")
introduced some of these, and there probably were a few others before
it. It's better to do the locking so that even if these run
concurrently no UAF is possible.
Move the lookup of hci_conn and associated socket-specific conn to
protocol recv handlers, and do them within a single critical section
to cover hci_conn* usage and lookup.
syzkaller has reported a crash that appears to be this issue:
[Task hdev->workqueue] [Task 2]
hci_disconnect_all_sync
l2cap_recv_acldata(hcon)
hci_conn_get(hcon)
hci_abort_conn_sync(hcon)
hci_dev_lock
hci_dev_lock
hci_conn_del(hcon)
v-------------------------------- hci_dev_unlock
hci_conn_put(hcon)
conn = hcon->l2cap_data (UAF) |
| In the Linux kernel, the following vulnerability has been resolved:
can: gs_usb: gs_usb_xmit_callback(): fix handling of failed transmitted URBs
The driver lacks the cleanup of failed transfers of URBs. This reduces the
number of available URBs per error by 1. This leads to reduced performance
and ultimately to a complete stop of the transmission.
If the sending of a bulk URB fails do proper cleanup:
- increase netdev stats
- mark the echo_sbk as free
- free the driver's context and do accounting
- wake the send queue |
| In the Linux kernel, the following vulnerability has been resolved:
usb: dwc3: Fix race condition between concurrent dwc3_remove_requests() call paths
This patch addresses a race condition caused by unsynchronized
execution of multiple call paths invoking `dwc3_remove_requests()`,
leading to premature freeing of USB requests and subsequent crashes.
Three distinct execution paths interact with `dwc3_remove_requests()`:
Path 1:
Triggered via `dwc3_gadget_reset_interrupt()` during USB reset
handling. The call stack includes:
- `dwc3_ep0_reset_state()`
- `dwc3_ep0_stall_and_restart()`
- `dwc3_ep0_out_start()`
- `dwc3_remove_requests()`
- `dwc3_gadget_del_and_unmap_request()`
Path 2:
Also initiated from `dwc3_gadget_reset_interrupt()`, but through
`dwc3_stop_active_transfers()`. The call stack includes:
- `dwc3_stop_active_transfers()`
- `dwc3_remove_requests()`
- `dwc3_gadget_del_and_unmap_request()`
Path 3:
Occurs independently during `adb root` execution, which triggers
USB function unbind and bind operations. The sequence includes:
- `gserial_disconnect()`
- `usb_ep_disable()`
- `dwc3_gadget_ep_disable()`
- `dwc3_remove_requests()` with `-ESHUTDOWN` status
Path 3 operates asynchronously and lacks synchronization with Paths
1 and 2. When Path 3 completes, it disables endpoints and frees 'out'
requests. If Paths 1 or 2 are still processing these requests,
accessing freed memory leads to a crash due to use-after-free conditions.
To fix this added check for request completion and skip processing
if already completed and added the request status for ep0 while queue. |