| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
vp_vdpa: fix id_table array not null terminated error
Allocate one extra virtio_device_id as null terminator, otherwise
vdpa_mgmtdev_get_classes() may iterate multiple times and visit
undefined memory. |
| In the Linux kernel, the following vulnerability has been resolved:
ima: fix buffer overrun in ima_eventdigest_init_common
Function ima_eventdigest_init() calls ima_eventdigest_init_common()
with HASH_ALGO__LAST which is then used to access the array
hash_digest_size[] leading to buffer overrun. Have a conditional
statement to handle this. |
| In the Linux kernel, the following vulnerability has been resolved:
mm: krealloc: Fix MTE false alarm in __do_krealloc
This patch addresses an issue introduced by commit 1a83a716ec233 ("mm:
krealloc: consider spare memory for __GFP_ZERO") which causes MTE
(Memory Tagging Extension) to falsely report a slab-out-of-bounds error.
The problem occurs when zeroing out spare memory in __do_krealloc. The
original code only considered software-based KASAN and did not account
for MTE. It does not reset the KASAN tag before calling memset, leading
to a mismatch between the pointer tag and the memory tag, resulting
in a false positive.
Example of the error:
==================================================================
swapper/0: BUG: KASAN: slab-out-of-bounds in __memset+0x84/0x188
swapper/0: Write at addr f4ffff8005f0fdf0 by task swapper/0/1
swapper/0: Pointer tag: [f4], memory tag: [fe]
swapper/0:
swapper/0: CPU: 4 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.12.
swapper/0: Hardware name: MT6991(ENG) (DT)
swapper/0: Call trace:
swapper/0: dump_backtrace+0xfc/0x17c
swapper/0: show_stack+0x18/0x28
swapper/0: dump_stack_lvl+0x40/0xa0
swapper/0: print_report+0x1b8/0x71c
swapper/0: kasan_report+0xec/0x14c
swapper/0: __do_kernel_fault+0x60/0x29c
swapper/0: do_bad_area+0x30/0xdc
swapper/0: do_tag_check_fault+0x20/0x34
swapper/0: do_mem_abort+0x58/0x104
swapper/0: el1_abort+0x3c/0x5c
swapper/0: el1h_64_sync_handler+0x80/0xcc
swapper/0: el1h_64_sync+0x68/0x6c
swapper/0: __memset+0x84/0x188
swapper/0: btf_populate_kfunc_set+0x280/0x3d8
swapper/0: __register_btf_kfunc_id_set+0x43c/0x468
swapper/0: register_btf_kfunc_id_set+0x48/0x60
swapper/0: register_nf_nat_bpf+0x1c/0x40
swapper/0: nf_nat_init+0xc0/0x128
swapper/0: do_one_initcall+0x184/0x464
swapper/0: do_initcall_level+0xdc/0x1b0
swapper/0: do_initcalls+0x70/0xc0
swapper/0: do_basic_setup+0x1c/0x28
swapper/0: kernel_init_freeable+0x144/0x1b8
swapper/0: kernel_init+0x20/0x1a8
swapper/0: ret_from_fork+0x10/0x20
================================================================== |
| In the Linux kernel, the following vulnerability has been resolved:
virtio_net: Add hash_key_length check
Add hash_key_length check in virtnet_probe() to avoid possible out of
bound errors when setting/reading the hash key. |
| In the Linux kernel, the following vulnerability has been resolved:
media: ar0521: don't overflow when checking PLL values
The PLL checks are comparing 64 bit integers with 32 bit
ones, as reported by Coverity. Depending on the values of
the variables, this may underflow.
Fix it ensuring that both sides of the expression are u64. |
| In the Linux kernel, the following vulnerability has been resolved:
media: s5p-jpeg: prevent buffer overflows
The current logic allows word to be less than 2. If this happens,
there will be buffer overflows, as reported by smatch. Add extra
checks to prevent it.
While here, remove an unused word = 0 assignment. |
| In the Linux kernel, the following vulnerability has been resolved:
net: stmmac: TSO: Fix unbalanced DMA map/unmap for non-paged SKB data
In case the non-paged data of a SKB carries protocol header and protocol
payload to be transmitted on a certain platform that the DMA AXI address
width is configured to 40-bit/48-bit, or the size of the non-paged data
is bigger than TSO_MAX_BUFF_SIZE on a certain platform that the DMA AXI
address width is configured to 32-bit, then this SKB requires at least
two DMA transmit descriptors to serve it.
For example, three descriptors are allocated to split one DMA buffer
mapped from one piece of non-paged data:
dma_desc[N + 0],
dma_desc[N + 1],
dma_desc[N + 2].
Then three elements of tx_q->tx_skbuff_dma[] will be allocated to hold
extra information to be reused in stmmac_tx_clean():
tx_q->tx_skbuff_dma[N + 0],
tx_q->tx_skbuff_dma[N + 1],
tx_q->tx_skbuff_dma[N + 2].
Now we focus on tx_q->tx_skbuff_dma[entry].buf, which is the DMA buffer
address returned by DMA mapping call. stmmac_tx_clean() will try to
unmap the DMA buffer _ONLY_IF_ tx_q->tx_skbuff_dma[entry].buf
is a valid buffer address.
The expected behavior that saves DMA buffer address of this non-paged
data to tx_q->tx_skbuff_dma[entry].buf is:
tx_q->tx_skbuff_dma[N + 0].buf = NULL;
tx_q->tx_skbuff_dma[N + 1].buf = NULL;
tx_q->tx_skbuff_dma[N + 2].buf = dma_map_single();
Unfortunately, the current code misbehaves like this:
tx_q->tx_skbuff_dma[N + 0].buf = dma_map_single();
tx_q->tx_skbuff_dma[N + 1].buf = NULL;
tx_q->tx_skbuff_dma[N + 2].buf = NULL;
On the stmmac_tx_clean() side, when dma_desc[N + 0] is closed by the
DMA engine, tx_q->tx_skbuff_dma[N + 0].buf is a valid buffer address
obviously, then the DMA buffer will be unmapped immediately.
There may be a rare case that the DMA engine does not finish the
pending dma_desc[N + 1], dma_desc[N + 2] yet. Now things will go
horribly wrong, DMA is going to access a unmapped/unreferenced memory
region, corrupted data will be transmited or iommu fault will be
triggered :(
In contrast, the for-loop that maps SKB fragments behaves perfectly
as expected, and that is how the driver should do for both non-paged
data and paged frags actually.
This patch corrects DMA map/unmap sequences by fixing the array index
for tx_q->tx_skbuff_dma[entry].buf when assigning DMA buffer address.
Tested and verified on DWXGMAC CORE 3.20a |
| GNOME libsoup before 3.6.1 allows a buffer overflow in applications that perform conversion to UTF-8 in soup_header_parse_param_list_strict. There is a plausible way to reach this remotely via soup_message_headers_get_content_type (e.g., an application may want to retrieve the content type of a request or response). |
| An unauthenticated attacker with access to the local network of the
medical office can use known default credentials to gain remote DBA
access to the Elefant Firebird database. The data in the database
includes patient data and login credentials among other sensitive data.
In addition, this enables an attacker to create and overwrite arbitrary
files on the server filesystem with the rights of the Firebird database
("NT AUTHORITY\SYSTEM"). |
| In the Linux kernel, the following vulnerability has been resolved:
security/keys: fix slab-out-of-bounds in key_task_permission
KASAN reports an out of bounds read:
BUG: KASAN: slab-out-of-bounds in __kuid_val include/linux/uidgid.h:36
BUG: KASAN: slab-out-of-bounds in uid_eq include/linux/uidgid.h:63 [inline]
BUG: KASAN: slab-out-of-bounds in key_task_permission+0x394/0x410
security/keys/permission.c:54
Read of size 4 at addr ffff88813c3ab618 by task stress-ng/4362
CPU: 2 PID: 4362 Comm: stress-ng Not tainted 5.10.0-14930-gafbffd6c3ede #15
Call Trace:
__dump_stack lib/dump_stack.c:82 [inline]
dump_stack+0x107/0x167 lib/dump_stack.c:123
print_address_description.constprop.0+0x19/0x170 mm/kasan/report.c:400
__kasan_report.cold+0x6c/0x84 mm/kasan/report.c:560
kasan_report+0x3a/0x50 mm/kasan/report.c:585
__kuid_val include/linux/uidgid.h:36 [inline]
uid_eq include/linux/uidgid.h:63 [inline]
key_task_permission+0x394/0x410 security/keys/permission.c:54
search_nested_keyrings+0x90e/0xe90 security/keys/keyring.c:793
This issue was also reported by syzbot.
It can be reproduced by following these steps(more details [1]):
1. Obtain more than 32 inputs that have similar hashes, which ends with the
pattern '0xxxxxxxe6'.
2. Reboot and add the keys obtained in step 1.
The reproducer demonstrates how this issue happened:
1. In the search_nested_keyrings function, when it iterates through the
slots in a node(below tag ascend_to_node), if the slot pointer is meta
and node->back_pointer != NULL(it means a root), it will proceed to
descend_to_node. However, there is an exception. If node is the root,
and one of the slots points to a shortcut, it will be treated as a
keyring.
2. Whether the ptr is keyring decided by keyring_ptr_is_keyring function.
However, KEYRING_PTR_SUBTYPE is 0x2UL, the same as
ASSOC_ARRAY_PTR_SUBTYPE_MASK.
3. When 32 keys with the similar hashes are added to the tree, the ROOT
has keys with hashes that are not similar (e.g. slot 0) and it splits
NODE A without using a shortcut. When NODE A is filled with keys that
all hashes are xxe6, the keys are similar, NODE A will split with a
shortcut. Finally, it forms the tree as shown below, where slot 6 points
to a shortcut.
NODE A
+------>+---+
ROOT | | 0 | xxe6
+---+ | +---+
xxxx | 0 | shortcut : : xxe6
+---+ | +---+
xxe6 : : | | | xxe6
+---+ | +---+
| 6 |---+ : : xxe6
+---+ +---+
xxe6 : : | f | xxe6
+---+ +---+
xxe6 | f |
+---+
4. As mentioned above, If a slot(slot 6) of the root points to a shortcut,
it may be mistakenly transferred to a key*, leading to a read
out-of-bounds read.
To fix this issue, one should jump to descend_to_node if the ptr is a
shortcut, regardless of whether the node is root or not.
[1] https://lore.kernel.org/linux-kernel/1cfa878e-8c7b-4570-8606-21daf5e13ce7@huaweicloud.com/
[jarkko: tweaked the commit message a bit to have an appropriate closes
tag.] |
| In the Linux kernel, the following vulnerability has been resolved:
net: arc: fix the device for dma_map_single/dma_unmap_single
The ndev->dev and pdev->dev aren't the same device, use ndev->dev.parent
which has dma_mask, ndev->dev.parent is just pdev->dev.
Or it would cause the following issue:
[ 39.933526] ------------[ cut here ]------------
[ 39.938414] WARNING: CPU: 1 PID: 501 at kernel/dma/mapping.c:149 dma_map_page_attrs+0x90/0x1f8 |
| In the Linux kernel, the following vulnerability has been resolved:
media: cx24116: prevent overflows on SNR calculus
as reported by Coverity, if reading SNR registers fail, a negative
number will be returned, causing an underflow when reading SNR
registers.
Prevent that. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: add missing size check in amdgpu_debugfs_gprwave_read()
Avoid a possible buffer overflow if size is larger than 4K.
(cherry picked from commit f5d873f5825b40d886d03bd2aede91d4cf002434) |
| In the Linux kernel, the following vulnerability has been resolved:
dm cache: fix out-of-bounds access to the dirty bitset when resizing
dm-cache checks the dirty bits of the cache blocks to be dropped when
shrinking the fast device, but an index bug in bitset iteration causes
out-of-bounds access.
Reproduce steps:
1. create a cache device of 1024 cache blocks (128 bytes dirty bitset)
dmsetup create cmeta --table "0 8192 linear /dev/sdc 0"
dmsetup create cdata --table "0 131072 linear /dev/sdc 8192"
dmsetup create corig --table "0 524288 linear /dev/sdc 262144"
dd if=/dev/zero of=/dev/mapper/cmeta bs=4k count=1 oflag=direct
dmsetup create cache --table "0 524288 cache /dev/mapper/cmeta \
/dev/mapper/cdata /dev/mapper/corig 128 2 metadata2 writethrough smq 0"
2. shrink the fast device to 512 cache blocks, triggering out-of-bounds
access to the dirty bitset (offset 0x80)
dmsetup suspend cache
dmsetup reload cdata --table "0 65536 linear /dev/sdc 8192"
dmsetup resume cdata
dmsetup resume cache
KASAN reports:
BUG: KASAN: vmalloc-out-of-bounds in cache_preresume+0x269/0x7b0
Read of size 8 at addr ffffc900000f3080 by task dmsetup/131
(...snip...)
The buggy address belongs to the virtual mapping at
[ffffc900000f3000, ffffc900000f5000) created by:
cache_ctr+0x176a/0x35f0
(...snip...)
Memory state around the buggy address:
ffffc900000f2f80: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
ffffc900000f3000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
>ffffc900000f3080: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
^
ffffc900000f3100: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
ffffc900000f3180: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
Fix by making the index post-incremented. |
| In the Linux kernel, the following vulnerability has been resolved:
dm cache: fix potential out-of-bounds access on the first resume
Out-of-bounds access occurs if the fast device is expanded unexpectedly
before the first-time resume of the cache table. This happens because
expanding the fast device requires reloading the cache table for
cache_create to allocate new in-core data structures that fit the new
size, and the check in cache_preresume is not performed during the
first resume, leading to the issue.
Reproduce steps:
1. prepare component devices:
dmsetup create cmeta --table "0 8192 linear /dev/sdc 0"
dmsetup create cdata --table "0 65536 linear /dev/sdc 8192"
dmsetup create corig --table "0 524288 linear /dev/sdc 262144"
dd if=/dev/zero of=/dev/mapper/cmeta bs=4k count=1 oflag=direct
2. load a cache table of 512 cache blocks, and deliberately expand the
fast device before resuming the cache, making the in-core data
structures inadequate.
dmsetup create cache --notable
dmsetup reload cache --table "0 524288 cache /dev/mapper/cmeta \
/dev/mapper/cdata /dev/mapper/corig 128 2 metadata2 writethrough smq 0"
dmsetup reload cdata --table "0 131072 linear /dev/sdc 8192"
dmsetup resume cdata
dmsetup resume cache
3. suspend the cache to write out the in-core dirty bitset and hint
array, leading to out-of-bounds access to the dirty bitset at offset
0x40:
dmsetup suspend cache
KASAN reports:
BUG: KASAN: vmalloc-out-of-bounds in is_dirty_callback+0x2b/0x80
Read of size 8 at addr ffffc90000085040 by task dmsetup/90
(...snip...)
The buggy address belongs to the virtual mapping at
[ffffc90000085000, ffffc90000087000) created by:
cache_ctr+0x176a/0x35f0
(...snip...)
Memory state around the buggy address:
ffffc90000084f00: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
ffffc90000084f80: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
>ffffc90000085000: 00 00 00 00 00 00 00 00 f8 f8 f8 f8 f8 f8 f8 f8
^
ffffc90000085080: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
ffffc90000085100: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
Fix by checking the size change on the first resume. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: typec: fix potential out of bounds in ucsi_ccg_update_set_new_cam_cmd()
The "*cmd" variable can be controlled by the user via debugfs. That means
"new_cam" can be as high as 255 while the size of the uc->updated[] array
is UCSI_MAX_ALTMODES (30).
The call tree is:
ucsi_cmd() // val comes from simple_attr_write_xsigned()
-> ucsi_send_command()
-> ucsi_send_command_common()
-> ucsi_run_command() // calls ucsi->ops->sync_control()
-> ucsi_ccg_sync_control() |
| In the Linux kernel, the following vulnerability has been resolved:
netdevsim: Add trailing zero to terminate the string in nsim_nexthop_bucket_activity_write()
This was found by a static analyzer.
We should not forget the trailing zero after copy_from_user()
if we will further do some string operations, sscanf() in this
case. Adding a trailing zero will ensure that the function
performs properly. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Check if more than chunk-size bytes are written
A incorrectly formatted chunk may decompress into
more than LZNT_CHUNK_SIZE bytes and a index out of bounds
will occur in s_max_off. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Fix general protection fault in run_is_mapped_full
Fixed deleating of a non-resident attribute in ntfs_create_inode()
rollback. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/bnxt_re: Fix a bug while setting up Level-2 PBL pages
Avoid memory corruption while setting up Level-2 PBL pages for the non MR
resources when num_pages > 256K.
There will be a single PDE page address (contiguous pages in the case of >
PAGE_SIZE), but, current logic assumes multiple pages, leading to invalid
memory access after 256K PBL entries in the PDE. |