CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
nfs: Fix KMSAN warning in decode_getfattr_attrs()
Fix the following KMSAN warning:
CPU: 1 UID: 0 PID: 7651 Comm: cp Tainted: G B
Tainted: [B]=BAD_PAGE
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009)
=====================================================
=====================================================
BUG: KMSAN: uninit-value in decode_getfattr_attrs+0x2d6d/0x2f90
decode_getfattr_attrs+0x2d6d/0x2f90
decode_getfattr_generic+0x806/0xb00
nfs4_xdr_dec_getattr+0x1de/0x240
rpcauth_unwrap_resp_decode+0xab/0x100
rpcauth_unwrap_resp+0x95/0xc0
call_decode+0x4ff/0xb50
__rpc_execute+0x57b/0x19d0
rpc_execute+0x368/0x5e0
rpc_run_task+0xcfe/0xee0
nfs4_proc_getattr+0x5b5/0x990
__nfs_revalidate_inode+0x477/0xd00
nfs_access_get_cached+0x1021/0x1cc0
nfs_do_access+0x9f/0xae0
nfs_permission+0x1e4/0x8c0
inode_permission+0x356/0x6c0
link_path_walk+0x958/0x1330
path_lookupat+0xce/0x6b0
filename_lookup+0x23e/0x770
vfs_statx+0xe7/0x970
vfs_fstatat+0x1f2/0x2c0
__se_sys_newfstatat+0x67/0x880
__x64_sys_newfstatat+0xbd/0x120
x64_sys_call+0x1826/0x3cf0
do_syscall_64+0xd0/0x1b0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
The KMSAN warning is triggered in decode_getfattr_attrs(), when calling
decode_attr_mdsthreshold(). It appears that fattr->mdsthreshold is not
initialized.
Fix the issue by initializing fattr->mdsthreshold to NULL in
nfs_fattr_init(). |
In the Linux kernel, the following vulnerability has been resolved:
mm/slab: fix warning caused by duplicate kmem_cache creation in kmem_buckets_create
Commit b035f5a6d852 ("mm: slab: reduce the kmalloc() minimum alignment
if DMA bouncing possible") reduced ARCH_KMALLOC_MINALIGN to 8 on arm64.
However, with KASAN_HW_TAGS enabled, arch_slab_minalign() becomes 16.
This causes kmalloc_caches[*][8] to be aliased to kmalloc_caches[*][16],
resulting in kmem_buckets_create() attempting to create a kmem_cache for
size 16 twice. This duplication triggers warnings on boot:
[ 2.325108] ------------[ cut here ]------------
[ 2.325135] kmem_cache of name 'memdup_user-16' already exists
[ 2.325783] WARNING: CPU: 0 PID: 1 at mm/slab_common.c:107 __kmem_cache_create_args+0xb8/0x3b0
[ 2.327957] Modules linked in:
[ 2.328550] CPU: 0 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.12.0-rc5mm-unstable-arm64+ #12
[ 2.328683] Hardware name: QEMU QEMU Virtual Machine, BIOS 2024.02-2 03/11/2024
[ 2.328790] pstate: 61000009 (nZCv daif -PAN -UAO -TCO +DIT -SSBS BTYPE=--)
[ 2.328911] pc : __kmem_cache_create_args+0xb8/0x3b0
[ 2.328930] lr : __kmem_cache_create_args+0xb8/0x3b0
[ 2.328942] sp : ffff800083d6fc50
[ 2.328961] x29: ffff800083d6fc50 x28: f2ff0000c1674410 x27: ffff8000820b0598
[ 2.329061] x26: 000000007fffffff x25: 0000000000000010 x24: 0000000000002000
[ 2.329101] x23: ffff800083d6fce8 x22: ffff8000832222e8 x21: ffff800083222388
[ 2.329118] x20: f2ff0000c1674410 x19: f5ff0000c16364c0 x18: ffff800083d80030
[ 2.329135] x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000
[ 2.329152] x14: 0000000000000000 x13: 0a73747369786520 x12: 79646165726c6120
[ 2.329169] x11: 656820747563205b x10: 2d2d2d2d2d2d2d2d x9 : 0000000000000000
[ 2.329194] x8 : 0000000000000000 x7 : 0000000000000000 x6 : 0000000000000000
[ 2.329210] x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000000000
[ 2.329226] x2 : 0000000000000000 x1 : 0000000000000000 x0 : 0000000000000000
[ 2.329291] Call trace:
[ 2.329407] __kmem_cache_create_args+0xb8/0x3b0
[ 2.329499] kmem_buckets_create+0xfc/0x320
[ 2.329526] init_user_buckets+0x34/0x78
[ 2.329540] do_one_initcall+0x64/0x3c8
[ 2.329550] kernel_init_freeable+0x26c/0x578
[ 2.329562] kernel_init+0x3c/0x258
[ 2.329574] ret_from_fork+0x10/0x20
[ 2.329698] ---[ end trace 0000000000000000 ]---
[ 2.403704] ------------[ cut here ]------------
[ 2.404716] kmem_cache of name 'msg_msg-16' already exists
[ 2.404801] WARNING: CPU: 2 PID: 1 at mm/slab_common.c:107 __kmem_cache_create_args+0xb8/0x3b0
[ 2.404842] Modules linked in:
[ 2.404971] CPU: 2 UID: 0 PID: 1 Comm: swapper/0 Tainted: G W 6.12.0-rc5mm-unstable-arm64+ #12
[ 2.405026] Tainted: [W]=WARN
[ 2.405043] Hardware name: QEMU QEMU Virtual Machine, BIOS 2024.02-2 03/11/2024
[ 2.405057] pstate: 60400009 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 2.405079] pc : __kmem_cache_create_args+0xb8/0x3b0
[ 2.405100] lr : __kmem_cache_create_args+0xb8/0x3b0
[ 2.405111] sp : ffff800083d6fc50
[ 2.405115] x29: ffff800083d6fc50 x28: fbff0000c1674410 x27: ffff8000820b0598
[ 2.405135] x26: 000000000000ffd0 x25: 0000000000000010 x24: 0000000000006000
[ 2.405153] x23: ffff800083d6fce8 x22: ffff8000832222e8 x21: ffff800083222388
[ 2.405169] x20: fbff0000c1674410 x19: fdff0000c163d6c0 x18: ffff800083d80030
[ 2.405185] x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000
[ 2.405201] x14: 0000000000000000 x13: 0a73747369786520 x12: 79646165726c6120
[ 2.405217] x11: 656820747563205b x10: 2d2d2d2d2d2d2d2d x9 : 0000000000000000
[ 2.405233] x8 : 0000000000000000 x7 : 0000000000000000 x6 : 0000000000000000
[ 2.405248] x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000000000
[ 2.405271] x2 : 0000000000000000 x1 : 0000000000000000 x0 : 0000000000000000
[ 2.405287] Call trace:
[ 2
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
idpf: fix idpf_vc_core_init error path
In an event where the platform running the device control plane
is rebooted, reset is detected on the driver. It releases
all the resources and waits for the reset to complete. Once the
reset is done, it tries to build the resources back. At this
time if the device control plane is not yet started, then
the driver timeouts on the virtchnl message and retries to
establish the mailbox again.
In the retry flow, mailbox is deinitialized but the mailbox
workqueue is still alive and polling for the mailbox message.
This results in accessing the released control queue leading to
null-ptr-deref. Fix it by unrolling the work queue cancellation
and mailbox deinitialization in the reverse order which they got
initialized. |
In the Linux kernel, the following vulnerability has been resolved:
media: dvbdev: prevent the risk of out of memory access
The dvbdev contains a static variable used to store dvb minors.
The behavior of it depends if CONFIG_DVB_DYNAMIC_MINORS is set
or not. When not set, dvb_register_device() won't check for
boundaries, as it will rely that a previous call to
dvb_register_adapter() would already be enforcing it.
On a similar way, dvb_device_open() uses the assumption
that the register functions already did the needed checks.
This can be fragile if some device ends using different
calls. This also generate warnings on static check analysers
like Coverity.
So, add explicit guards to prevent potential risk of OOM issues. |
In the Linux kernel, the following vulnerability has been resolved:
media: mgb4: protect driver against spectre
Frequency range is set from sysfs via frequency_range_store(),
being vulnerable to spectre, as reported by smatch:
drivers/media/pci/mgb4/mgb4_cmt.c:231 mgb4_cmt_set_vin_freq_range() warn: potential spectre issue 'cmt_vals_in' [r]
drivers/media/pci/mgb4/mgb4_cmt.c:238 mgb4_cmt_set_vin_freq_range() warn: possible spectre second half. 'reg_set'
Fix it. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: prevent NULL pointer dereference if ATIF is not supported
acpi_evaluate_object() may return AE_NOT_FOUND (failure), which
would result in dereferencing buffer.pointer (obj) while being NULL.
Although this case may be unrealistic for the current code, it is
still better to protect against possible bugs.
Bail out also when status is AE_NOT_FOUND.
This fixes 1 FORWARD_NULL issue reported by Coverity
Report: CID 1600951: Null pointer dereferences (FORWARD_NULL)
(cherry picked from commit 91c9e221fe2553edf2db71627d8453f083de87a1) |
In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: Fix response handling in iwl_mvm_send_recovery_cmd()
1. The size of the response packet is not validated.
2. The response buffer is not freed.
Resolve these issues by switching to iwl_mvm_send_cmd_status(),
which handles both size validation and frees the buffer. |
In the Linux kernel, the following vulnerability has been resolved:
net: stmmac: TSO: Fix unbalanced DMA map/unmap for non-paged SKB data
In case the non-paged data of a SKB carries protocol header and protocol
payload to be transmitted on a certain platform that the DMA AXI address
width is configured to 40-bit/48-bit, or the size of the non-paged data
is bigger than TSO_MAX_BUFF_SIZE on a certain platform that the DMA AXI
address width is configured to 32-bit, then this SKB requires at least
two DMA transmit descriptors to serve it.
For example, three descriptors are allocated to split one DMA buffer
mapped from one piece of non-paged data:
dma_desc[N + 0],
dma_desc[N + 1],
dma_desc[N + 2].
Then three elements of tx_q->tx_skbuff_dma[] will be allocated to hold
extra information to be reused in stmmac_tx_clean():
tx_q->tx_skbuff_dma[N + 0],
tx_q->tx_skbuff_dma[N + 1],
tx_q->tx_skbuff_dma[N + 2].
Now we focus on tx_q->tx_skbuff_dma[entry].buf, which is the DMA buffer
address returned by DMA mapping call. stmmac_tx_clean() will try to
unmap the DMA buffer _ONLY_IF_ tx_q->tx_skbuff_dma[entry].buf
is a valid buffer address.
The expected behavior that saves DMA buffer address of this non-paged
data to tx_q->tx_skbuff_dma[entry].buf is:
tx_q->tx_skbuff_dma[N + 0].buf = NULL;
tx_q->tx_skbuff_dma[N + 1].buf = NULL;
tx_q->tx_skbuff_dma[N + 2].buf = dma_map_single();
Unfortunately, the current code misbehaves like this:
tx_q->tx_skbuff_dma[N + 0].buf = dma_map_single();
tx_q->tx_skbuff_dma[N + 1].buf = NULL;
tx_q->tx_skbuff_dma[N + 2].buf = NULL;
On the stmmac_tx_clean() side, when dma_desc[N + 0] is closed by the
DMA engine, tx_q->tx_skbuff_dma[N + 0].buf is a valid buffer address
obviously, then the DMA buffer will be unmapped immediately.
There may be a rare case that the DMA engine does not finish the
pending dma_desc[N + 1], dma_desc[N + 2] yet. Now things will go
horribly wrong, DMA is going to access a unmapped/unreferenced memory
region, corrupted data will be transmited or iommu fault will be
triggered :(
In contrast, the for-loop that maps SKB fragments behaves perfectly
as expected, and that is how the driver should do for both non-paged
data and paged frags actually.
This patch corrects DMA map/unmap sequences by fixing the array index
for tx_q->tx_skbuff_dma[entry].buf when assigning DMA buffer address.
Tested and verified on DWXGMAC CORE 3.20a |
In the Linux kernel, the following vulnerability has been resolved:
drm/mediatek: Fix potential NULL dereference in mtk_crtc_destroy()
In mtk_crtc_create(), if the call to mbox_request_channel() fails then we
set the "mtk_crtc->cmdq_client.chan" pointer to NULL. In that situation,
we do not call cmdq_pkt_create().
During the cleanup, we need to check if the "mtk_crtc->cmdq_client.chan"
is NULL first before calling cmdq_pkt_destroy(). Calling
cmdq_pkt_destroy() is unnecessary if we didn't call cmdq_pkt_create() and
it will result in a NULL pointer dereference. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: fix 6 GHz scan construction
If more than 255 colocated APs exist for the set of all
APs found during 2.4/5 GHz scanning, then the 6 GHz scan
construction will loop forever since the loop variable
has type u8, which can never reach the number found when
that's bigger than 255, and is stored in a u32 variable.
Also move it into the loops to have a smaller scope.
Using a u32 there is fine, we limit the number of APs in
the scan list and each has a limit on the number of RNR
entries due to the frame size. With a limit of 1000 scan
results, a frame size upper bound of 4096 (really it's
more like ~2300) and a TBTT entry size of at least 11,
we get an upper bound for the number of ~372k, well in
the bounds of a u32. |
In the Linux kernel, the following vulnerability has been resolved:
io_uring/rw: fix missing NOWAIT check for O_DIRECT start write
When io_uring starts a write, it'll call kiocb_start_write() to bump the
super block rwsem, preventing any freezes from happening while that
write is in-flight. The freeze side will grab that rwsem for writing,
excluding any new writers from happening and waiting for existing writes
to finish. But io_uring unconditionally uses kiocb_start_write(), which
will block if someone is currently attempting to freeze the mount point.
This causes a deadlock where freeze is waiting for previous writes to
complete, but the previous writes cannot complete, as the task that is
supposed to complete them is blocked waiting on starting a new write.
This results in the following stuck trace showing that dependency with
the write blocked starting a new write:
task:fio state:D stack:0 pid:886 tgid:886 ppid:876
Call trace:
__switch_to+0x1d8/0x348
__schedule+0x8e8/0x2248
schedule+0x110/0x3f0
percpu_rwsem_wait+0x1e8/0x3f8
__percpu_down_read+0xe8/0x500
io_write+0xbb8/0xff8
io_issue_sqe+0x10c/0x1020
io_submit_sqes+0x614/0x2110
__arm64_sys_io_uring_enter+0x524/0x1038
invoke_syscall+0x74/0x268
el0_svc_common.constprop.0+0x160/0x238
do_el0_svc+0x44/0x60
el0_svc+0x44/0xb0
el0t_64_sync_handler+0x118/0x128
el0t_64_sync+0x168/0x170
INFO: task fsfreeze:7364 blocked for more than 15 seconds.
Not tainted 6.12.0-rc5-00063-g76aaf945701c #7963
with the attempting freezer stuck trying to grab the rwsem:
task:fsfreeze state:D stack:0 pid:7364 tgid:7364 ppid:995
Call trace:
__switch_to+0x1d8/0x348
__schedule+0x8e8/0x2248
schedule+0x110/0x3f0
percpu_down_write+0x2b0/0x680
freeze_super+0x248/0x8a8
do_vfs_ioctl+0x149c/0x1b18
__arm64_sys_ioctl+0xd0/0x1a0
invoke_syscall+0x74/0x268
el0_svc_common.constprop.0+0x160/0x238
do_el0_svc+0x44/0x60
el0_svc+0x44/0xb0
el0t_64_sync_handler+0x118/0x128
el0t_64_sync+0x168/0x170
Fix this by having the io_uring side honor IOCB_NOWAIT, and only attempt a
blocking grab of the super block rwsem if it isn't set. For normal issue
where IOCB_NOWAIT would always be set, this returns -EAGAIN which will
have io_uring core issue a blocking attempt of the write. That will in
turn also get completions run, ensuring forward progress.
Since freezing requires CAP_SYS_ADMIN in the first place, this isn't
something that can be triggered by a regular user. |
In the Linux kernel, the following vulnerability has been resolved:
drm/i915/hdcp: Add encoder check in intel_hdcp_get_capability
Sometimes during hotplug scenario or suspend/resume scenario encoder is
not always initialized when intel_hdcp_get_capability add
a check to avoid kernel null pointer dereference. |
In the Linux kernel, the following vulnerability has been resolved:
drm/i915/hdcp: Add encoder check in hdcp2_get_capability
Add encoder check in intel_hdcp2_get_capability to avoid
null pointer error. |
In the Linux kernel, the following vulnerability has been resolved:
slub/kunit: fix a WARNING due to unwrapped __kmalloc_cache_noprof
'modprobe slub_kunit' will have a warning as shown below. The root cause
is that __kmalloc_cache_noprof was directly used, which resulted in no
alloc_tag being allocated. This caused current->alloc_tag to be null,
leading to a warning in alloc_tag_add_check.
Let's add an alloc_hook layer to __kmalloc_cache_noprof specifically
within lib/slub_kunit.c, which is the only user of this internal slub
function outside kmalloc implementation itself.
[58162.947016] WARNING: CPU: 2 PID: 6210 at
./include/linux/alloc_tag.h:125 alloc_tagging_slab_alloc_hook+0x268/0x27c
[58162.957721] Call trace:
[58162.957919] alloc_tagging_slab_alloc_hook+0x268/0x27c
[58162.958286] __kmalloc_cache_noprof+0x14c/0x344
[58162.958615] test_kmalloc_redzone_access+0x50/0x10c [slub_kunit]
[58162.959045] kunit_try_run_case+0x74/0x184 [kunit]
[58162.959401] kunit_generic_run_threadfn_adapter+0x2c/0x4c [kunit]
[58162.959841] kthread+0x10c/0x118
[58162.960093] ret_from_fork+0x10/0x20
[58162.960363] ---[ end trace 0000000000000000 ]--- |
In the Linux kernel, the following vulnerability has been resolved:
ice: fix crash on probe for DPLL enabled E810 LOM
The E810 Lan On Motherboard (LOM) design is vendor specific. Intel
provides the reference design, but it is up to vendor on the final
product design. For some cases, like Linux DPLL support, the static
values defined in the driver does not reflect the actual LOM design.
Current implementation of dpll pins is causing the crash on probe
of the ice driver for such DPLL enabled E810 LOM designs:
WARNING: (...) at drivers/dpll/dpll_core.c:495 dpll_pin_get+0x2c4/0x330
...
Call Trace:
<TASK>
? __warn+0x83/0x130
? dpll_pin_get+0x2c4/0x330
? report_bug+0x1b7/0x1d0
? handle_bug+0x42/0x70
? exc_invalid_op+0x18/0x70
? asm_exc_invalid_op+0x1a/0x20
? dpll_pin_get+0x117/0x330
? dpll_pin_get+0x2c4/0x330
? dpll_pin_get+0x117/0x330
ice_dpll_get_pins.isra.0+0x52/0xe0 [ice]
...
The number of dpll pins enabled by LOM vendor is greater than expected
and defined in the driver for Intel designed NICs, which causes the crash.
Prevent the crash and allow generic pin initialization within Linux DPLL
subsystem for DPLL enabled E810 LOM designs.
Newly designed solution for described issue will be based on "per HW
design" pin initialization. It requires pin information dynamically
acquired from the firmware and is already in progress, planned for
next-tree only. |
In the Linux kernel, the following vulnerability has been resolved:
mptcp: init: protect sched with rcu_read_lock
Enabling CONFIG_PROVE_RCU_LIST with its dependence CONFIG_RCU_EXPERT
creates this splat when an MPTCP socket is created:
=============================
WARNING: suspicious RCU usage
6.12.0-rc2+ #11 Not tainted
-----------------------------
net/mptcp/sched.c:44 RCU-list traversed in non-reader section!!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
no locks held by mptcp_connect/176.
stack backtrace:
CPU: 0 UID: 0 PID: 176 Comm: mptcp_connect Not tainted 6.12.0-rc2+ #11
Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011
Call Trace:
<TASK>
dump_stack_lvl (lib/dump_stack.c:123)
lockdep_rcu_suspicious (kernel/locking/lockdep.c:6822)
mptcp_sched_find (net/mptcp/sched.c:44 (discriminator 7))
mptcp_init_sock (net/mptcp/protocol.c:2867 (discriminator 1))
? sock_init_data_uid (arch/x86/include/asm/atomic.h:28)
inet_create.part.0.constprop.0 (net/ipv4/af_inet.c:386)
? __sock_create (include/linux/rcupdate.h:347 (discriminator 1))
__sock_create (net/socket.c:1576)
__sys_socket (net/socket.c:1671)
? __pfx___sys_socket (net/socket.c:1712)
? do_user_addr_fault (arch/x86/mm/fault.c:1419 (discriminator 1))
__x64_sys_socket (net/socket.c:1728)
do_syscall_64 (arch/x86/entry/common.c:52 (discriminator 1))
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
That's because when the socket is initialised, rcu_read_lock() is not
used despite the explicit comment written above the declaration of
mptcp_sched_find() in sched.c. Adding the missing lock/unlock avoids the
warning. |
In the Linux kernel, the following vulnerability has been resolved:
arm64: dts: imx8ulp: correct the flexspi compatible string
The flexspi on imx8ulp only has 16 LUTs, and imx8mm flexspi has
32 LUTs, so correct the compatible string here, otherwise will
meet below error:
[ 1.119072] ------------[ cut here ]------------
[ 1.123926] WARNING: CPU: 0 PID: 1 at drivers/spi/spi-nxp-fspi.c:855 nxp_fspi_exec_op+0xb04/0xb64
[ 1.133239] Modules linked in:
[ 1.136448] CPU: 0 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.11.0-rc6-next-20240902-00001-g131bf9439dd9 #69
[ 1.146821] Hardware name: NXP i.MX8ULP EVK (DT)
[ 1.151647] pstate: 40000005 (nZcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 1.158931] pc : nxp_fspi_exec_op+0xb04/0xb64
[ 1.163496] lr : nxp_fspi_exec_op+0xa34/0xb64
[ 1.168060] sp : ffff80008002b2a0
[ 1.171526] x29: ffff80008002b2d0 x28: 0000000000000000 x27: 0000000000000000
[ 1.179002] x26: ffff2eb645542580 x25: ffff800080610014 x24: ffff800080610000
[ 1.186480] x23: ffff2eb645548080 x22: 0000000000000006 x21: ffff2eb6455425e0
[ 1.193956] x20: 0000000000000000 x19: ffff80008002b5e0 x18: ffffffffffffffff
[ 1.201432] x17: ffff2eb644467508 x16: 0000000000000138 x15: 0000000000000002
[ 1.208907] x14: 0000000000000000 x13: ffff2eb6400d8080 x12: 00000000ffffff00
[ 1.216378] x11: 0000000000000000 x10: ffff2eb6400d8080 x9 : ffff2eb697adca80
[ 1.223850] x8 : ffff2eb697ad3cc0 x7 : 0000000100000000 x6 : 0000000000000001
[ 1.231324] x5 : 0000000000000000 x4 : 0000000000000000 x3 : 00000000000007a6
[ 1.238795] x2 : 0000000000000000 x1 : 00000000000001ce x0 : 00000000ffffff92
[ 1.246267] Call trace:
[ 1.248824] nxp_fspi_exec_op+0xb04/0xb64
[ 1.253031] spi_mem_exec_op+0x3a0/0x430
[ 1.257139] spi_nor_read_id+0x80/0xcc
[ 1.261065] spi_nor_scan+0x1ec/0xf10
[ 1.264901] spi_nor_probe+0x108/0x2fc
[ 1.268828] spi_mem_probe+0x6c/0xbc
[ 1.272574] spi_probe+0x84/0xe4
[ 1.275958] really_probe+0xbc/0x29c
[ 1.279713] __driver_probe_device+0x78/0x12c
[ 1.284277] driver_probe_device+0xd8/0x15c
[ 1.288660] __device_attach_driver+0xb8/0x134
[ 1.293316] bus_for_each_drv+0x88/0xe8
[ 1.297337] __device_attach+0xa0/0x190
[ 1.301353] device_initial_probe+0x14/0x20
[ 1.305734] bus_probe_device+0xac/0xb0
[ 1.309752] device_add+0x5d0/0x790
[ 1.313408] __spi_add_device+0x134/0x204
[ 1.317606] of_register_spi_device+0x3b4/0x590
[ 1.322348] spi_register_controller+0x47c/0x754
[ 1.327181] devm_spi_register_controller+0x4c/0xa4
[ 1.332289] nxp_fspi_probe+0x1cc/0x2b0
[ 1.336307] platform_probe+0x68/0xc4
[ 1.340145] really_probe+0xbc/0x29c
[ 1.343893] __driver_probe_device+0x78/0x12c
[ 1.348457] driver_probe_device+0xd8/0x15c
[ 1.352838] __driver_attach+0x90/0x19c
[ 1.356857] bus_for_each_dev+0x7c/0xdc
[ 1.360877] driver_attach+0x24/0x30
[ 1.364624] bus_add_driver+0xe4/0x208
[ 1.368552] driver_register+0x5c/0x124
[ 1.372573] __platform_driver_register+0x28/0x34
[ 1.377497] nxp_fspi_driver_init+0x1c/0x28
[ 1.381888] do_one_initcall+0x80/0x1c8
[ 1.385908] kernel_init_freeable+0x1c4/0x28c
[ 1.390472] kernel_init+0x20/0x1d8
[ 1.394138] ret_from_fork+0x10/0x20
[ 1.397885] ---[ end trace 0000000000000000 ]---
[ 1.407908] ------------[ cut here ]------------ |
In the Linux kernel, the following vulnerability has been resolved:
ASoC: dapm: fix bounds checker error in dapm_widget_list_create
The widgets array in the snd_soc_dapm_widget_list has a __counted_by
attribute attached to it, which points to the num_widgets variable. This
attribute is used in bounds checking, and if it is not set before the
array is filled, then the bounds sanitizer will issue a warning or a
kernel panic if CONFIG_UBSAN_TRAP is set.
This patch sets the size of the widgets list calculated with
list_for_each as the initial value for num_widgets as it is used for
allocating memory for the array. It is updated with the actual number of
added elements after the array is filled. |
In the Linux kernel, the following vulnerability has been resolved:
net/sched: sch_api: fix xa_insert() error path in tcf_block_get_ext()
This command:
$ tc qdisc replace dev eth0 ingress_block 1 egress_block 1 clsact
Error: block dev insert failed: -EBUSY.
fails because user space requests the same block index to be set for
both ingress and egress.
[ side note, I don't think it even failed prior to commit 913b47d3424e
("net/sched: Introduce tc block netdev tracking infra"), because this
is a command from an old set of notes of mine which used to work, but
alas, I did not scientifically bisect this ]
The problem is not that it fails, but rather, that the second time
around, it fails differently (and irrecoverably):
$ tc qdisc replace dev eth0 ingress_block 1 egress_block 1 clsact
Error: dsa_core: Flow block cb is busy.
[ another note: the extack is added by me for illustration purposes.
the context of the problem is that clsact_init() obtains the same
&q->ingress_block pointer as &q->egress_block, and since we call
tcf_block_get_ext() on both of them, "dev" will be added to the
block->ports xarray twice, thus failing the operation: once through
the ingress block pointer, and once again through the egress block
pointer. the problem itself is that when xa_insert() fails, we have
emitted a FLOW_BLOCK_BIND command through ndo_setup_tc(), but the
offload never sees a corresponding FLOW_BLOCK_UNBIND. ]
Even correcting the bad user input, we still cannot recover:
$ tc qdisc replace dev swp3 ingress_block 1 egress_block 2 clsact
Error: dsa_core: Flow block cb is busy.
Basically the only way to recover is to reboot the system, or unbind and
rebind the net device driver.
To fix the bug, we need to fill the correct error teardown path which
was missed during code movement, and call tcf_block_offload_unbind()
when xa_insert() fails.
[ last note, fundamentally I blame the label naming convention in
tcf_block_get_ext() for the bug. The labels should be named after what
they do, not after the error path that jumps to them. This way, it is
obviously wrong that two labels pointing to the same code mean
something is wrong, and checking the code correctness at the goto site
is also easier ] |
In the Linux kernel, the following vulnerability has been resolved:
mctp i2c: handle NULL header address
daddr can be NULL if there is no neighbour table entry present,
in that case the tx packet should be dropped.
saddr will usually be set by MCTP core, but check for NULL in case a
packet is transmitted by a different protocol. |