Filtered by vendor Redhat
Subscriptions
Filtered by product Rhel Aus
Subscriptions
Total
961 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2024-38586 | 1 Redhat | 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more | 2024-11-21 | 4.1 Medium |
In the Linux kernel, the following vulnerability has been resolved: r8169: Fix possible ring buffer corruption on fragmented Tx packets. An issue was found on the RTL8125b when transmitting small fragmented packets, whereby invalid entries were inserted into the transmit ring buffer, subsequently leading to calls to dma_unmap_single() with a null address. This was caused by rtl8169_start_xmit() not noticing changes to nr_frags which may occur when small packets are padded (to work around hardware quirks) in rtl8169_tso_csum_v2(). To fix this, postpone inspecting nr_frags until after any padding has been applied. | ||||
CVE-2024-38570 | 2 Linux, Redhat | 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more | 2024-11-21 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: gfs2: Fix potential glock use-after-free on unmount When a DLM lockspace is released and there ares still locks in that lockspace, DLM will unlock those locks automatically. Commit fb6791d100d1b started exploiting this behavior to speed up filesystem unmount: gfs2 would simply free glocks it didn't want to unlock and then release the lockspace. This didn't take the bast callbacks for asynchronous lock contention notifications into account, which remain active until until a lock is unlocked or its lockspace is released. To prevent those callbacks from accessing deallocated objects, put the glocks that should not be unlocked on the sd_dead_glocks list, release the lockspace, and only then free those glocks. As an additional measure, ignore unexpected ast and bast callbacks if the receiving glock is dead. | ||||
CVE-2024-38564 | 1 Redhat | 4 Rhel Aus, Rhel E4s, Rhel Eus and 1 more | 2024-11-21 | 4.4 Medium |
In the Linux kernel, the following vulnerability has been resolved: bpf: Add BPF_PROG_TYPE_CGROUP_SKB attach type enforcement in BPF_LINK_CREATE bpf_prog_attach uses attach_type_to_prog_type to enforce proper attach type for BPF_PROG_TYPE_CGROUP_SKB. link_create uses bpf_prog_get and relies on bpf_prog_attach_check_attach_type to properly verify prog_type <> attach_type association. Add missing attach_type enforcement for the link_create case. Otherwise, it's currently possible to attach cgroup_skb prog types to other cgroup hooks. | ||||
CVE-2024-38555 | 2 Linux, Redhat | 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more | 2024-11-21 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Discard command completions in internal error Fix use after free when FW completion arrives while device is in internal error state. Avoid calling completion handler in this case, since the device will flush the command interface and trigger all completions manually. Kernel log: ------------[ cut here ]------------ refcount_t: underflow; use-after-free. ... RIP: 0010:refcount_warn_saturate+0xd8/0xe0 ... Call Trace: <IRQ> ? __warn+0x79/0x120 ? refcount_warn_saturate+0xd8/0xe0 ? report_bug+0x17c/0x190 ? handle_bug+0x3c/0x60 ? exc_invalid_op+0x14/0x70 ? asm_exc_invalid_op+0x16/0x20 ? refcount_warn_saturate+0xd8/0xe0 cmd_ent_put+0x13b/0x160 [mlx5_core] mlx5_cmd_comp_handler+0x5f9/0x670 [mlx5_core] cmd_comp_notifier+0x1f/0x30 [mlx5_core] notifier_call_chain+0x35/0xb0 atomic_notifier_call_chain+0x16/0x20 mlx5_eq_async_int+0xf6/0x290 [mlx5_core] notifier_call_chain+0x35/0xb0 atomic_notifier_call_chain+0x16/0x20 irq_int_handler+0x19/0x30 [mlx5_core] __handle_irq_event_percpu+0x4b/0x160 handle_irq_event+0x2e/0x80 handle_edge_irq+0x98/0x230 __common_interrupt+0x3b/0xa0 common_interrupt+0x7b/0xa0 </IRQ> <TASK> asm_common_interrupt+0x22/0x40 | ||||
CVE-2024-38540 | 1 Redhat | 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more | 2024-11-21 | 4.4 Medium |
In the Linux kernel, the following vulnerability has been resolved: bnxt_re: avoid shift undefined behavior in bnxt_qplib_alloc_init_hwq Undefined behavior is triggered when bnxt_qplib_alloc_init_hwq is called with hwq_attr->aux_depth != 0 and hwq_attr->aux_stride == 0. In that case, "roundup_pow_of_two(hwq_attr->aux_stride)" gets called. roundup_pow_of_two is documented as undefined for 0. Fix it in the one caller that had this combination. The undefined behavior was detected by UBSAN: UBSAN: shift-out-of-bounds in ./include/linux/log2.h:57:13 shift exponent 64 is too large for 64-bit type 'long unsigned int' CPU: 24 PID: 1075 Comm: (udev-worker) Not tainted 6.9.0-rc6+ #4 Hardware name: Abacus electric, s.r.o. - servis@abacus.cz Super Server/H12SSW-iN, BIOS 2.7 10/25/2023 Call Trace: <TASK> dump_stack_lvl+0x5d/0x80 ubsan_epilogue+0x5/0x30 __ubsan_handle_shift_out_of_bounds.cold+0x61/0xec __roundup_pow_of_two+0x25/0x35 [bnxt_re] bnxt_qplib_alloc_init_hwq+0xa1/0x470 [bnxt_re] bnxt_qplib_create_qp+0x19e/0x840 [bnxt_re] bnxt_re_create_qp+0x9b1/0xcd0 [bnxt_re] ? srso_alias_return_thunk+0x5/0xfbef5 ? srso_alias_return_thunk+0x5/0xfbef5 ? __kmalloc+0x1b6/0x4f0 ? create_qp.part.0+0x128/0x1c0 [ib_core] ? __pfx_bnxt_re_create_qp+0x10/0x10 [bnxt_re] create_qp.part.0+0x128/0x1c0 [ib_core] ib_create_qp_kernel+0x50/0xd0 [ib_core] create_mad_qp+0x8e/0xe0 [ib_core] ? __pfx_qp_event_handler+0x10/0x10 [ib_core] ib_mad_init_device+0x2be/0x680 [ib_core] add_client_context+0x10d/0x1a0 [ib_core] enable_device_and_get+0xe0/0x1d0 [ib_core] ib_register_device+0x53c/0x630 [ib_core] ? srso_alias_return_thunk+0x5/0xfbef5 bnxt_re_probe+0xbd8/0xe50 [bnxt_re] ? __pfx_bnxt_re_probe+0x10/0x10 [bnxt_re] auxiliary_bus_probe+0x49/0x80 ? driver_sysfs_add+0x57/0xc0 really_probe+0xde/0x340 ? pm_runtime_barrier+0x54/0x90 ? __pfx___driver_attach+0x10/0x10 __driver_probe_device+0x78/0x110 driver_probe_device+0x1f/0xa0 __driver_attach+0xba/0x1c0 bus_for_each_dev+0x8f/0xe0 bus_add_driver+0x146/0x220 driver_register+0x72/0xd0 __auxiliary_driver_register+0x6e/0xd0 ? __pfx_bnxt_re_mod_init+0x10/0x10 [bnxt_re] bnxt_re_mod_init+0x3e/0xff0 [bnxt_re] ? __pfx_bnxt_re_mod_init+0x10/0x10 [bnxt_re] do_one_initcall+0x5b/0x310 do_init_module+0x90/0x250 init_module_from_file+0x86/0xc0 idempotent_init_module+0x121/0x2b0 __x64_sys_finit_module+0x5e/0xb0 do_syscall_64+0x82/0x160 ? srso_alias_return_thunk+0x5/0xfbef5 ? syscall_exit_to_user_mode_prepare+0x149/0x170 ? srso_alias_return_thunk+0x5/0xfbef5 ? syscall_exit_to_user_mode+0x75/0x230 ? srso_alias_return_thunk+0x5/0xfbef5 ? do_syscall_64+0x8e/0x160 ? srso_alias_return_thunk+0x5/0xfbef5 ? __count_memcg_events+0x69/0x100 ? srso_alias_return_thunk+0x5/0xfbef5 ? count_memcg_events.constprop.0+0x1a/0x30 ? srso_alias_return_thunk+0x5/0xfbef5 ? handle_mm_fault+0x1f0/0x300 ? srso_alias_return_thunk+0x5/0xfbef5 ? do_user_addr_fault+0x34e/0x640 ? srso_alias_return_thunk+0x5/0xfbef5 ? srso_alias_return_thunk+0x5/0xfbef5 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7f4e5132821d Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d e3 db 0c 00 f7 d8 64 89 01 48 RSP: 002b:00007ffca9c906a8 EFLAGS: 00000246 ORIG_RAX: 0000000000000139 RAX: ffffffffffffffda RBX: 0000563ec8a8f130 RCX: 00007f4e5132821d RDX: 0000000000000000 RSI: 00007f4e518fa07d RDI: 000000000000003b RBP: 00007ffca9c90760 R08: 00007f4e513f6b20 R09: 00007ffca9c906f0 R10: 0000563ec8a8faa0 R11: 0000000000000246 R12: 00007f4e518fa07d R13: 0000000000020000 R14: 0000563ec8409e90 R15: 0000563ec8a8fa60 </TASK> ---[ end trace ]--- | ||||
CVE-2024-38477 | 3 Apache, Netapp, Redhat | 9 Http Server, Clustered Data Ontap, Enterprise Linux and 6 more | 2024-11-21 | 7.5 High |
null pointer dereference in mod_proxy in Apache HTTP Server 2.4.59 and earlier allows an attacker to crash the server via a malicious request. Users are recommended to upgrade to version 2.4.60, which fixes this issue. | ||||
CVE-2024-38476 | 3 Apache, Netapp, Redhat | 9 Http Server, Clustered Data Ontap, Enterprise Linux and 6 more | 2024-11-21 | 9.8 Critical |
Vulnerability in core of Apache HTTP Server 2.4.59 and earlier are vulnerably to information disclosure, SSRF or local script execution via backend applications whose response headers are malicious or exploitable. Users are recommended to upgrade to version 2.4.60, which fixes this issue. | ||||
CVE-2024-38475 | 1 Redhat | 7 Enterprise Linux, Jboss Core Services, Rhel Aus and 4 more | 2024-11-21 | 9.1 Critical |
Improper escaping of output in mod_rewrite in Apache HTTP Server 2.4.59 and earlier allows an attacker to map URLs to filesystem locations that are permitted to be served by the server but are not intentionally/directly reachable by any URL, resulting in code execution or source code disclosure. Substitutions in server context that use a backreferences or variables as the first segment of the substitution are affected. Some unsafe RewiteRules will be broken by this change and the rewrite flag "UnsafePrefixStat" can be used to opt back in once ensuring the substitution is appropriately constrained. | ||||
CVE-2024-38474 | 3 Apache, Netapp, Redhat | 9 Http Server, Clustered Data Ontap, Enterprise Linux and 6 more | 2024-11-21 | 9.8 Critical |
Substitution encoding issue in mod_rewrite in Apache HTTP Server 2.4.59 and earlier allows attacker to execute scripts in directories permitted by the configuration but not directly reachable by any URL or source disclosure of scripts meant to only to be executed as CGI. Users are recommended to upgrade to version 2.4.60, which fixes this issue. Some RewriteRules that capture and substitute unsafely will now fail unless rewrite flag "UnsafeAllow3F" is specified. | ||||
CVE-2024-38428 | 2 Gnu, Redhat | 6 Wget, Enterprise Linux, Rhel Aus and 3 more | 2024-11-21 | 9.1 Critical |
url.c in GNU Wget through 1.24.5 mishandles semicolons in the userinfo subcomponent of a URI, and thus there may be insecure behavior in which data that was supposed to be in the userinfo subcomponent is misinterpreted to be part of the host subcomponent. | ||||
CVE-2024-38286 | 2 Apache, Redhat | 7 Tomcat, Enterprise Linux, Jboss Enterprise Web Server and 4 more | 2024-11-21 | 8.6 High |
Allocation of Resources Without Limits or Throttling vulnerability in Apache Tomcat. This issue affects Apache Tomcat: from 11.0.0-M1 through 11.0.0-M20, from 10.1.0-M1 through 10.1.24, from 9.0.13 through 9.0.89. Older, unsupported versions may also be affected. Users are recommended to upgrade to version 11.0.0-M21, 10.1.25, or 9.0.90, which fixes the issue. Apache Tomcat, under certain configurations on any platform, allows an attacker to cause an OutOfMemoryError by abusing the TLS handshake process. | ||||
CVE-2024-37891 | 1 Redhat | 9 Ansible Automation Platform, Enterprise Linux, Openstack and 6 more | 2024-11-21 | 4.4 Medium |
urllib3 is a user-friendly HTTP client library for Python. When using urllib3's proxy support with `ProxyManager`, the `Proxy-Authorization` header is only sent to the configured proxy, as expected. However, when sending HTTP requests *without* using urllib3's proxy support, it's possible to accidentally configure the `Proxy-Authorization` header even though it won't have any effect as the request is not using a forwarding proxy or a tunneling proxy. In those cases, urllib3 doesn't treat the `Proxy-Authorization` HTTP header as one carrying authentication material and thus doesn't strip the header on cross-origin redirects. Because this is a highly unlikely scenario, we believe the severity of this vulnerability is low for almost all users. Out of an abundance of caution urllib3 will automatically strip the `Proxy-Authorization` header during cross-origin redirects to avoid the small chance that users are doing this on accident. Users should use urllib3's proxy support or disable automatic redirects to achieve safe processing of the `Proxy-Authorization` header, but we still decided to strip the header by default in order to further protect users who aren't using the correct approach. We believe the number of usages affected by this advisory is low. It requires all of the following to be true to be exploited: 1. Setting the `Proxy-Authorization` header without using urllib3's built-in proxy support. 2. Not disabling HTTP redirects. 3. Either not using an HTTPS origin server or for the proxy or target origin to redirect to a malicious origin. Users are advised to update to either version 1.26.19 or version 2.2.2. Users unable to upgrade may use the `Proxy-Authorization` header with urllib3's `ProxyManager`, disable HTTP redirects using `redirects=False` when sending requests, or not user the `Proxy-Authorization` header as mitigations. | ||||
CVE-2024-37371 | 3 Debian, Mit, Redhat | 9 Debian Linux, Kerberos 5, Enterprise Linux and 6 more | 2024-11-21 | 9.1 Critical |
In MIT Kerberos 5 (aka krb5) before 1.21.3, an attacker can cause invalid memory reads during GSS message token handling by sending message tokens with invalid length fields. | ||||
CVE-2024-37370 | 2 Mit, Redhat | 8 Kerberos 5, Enterprise Linux, Rhel Aus and 5 more | 2024-11-21 | 7.5 High |
In MIT Kerberos 5 (aka krb5) before 1.21.3, an attacker can modify the plaintext Extra Count field of a confidential GSS krb5 wrap token, causing the unwrapped token to appear truncated to the application. | ||||
CVE-2024-36971 | 2 Linux, Redhat | 8 Linux Kernel, Enterprise Linux, Openshift and 5 more | 2024-11-21 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: net: fix __dst_negative_advice() race __dst_negative_advice() does not enforce proper RCU rules when sk->dst_cache must be cleared, leading to possible UAF. RCU rules are that we must first clear sk->sk_dst_cache, then call dst_release(old_dst). Note that sk_dst_reset(sk) is implementing this protocol correctly, while __dst_negative_advice() uses the wrong order. Given that ip6_negative_advice() has special logic against RTF_CACHE, this means each of the three ->negative_advice() existing methods must perform the sk_dst_reset() themselves. Note the check against NULL dst is centralized in __dst_negative_advice(), there is no need to duplicate it in various callbacks. Many thanks to Clement Lecigne for tracking this issue. This old bug became visible after the blamed commit, using UDP sockets. | ||||
CVE-2024-36952 | 1 Redhat | 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more | 2024-11-21 | 4.4 Medium |
In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Move NPIV's transport unregistration to after resource clean up There are cases after NPIV deletion where the fabric switch still believes the NPIV is logged into the fabric. This occurs when a vport is unregistered before the Remove All DA_ID CT and LOGO ELS are sent to the fabric. Currently fc_remove_host(), which calls dev_loss_tmo for all D_IDs including the fabric D_ID, removes the last ndlp reference and frees the ndlp rport object. This sometimes causes the race condition where the final DA_ID and LOGO are skipped from being sent to the fabric switch. Fix by moving the fc_remove_host() and scsi_remove_host() calls after DA_ID and LOGO are sent. | ||||
CVE-2024-36941 | 1 Redhat | 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more | 2024-11-21 | 5.7 Medium |
In the Linux kernel, the following vulnerability has been resolved: wifi: nl80211: don't free NULL coalescing rule If the parsing fails, we can dereference a NULL pointer here. | ||||
CVE-2024-36929 | 1 Redhat | 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more | 2024-11-21 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: net: core: reject skb_copy(_expand) for fraglist GSO skbs SKB_GSO_FRAGLIST skbs must not be linearized, otherwise they become invalid. Return NULL if such an skb is passed to skb_copy or skb_copy_expand, in order to prevent a crash on a potential later call to skb_gso_segment. | ||||
CVE-2024-36924 | 1 Redhat | 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more | 2024-11-21 | 4.4 Medium |
In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Release hbalock before calling lpfc_worker_wake_up() lpfc_worker_wake_up() calls the lpfc_work_done() routine, which takes the hbalock. Thus, lpfc_worker_wake_up() should not be called while holding the hbalock to avoid potential deadlock. | ||||
CVE-2024-36904 | 1 Redhat | 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more | 2024-11-21 | 7.0 High |
In the Linux kernel, the following vulnerability has been resolved: tcp: Use refcount_inc_not_zero() in tcp_twsk_unique(). Anderson Nascimento reported a use-after-free splat in tcp_twsk_unique() with nice analysis. Since commit ec94c2696f0b ("tcp/dccp: avoid one atomic operation for timewait hashdance"), inet_twsk_hashdance() sets TIME-WAIT socket's sk_refcnt after putting it into ehash and releasing the bucket lock. Thus, there is a small race window where other threads could try to reuse the port during connect() and call sock_hold() in tcp_twsk_unique() for the TIME-WAIT socket with zero refcnt. If that happens, the refcnt taken by tcp_twsk_unique() is overwritten and sock_put() will cause underflow, triggering a real use-after-free somewhere else. To avoid the use-after-free, we need to use refcount_inc_not_zero() in tcp_twsk_unique() and give up on reusing the port if it returns false. [0]: refcount_t: addition on 0; use-after-free. WARNING: CPU: 0 PID: 1039313 at lib/refcount.c:25 refcount_warn_saturate+0xe5/0x110 CPU: 0 PID: 1039313 Comm: trigger Not tainted 6.8.6-200.fc39.x86_64 #1 Hardware name: VMware, Inc. VMware20,1/440BX Desktop Reference Platform, BIOS VMW201.00V.21805430.B64.2305221830 05/22/2023 RIP: 0010:refcount_warn_saturate+0xe5/0x110 Code: 42 8e ff 0f 0b c3 cc cc cc cc 80 3d aa 13 ea 01 00 0f 85 5e ff ff ff 48 c7 c7 f8 8e b7 82 c6 05 96 13 ea 01 01 e8 7b 42 8e ff <0f> 0b c3 cc cc cc cc 48 c7 c7 50 8f b7 82 c6 05 7a 13 ea 01 01 e8 RSP: 0018:ffffc90006b43b60 EFLAGS: 00010282 RAX: 0000000000000000 RBX: ffff888009bb3ef0 RCX: 0000000000000027 RDX: ffff88807be218c8 RSI: 0000000000000001 RDI: ffff88807be218c0 RBP: 0000000000069d70 R08: 0000000000000000 R09: ffffc90006b439f0 R10: ffffc90006b439e8 R11: 0000000000000003 R12: ffff8880029ede84 R13: 0000000000004e20 R14: ffffffff84356dc0 R15: ffff888009bb3ef0 FS: 00007f62c10926c0(0000) GS:ffff88807be00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000020ccb000 CR3: 000000004628c005 CR4: 0000000000f70ef0 PKRU: 55555554 Call Trace: <TASK> ? refcount_warn_saturate+0xe5/0x110 ? __warn+0x81/0x130 ? refcount_warn_saturate+0xe5/0x110 ? report_bug+0x171/0x1a0 ? refcount_warn_saturate+0xe5/0x110 ? handle_bug+0x3c/0x80 ? exc_invalid_op+0x17/0x70 ? asm_exc_invalid_op+0x1a/0x20 ? refcount_warn_saturate+0xe5/0x110 tcp_twsk_unique+0x186/0x190 __inet_check_established+0x176/0x2d0 __inet_hash_connect+0x74/0x7d0 ? __pfx___inet_check_established+0x10/0x10 tcp_v4_connect+0x278/0x530 __inet_stream_connect+0x10f/0x3d0 inet_stream_connect+0x3a/0x60 __sys_connect+0xa8/0xd0 __x64_sys_connect+0x18/0x20 do_syscall_64+0x83/0x170 entry_SYSCALL_64_after_hwframe+0x78/0x80 RIP: 0033:0x7f62c11a885d Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d a3 45 0c 00 f7 d8 64 89 01 48 RSP: 002b:00007f62c1091e58 EFLAGS: 00000296 ORIG_RAX: 000000000000002a RAX: ffffffffffffffda RBX: 0000000020ccb004 RCX: 00007f62c11a885d RDX: 0000000000000010 RSI: 0000000020ccb000 RDI: 0000000000000003 RBP: 00007f62c1091e90 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000296 R12: 00007f62c10926c0 R13: ffffffffffffff88 R14: 0000000000000000 R15: 00007ffe237885b0 </TASK> |