| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
efistub/tpm: Use ACPI reclaim memory for event log to avoid corruption
The TPM event log table is a Linux specific construct, where the data
produced by the GetEventLog() boot service is cached in memory, and
passed on to the OS using an EFI configuration table.
The use of EFI_LOADER_DATA here results in the region being left
unreserved in the E820 memory map constructed by the EFI stub, and this
is the memory description that is passed on to the incoming kernel by
kexec, which is therefore unaware that the region should be reserved.
Even though the utility of the TPM2 event log after a kexec is
questionable, any corruption might send the parsing code off into the
weeds and crash the kernel. So let's use EFI_ACPI_RECLAIM_MEMORY
instead, which is always treated as reserved by the E820 conversion
logic. |
| The device directly executes .patch firmware upgrade files on a USB stick without any prior authentication in the admin interface. This leads to an unauthenticated code execution via the firmware upgrade function. |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix potential oob read in nilfs_btree_check_delete()
The function nilfs_btree_check_delete(), which checks whether degeneration
to direct mapping occurs before deleting a b-tree entry, causes memory
access outside the block buffer when retrieving the maximum key if the
root node has no entries.
This does not usually happen because b-tree mappings with 0 child nodes
are never created by mkfs.nilfs2 or nilfs2 itself. However, it can happen
if the b-tree root node read from a device is configured that way, so fix
this potential issue by adding a check for that case. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: kirin: Fix buffer overflow in kirin_pcie_parse_port()
Within kirin_pcie_parse_port(), the pcie->num_slots is compared to
pcie->gpio_id_reset size (MAX_PCI_SLOTS) which is correct and would lead
to an overflow.
Thus, fix condition to pcie->num_slots + 1 >= MAX_PCI_SLOTS and move
pcie->num_slots increment below the if-statement to avoid out-of-bounds
array access.
Found by Linux Verification Center (linuxtesting.org) with SVACE.
[kwilczynski: commit log] |
| In the Linux kernel, the following vulnerability has been resolved:
padata: use integer wrap around to prevent deadlock on seq_nr overflow
When submitting more than 2^32 padata objects to padata_do_serial, the
current sorting implementation incorrectly sorts padata objects with
overflowed seq_nr, causing them to be placed before existing objects in
the reorder list. This leads to a deadlock in the serialization process
as padata_find_next cannot match padata->seq_nr and pd->processed
because the padata instance with overflowed seq_nr will be selected
next.
To fix this, we use an unsigned integer wrap around to correctly sort
padata objects in scenarios with integer overflow. |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: fix out-of-bounds in dbNextAG() and diAlloc()
In dbNextAG() , there is no check for the case where bmp->db_numag is
greater or same than MAXAG due to a polluted image, which causes an
out-of-bounds. Therefore, a bounds check should be added in dbMount().
And in dbNextAG(), a check for the case where agpref is greater than
bmp->db_numag should be added, so an out-of-bounds exception should be
prevented.
Additionally, a check for the case where agno is greater or same than
MAXAG should be added in diAlloc() to prevent out-of-bounds. |
| In the Linux kernel, the following vulnerability has been resolved:
ep93xx: clock: Fix off by one in ep93xx_div_recalc_rate()
The psc->div[] array has psc->num_div elements. These values come from
when we call clk_hw_register_div(). It's adc_divisors and
ARRAY_SIZE(adc_divisors)) and so on. So this condition needs to be >=
instead of > to prevent an out of bounds read. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: sd: Fix off-by-one error in sd_read_block_characteristics()
Ff the device returns page 0xb1 with length 8 (happens with qemu v2.x, for
example), sd_read_block_characteristics() may attempt an out-of-bounds
memory access when accessing the zoned field at offset 8. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: keystone: Add workaround for Errata #i2037 (AM65x SR 1.0)
Errata #i2037 in AM65x/DRA80xM Processors Silicon Revision 1.0
(SPRZ452D_July 2018_Revised December 2019 [1]) mentions when an
inbound PCIe TLP spans more than two internal AXI 128-byte bursts,
the bus may corrupt the packet payload and the corrupt data may
cause associated applications or the processor to hang.
The workaround for Errata #i2037 is to limit the maximum read
request size and maximum payload size to 128 bytes. Add workaround
for Errata #i2037 here.
The errata and workaround is applicable only to AM65x SR 1.0 and
later versions of the silicon will have this fixed.
[1] -> https://www.ti.com/lit/er/sprz452i/sprz452i.pdf |
| GStreamer is a library for constructing graphs of media-handling components. stack-buffer overflow has been detected in the gst_opus_dec_parse_header function within `gstopusdec.c'. The pos array is a stack-allocated buffer of size 64. If n_channels exceeds 64, the for loop will write beyond the boundaries of the pos array. The value written will always be GST_AUDIO_CHANNEL_POSITION_NONE. This bug allows to overwrite the EIP address allocated in the stack. This vulnerability is fixed in 1.24.10. |
| GStreamer is a library for constructing graphs of media-handling components. An OOB-read vulnerability has been detected in the format_channel_mask function in gst-discoverer.c. The vulnerability affects the local array position, which is defined with a fixed size of 64 elements. However, the function gst_discoverer_audio_info_get_channels may return a guint channels value greater than 64. This causes the for loop to attempt access beyond the bounds of the position array, resulting in an OOB-read when an index greater than 63 is used. This vulnerability can result in reading unintended bytes from the stack. Additionally, the dereference of value->value_nick after the OOB-read can lead to further memory corruption or undefined behavior. This vulnerability is fixed in 1.24.10. |
| GStreamer is a library for constructing graphs of media-handling components. A null pointer dereference has been discovered in the id3v2_read_synch_uint function, located in id3v2.c. If id3v2_read_synch_uint is called with a null work->hdr.frame_data, the pointer guint8 *data is accessed without validation, resulting in a null pointer dereference. This vulnerability can result in a Denial of Service (DoS) by triggering a segmentation fault (SEGV). This vulnerability is fixed in 1.24.10. |
| GStreamer is a library for constructing graphs of media-handling components. A stack-buffer overflow has been detected in the `vorbis_handle_identification_packet` function within `gstvorbisdec.c`. The position array is a stack-allocated buffer of size 64. If vd->vi.channels exceeds 64, the for loop will write beyond the boundaries of the position array. The value written will always be `GST_AUDIO_CHANNEL_POSITION_NONE`. This vulnerability allows someone to overwrite the EIP address allocated in the stack. Additionally, this bug can overwrite the `GstAudioInfo` info structure. This vulnerability is fixed in 1.24.10. |
| XStream is a simple library to serialize objects to XML and back again. This vulnerability may allow a remote attacker to terminate the application with a stack overflow error resulting in a denial of service only by manipulating the processed input stream when XStream is configured to use the BinaryStreamDriver. XStream 1.4.21 has been patched to detect the manipulation in the binary input stream causing the the stack overflow and raises an InputManipulationException instead. Users are advised to upgrade. Users unable to upgrade may catch the StackOverflowError in the client code calling XStream if XStream is configured to use the BinaryStreamDriver. |
| An issue was discovered in psi/zfile.c in Artifex Ghostscript before 10.04.0. Out-of-bounds data access in filenameforall can lead to arbitrary code execution. |
| An issue was discovered in psi/zcolor.c in Artifex Ghostscript before 10.04.0. There is an out-of-bounds read when reading color in Indexed color space. |
| An issue was discovered in base/gsdevice.c in Artifex Ghostscript before 10.04.0. An integer overflow when parsing the filename format string (for the output filename) results in path truncation, and possible path traversal and code execution. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Correct the defined value for AMDGPU_DMUB_NOTIFICATION_MAX
[Why & How]
It actually exposes '6' types in enum dmub_notification_type. Not 5. Using smaller
number to create array dmub_callback & dmub_thread_offload has potential to access
item out of array bound. Fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86: panasonic-laptop: Fix SINF array out of bounds accesses
The panasonic laptop code in various places uses the SINF array with index
values of 0 - SINF_CUR_BRIGHT(0x0d) without checking that the SINF array
is big enough.
Not all panasonic laptops have this many SINF array entries, for example
the Toughbook CF-18 model only has 10 SINF array entries. So it only
supports the AC+DC brightness entries and mute.
Check that the SINF array has a minimum size which covers all AC+DC
brightness entries and refuse to load if the SINF array is smaller.
For higher SINF indexes hide the sysfs attributes when the SINF array
does not contain an entry for that attribute, avoiding show()/store()
accessing the array out of bounds and add bounds checking to the probe()
and resume() code accessing these. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: nxp-fspi: fix the KASAN report out-of-bounds bug
Change the memcpy length to fix the out-of-bounds issue when writing the
data that is not 4 byte aligned to TX FIFO.
To reproduce the issue, write 3 bytes data to NOR chip.
dd if=3b of=/dev/mtd0
[ 36.926103] ==================================================================
[ 36.933409] BUG: KASAN: slab-out-of-bounds in nxp_fspi_exec_op+0x26ec/0x2838
[ 36.940514] Read of size 4 at addr ffff00081037c2a0 by task dd/455
[ 36.946721]
[ 36.948235] CPU: 3 UID: 0 PID: 455 Comm: dd Not tainted 6.11.0-rc5-gc7b0e37c8434 #1070
[ 36.956185] Hardware name: Freescale i.MX8QM MEK (DT)
[ 36.961260] Call trace:
[ 36.963723] dump_backtrace+0x90/0xe8
[ 36.967414] show_stack+0x18/0x24
[ 36.970749] dump_stack_lvl+0x78/0x90
[ 36.974451] print_report+0x114/0x5cc
[ 36.978151] kasan_report+0xa4/0xf0
[ 36.981670] __asan_report_load_n_noabort+0x1c/0x28
[ 36.986587] nxp_fspi_exec_op+0x26ec/0x2838
[ 36.990800] spi_mem_exec_op+0x8ec/0xd30
[ 36.994762] spi_mem_no_dirmap_read+0x190/0x1e0
[ 36.999323] spi_mem_dirmap_write+0x238/0x32c
[ 37.003710] spi_nor_write_data+0x220/0x374
[ 37.007932] spi_nor_write+0x110/0x2e8
[ 37.011711] mtd_write_oob_std+0x154/0x1f0
[ 37.015838] mtd_write_oob+0x104/0x1d0
[ 37.019617] mtd_write+0xb8/0x12c
[ 37.022953] mtdchar_write+0x224/0x47c
[ 37.026732] vfs_write+0x1e4/0x8c8
[ 37.030163] ksys_write+0xec/0x1d0
[ 37.033586] __arm64_sys_write+0x6c/0x9c
[ 37.037539] invoke_syscall+0x6c/0x258
[ 37.041327] el0_svc_common.constprop.0+0x160/0x22c
[ 37.046244] do_el0_svc+0x44/0x5c
[ 37.049589] el0_svc+0x38/0x78
[ 37.052681] el0t_64_sync_handler+0x13c/0x158
[ 37.057077] el0t_64_sync+0x190/0x194
[ 37.060775]
[ 37.062274] Allocated by task 455:
[ 37.065701] kasan_save_stack+0x2c/0x54
[ 37.069570] kasan_save_track+0x20/0x3c
[ 37.073438] kasan_save_alloc_info+0x40/0x54
[ 37.077736] __kasan_kmalloc+0xa0/0xb8
[ 37.081515] __kmalloc_noprof+0x158/0x2f8
[ 37.085563] mtd_kmalloc_up_to+0x120/0x154
[ 37.089690] mtdchar_write+0x130/0x47c
[ 37.093469] vfs_write+0x1e4/0x8c8
[ 37.096901] ksys_write+0xec/0x1d0
[ 37.100332] __arm64_sys_write+0x6c/0x9c
[ 37.104287] invoke_syscall+0x6c/0x258
[ 37.108064] el0_svc_common.constprop.0+0x160/0x22c
[ 37.112972] do_el0_svc+0x44/0x5c
[ 37.116319] el0_svc+0x38/0x78
[ 37.119401] el0t_64_sync_handler+0x13c/0x158
[ 37.123788] el0t_64_sync+0x190/0x194
[ 37.127474]
[ 37.128977] The buggy address belongs to the object at ffff00081037c2a0
[ 37.128977] which belongs to the cache kmalloc-8 of size 8
[ 37.141177] The buggy address is located 0 bytes inside of
[ 37.141177] allocated 3-byte region [ffff00081037c2a0, ffff00081037c2a3)
[ 37.153465]
[ 37.154971] The buggy address belongs to the physical page:
[ 37.160559] page: refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x89037c
[ 37.168596] flags: 0xbfffe0000000000(node=0|zone=2|lastcpupid=0x1ffff)
[ 37.175149] page_type: 0xfdffffff(slab)
[ 37.179021] raw: 0bfffe0000000000 ffff000800002500 dead000000000122 0000000000000000
[ 37.186788] raw: 0000000000000000 0000000080800080 00000001fdffffff 0000000000000000
[ 37.194553] page dumped because: kasan: bad access detected
[ 37.200144]
[ 37.201647] Memory state around the buggy address:
[ 37.206460] ffff00081037c180: fa fc fc fc fa fc fc fc fa fc fc fc fa fc fc fc
[ 37.213701] ffff00081037c200: fa fc fc fc 05 fc fc fc 03 fc fc fc 02 fc fc fc
[ 37.220946] >ffff00081037c280: 06 fc fc fc 03 fc fc fc fc fc fc fc fc fc fc fc
[ 37.228186] ^
[ 37.232473] ffff00081037c300: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[ 37.239718] ffff00081037c380: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[ 37.246962] ==============================================================
---truncated--- |