CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
drm/amd: Fix UBSAN array-index-out-of-bounds for Polaris and Tonga
For pptable structs that use flexible array sizes, use flexible arrays. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix a null pointer access when the smc_rreg pointer is NULL
In certain types of chips, such as VEGA20, reading the amdgpu_regs_smc file could result in an abnormal null pointer access when the smc_rreg pointer is NULL. Below are the steps to reproduce this issue and the corresponding exception log:
1. Navigate to the directory: /sys/kernel/debug/dri/0
2. Execute command: cat amdgpu_regs_smc
3. Exception Log::
[4005007.702554] BUG: kernel NULL pointer dereference, address: 0000000000000000
[4005007.702562] #PF: supervisor instruction fetch in kernel mode
[4005007.702567] #PF: error_code(0x0010) - not-present page
[4005007.702570] PGD 0 P4D 0
[4005007.702576] Oops: 0010 [#1] SMP NOPTI
[4005007.702581] CPU: 4 PID: 62563 Comm: cat Tainted: G OE 5.15.0-43-generic #46-Ubunt u
[4005007.702590] RIP: 0010:0x0
[4005007.702598] Code: Unable to access opcode bytes at RIP 0xffffffffffffffd6.
[4005007.702600] RSP: 0018:ffffa82b46d27da0 EFLAGS: 00010206
[4005007.702605] RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffa82b46d27e68
[4005007.702609] RDX: 0000000000000001 RSI: 0000000000000000 RDI: ffff9940656e0000
[4005007.702612] RBP: ffffa82b46d27dd8 R08: 0000000000000000 R09: ffff994060c07980
[4005007.702615] R10: 0000000000020000 R11: 0000000000000000 R12: 00007f5e06753000
[4005007.702618] R13: ffff9940656e0000 R14: ffffa82b46d27e68 R15: 00007f5e06753000
[4005007.702622] FS: 00007f5e0755b740(0000) GS:ffff99479d300000(0000) knlGS:0000000000000000
[4005007.702626] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[4005007.702629] CR2: ffffffffffffffd6 CR3: 00000003253fc000 CR4: 00000000003506e0
[4005007.702633] Call Trace:
[4005007.702636] <TASK>
[4005007.702640] amdgpu_debugfs_regs_smc_read+0xb0/0x120 [amdgpu]
[4005007.703002] full_proxy_read+0x5c/0x80
[4005007.703011] vfs_read+0x9f/0x1a0
[4005007.703019] ksys_read+0x67/0xe0
[4005007.703023] __x64_sys_read+0x19/0x20
[4005007.703028] do_syscall_64+0x5c/0xc0
[4005007.703034] ? do_user_addr_fault+0x1e3/0x670
[4005007.703040] ? exit_to_user_mode_prepare+0x37/0xb0
[4005007.703047] ? irqentry_exit_to_user_mode+0x9/0x20
[4005007.703052] ? irqentry_exit+0x19/0x30
[4005007.703057] ? exc_page_fault+0x89/0x160
[4005007.703062] ? asm_exc_page_fault+0x8/0x30
[4005007.703068] entry_SYSCALL_64_after_hwframe+0x44/0xae
[4005007.703075] RIP: 0033:0x7f5e07672992
[4005007.703079] Code: c0 e9 b2 fe ff ff 50 48 8d 3d fa b2 0c 00 e8 c5 1d 02 00 0f 1f 44 00 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 0f 05 <48> 3d 00 f0 ff ff 77 56 c3 0f 1f 44 00 00 48 83 e c 28 48 89 54 24
[4005007.703083] RSP: 002b:00007ffe03097898 EFLAGS: 00000246 ORIG_RAX: 0000000000000000
[4005007.703088] RAX: ffffffffffffffda RBX: 0000000000020000 RCX: 00007f5e07672992
[4005007.703091] RDX: 0000000000020000 RSI: 00007f5e06753000 RDI: 0000000000000003
[4005007.703094] RBP: 00007f5e06753000 R08: 00007f5e06752010 R09: 00007f5e06752010
[4005007.703096] R10: 0000000000000022 R11: 0000000000000246 R12: 0000000000022000
[4005007.703099] R13: 0000000000000003 R14: 0000000000020000 R15: 0000000000020000
[4005007.703105] </TASK>
[4005007.703107] Modules linked in: nf_tables libcrc32c nfnetlink algif_hash af_alg binfmt_misc nls_ iso8859_1 ipmi_ssif ast intel_rapl_msr intel_rapl_common drm_vram_helper drm_ttm_helper amd64_edac t tm edac_mce_amd kvm_amd ccp mac_hid k10temp kvm acpi_ipmi ipmi_si rapl sch_fq_codel ipmi_devintf ipm i_msghandler msr parport_pc ppdev lp parport mtd pstore_blk efi_pstore ramoops pstore_zone reed_solo mon ip_tables x_tables autofs4 ib_uverbs ib_core amdgpu(OE) amddrm_ttm_helper(OE) amdttm(OE) iommu_v 2 amd_sched(OE) amdkcl(OE) drm_kms_helper syscopyarea sysfillrect sysimgblt fb_sys_fops cec rc_core drm igb ahci xhci_pci libahci i2c_piix4 i2c_algo_bit xhci_pci_renesas dca
[4005007.703184] CR2: 0000000000000000
[4005007.703188] ---[ en
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix potential null pointer derefernce
The amdgpu_ras_get_context may return NULL if device
not support ras feature, so add check before using. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: ibmvfc: Remove BUG_ON in the case of an empty event pool
In practice the driver should never send more commands than are allocated
to a queue's event pool. In the unlikely event that this happens, the code
asserts a BUG_ON, and in the case that the kernel is not configured to
crash on panic returns a junk event pointer from the empty event list
causing things to spiral from there. This BUG_ON is a historical artifact
of the ibmvfc driver first being upstreamed, and it is well known now that
the use of BUG_ON is bad practice except in the most unrecoverable
scenario. There is nothing about this scenario that prevents the driver
from recovering and carrying on.
Remove the BUG_ON in question from ibmvfc_get_event() and return a NULL
pointer in the case of an empty event pool. Update all call sites to
ibmvfc_get_event() to check for a NULL pointer and perfrom the appropriate
failure or recovery action. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: libfc: Fix potential NULL pointer dereference in fc_lport_ptp_setup()
fc_lport_ptp_setup() did not check the return value of fc_rport_create()
which can return NULL and would cause a NULL pointer dereference. Address
this issue by checking return value of fc_rport_create() and log error
message on fc_rport_create() failed. |
In the Linux kernel, the following vulnerability has been resolved:
iommufd: Fix missing update of domains_itree after splitting iopt_area
In iopt_area_split(), if the original iopt_area has filled a domain and is
linked to domains_itree, pages_nodes have to be properly
reinserted. Otherwise the domains_itree becomes corrupted and we will UAF. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: fix htt pktlog locking
The ath11k active pdevs are protected by RCU but the htt pktlog handling
code calling ath11k_mac_get_ar_by_pdev_id() was not marked as a
read-side critical section.
Mark the code in question as an RCU read-side critical section to avoid
any potential use-after-free issues.
Compile tested only. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: fix dfs radar event locking
The ath11k active pdevs are protected by RCU but the DFS radar event
handling code calling ath11k_mac_get_ar_by_pdev_id() was not marked as a
read-side critical section.
Mark the code in question as an RCU read-side critical section to avoid
any potential use-after-free issues.
Compile tested only. |
In the Linux kernel, the following vulnerability has been resolved:
i915/perf: Fix NULL deref bugs with drm_dbg() calls
When i915 perf interface is not available dereferencing it will lead to
NULL dereferences.
As returning -ENOTSUPP is pretty clear return when perf interface is not
available.
[tursulin: added stable tag]
(cherry picked from commit 36f27350ff745bd228ab04d7845dfbffc177a889) |
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: fix gtk offload status event locking
The ath11k active pdevs are protected by RCU but the gtk offload status
event handling code calling ath11k_mac_get_arvif_by_vdev_id() was not
marked as a read-side critical section.
Mark the code in question as an RCU read-side critical section to avoid
any potential use-after-free issues.
Compile tested only. |
In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix potential deadlock when releasing mids
All release_mid() callers seem to hold a reference of @mid so there is
no need to call kref_put(&mid->refcount, __release_mid) under
@server->mid_lock spinlock. If they don't, then an use-after-free bug
would have occurred anyways.
By getting rid of such spinlock also fixes a potential deadlock as
shown below
CPU 0 CPU 1
------------------------------------------------------------------
cifs_demultiplex_thread() cifs_debug_data_proc_show()
release_mid()
spin_lock(&server->mid_lock);
spin_lock(&cifs_tcp_ses_lock)
spin_lock(&server->mid_lock)
__release_mid()
smb2_find_smb_tcon()
spin_lock(&cifs_tcp_ses_lock) *deadlock* |
In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix use-after-free in smb2_query_info_compound()
The following UAF was triggered when running fstests generic/072 with
KASAN enabled against Windows Server 2022 and mount options
'multichannel,max_channels=2,vers=3.1.1,mfsymlinks,noperm'
BUG: KASAN: slab-use-after-free in smb2_query_info_compound+0x423/0x6d0 [cifs]
Read of size 8 at addr ffff888014941048 by task xfs_io/27534
CPU: 0 PID: 27534 Comm: xfs_io Not tainted 6.6.0-rc7 #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS
rel-1.16.2-3-gd478f380-rebuilt.opensuse.org 04/01/2014
Call Trace:
dump_stack_lvl+0x4a/0x80
print_report+0xcf/0x650
? srso_alias_return_thunk+0x5/0x7f
? srso_alias_return_thunk+0x5/0x7f
? __phys_addr+0x46/0x90
kasan_report+0xda/0x110
? smb2_query_info_compound+0x423/0x6d0 [cifs]
? smb2_query_info_compound+0x423/0x6d0 [cifs]
smb2_query_info_compound+0x423/0x6d0 [cifs]
? __pfx_smb2_query_info_compound+0x10/0x10 [cifs]
? srso_alias_return_thunk+0x5/0x7f
? __stack_depot_save+0x39/0x480
? kasan_save_stack+0x33/0x60
? kasan_set_track+0x25/0x30
? ____kasan_slab_free+0x126/0x170
smb2_queryfs+0xc2/0x2c0 [cifs]
? __pfx_smb2_queryfs+0x10/0x10 [cifs]
? __pfx___lock_acquire+0x10/0x10
smb311_queryfs+0x210/0x220 [cifs]
? __pfx_smb311_queryfs+0x10/0x10 [cifs]
? srso_alias_return_thunk+0x5/0x7f
? __lock_acquire+0x480/0x26c0
? lock_release+0x1ed/0x640
? srso_alias_return_thunk+0x5/0x7f
? do_raw_spin_unlock+0x9b/0x100
cifs_statfs+0x18c/0x4b0 [cifs]
statfs_by_dentry+0x9b/0xf0
fd_statfs+0x4e/0xb0
__do_sys_fstatfs+0x7f/0xe0
? __pfx___do_sys_fstatfs+0x10/0x10
? srso_alias_return_thunk+0x5/0x7f
? lockdep_hardirqs_on_prepare+0x136/0x200
? srso_alias_return_thunk+0x5/0x7f
do_syscall_64+0x3f/0x90
entry_SYSCALL_64_after_hwframe+0x6e/0xd8
Allocated by task 27534:
kasan_save_stack+0x33/0x60
kasan_set_track+0x25/0x30
__kasan_kmalloc+0x8f/0xa0
open_cached_dir+0x71b/0x1240 [cifs]
smb2_query_info_compound+0x5c3/0x6d0 [cifs]
smb2_queryfs+0xc2/0x2c0 [cifs]
smb311_queryfs+0x210/0x220 [cifs]
cifs_statfs+0x18c/0x4b0 [cifs]
statfs_by_dentry+0x9b/0xf0
fd_statfs+0x4e/0xb0
__do_sys_fstatfs+0x7f/0xe0
do_syscall_64+0x3f/0x90
entry_SYSCALL_64_after_hwframe+0x6e/0xd8
Freed by task 27534:
kasan_save_stack+0x33/0x60
kasan_set_track+0x25/0x30
kasan_save_free_info+0x2b/0x50
____kasan_slab_free+0x126/0x170
slab_free_freelist_hook+0xd0/0x1e0
__kmem_cache_free+0x9d/0x1b0
open_cached_dir+0xff5/0x1240 [cifs]
smb2_query_info_compound+0x5c3/0x6d0 [cifs]
smb2_queryfs+0xc2/0x2c0 [cifs]
This is a race between open_cached_dir() and cached_dir_lease_break()
where the cache entry for the open directory handle receives a lease
break while creating it. And before returning from open_cached_dir(),
we put the last reference of the new @cfid because of
!@cfid->has_lease.
Besides the UAF, while running xfstests a lot of missed lease breaks
have been noticed in tests that run several concurrent statfs(2) calls
on those cached fids
CIFS: VFS: \\w22-root1.gandalf.test No task to wake, unknown frame...
CIFS: VFS: \\w22-root1.gandalf.test Cmd: 18 Err: 0x0 Flags: 0x1...
CIFS: VFS: \\w22-root1.gandalf.test smb buf 00000000715bfe83 len 108
CIFS: VFS: Dump pending requests:
CIFS: VFS: \\w22-root1.gandalf.test No task to wake, unknown frame...
CIFS: VFS: \\w22-root1.gandalf.test Cmd: 18 Err: 0x0 Flags: 0x1...
CIFS: VFS: \\w22-root1.gandalf.test smb buf 000000005aa7316e len 108
...
To fix both, in open_cached_dir() ensure that @cfid->has_lease is set
right before sending out compounded request so that any potential
lease break will be get processed by demultiplex thread while we're
still caching @cfid. And, if open failed for some reason, re-check
@cfid->has_lease to decide whether or not put lease reference. |
In the Linux kernel, the following vulnerability has been resolved:
sched/psi: Fix use-after-free in ep_remove_wait_queue()
If a non-root cgroup gets removed when there is a thread that registered
trigger and is polling on a pressure file within the cgroup, the polling
waitqueue gets freed in the following path:
do_rmdir
cgroup_rmdir
kernfs_drain_open_files
cgroup_file_release
cgroup_pressure_release
psi_trigger_destroy
However, the polling thread still has a reference to the pressure file and
will access the freed waitqueue when the file is closed or upon exit:
fput
ep_eventpoll_release
ep_free
ep_remove_wait_queue
remove_wait_queue
This results in use-after-free as pasted below.
The fundamental problem here is that cgroup_file_release() (and
consequently waitqueue's lifetime) is not tied to the file's real lifetime.
Using wake_up_pollfree() here might be less than ideal, but it is in line
with the comment at commit 42288cb44c4b ("wait: add wake_up_pollfree()")
since the waitqueue's lifetime is not tied to file's one and can be
considered as another special case. While this would be fixable by somehow
making cgroup_file_release() be tied to the fput(), it would require
sizable refactoring at cgroups or higher layer which might be more
justifiable if we identify more cases like this.
BUG: KASAN: use-after-free in _raw_spin_lock_irqsave+0x60/0xc0
Write of size 4 at addr ffff88810e625328 by task a.out/4404
CPU: 19 PID: 4404 Comm: a.out Not tainted 6.2.0-rc6 #38
Hardware name: Amazon EC2 c5a.8xlarge/, BIOS 1.0 10/16/2017
Call Trace:
<TASK>
dump_stack_lvl+0x73/0xa0
print_report+0x16c/0x4e0
kasan_report+0xc3/0xf0
kasan_check_range+0x2d2/0x310
_raw_spin_lock_irqsave+0x60/0xc0
remove_wait_queue+0x1a/0xa0
ep_free+0x12c/0x170
ep_eventpoll_release+0x26/0x30
__fput+0x202/0x400
task_work_run+0x11d/0x170
do_exit+0x495/0x1130
do_group_exit+0x100/0x100
get_signal+0xd67/0xde0
arch_do_signal_or_restart+0x2a/0x2b0
exit_to_user_mode_prepare+0x94/0x100
syscall_exit_to_user_mode+0x20/0x40
do_syscall_64+0x52/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
</TASK>
Allocated by task 4404:
kasan_set_track+0x3d/0x60
__kasan_kmalloc+0x85/0x90
psi_trigger_create+0x113/0x3e0
pressure_write+0x146/0x2e0
cgroup_file_write+0x11c/0x250
kernfs_fop_write_iter+0x186/0x220
vfs_write+0x3d8/0x5c0
ksys_write+0x90/0x110
do_syscall_64+0x43/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Freed by task 4407:
kasan_set_track+0x3d/0x60
kasan_save_free_info+0x27/0x40
____kasan_slab_free+0x11d/0x170
slab_free_freelist_hook+0x87/0x150
__kmem_cache_free+0xcb/0x180
psi_trigger_destroy+0x2e8/0x310
cgroup_file_release+0x4f/0xb0
kernfs_drain_open_files+0x165/0x1f0
kernfs_drain+0x162/0x1a0
__kernfs_remove+0x1fb/0x310
kernfs_remove_by_name_ns+0x95/0xe0
cgroup_addrm_files+0x67f/0x700
cgroup_destroy_locked+0x283/0x3c0
cgroup_rmdir+0x29/0x100
kernfs_iop_rmdir+0xd1/0x140
vfs_rmdir+0xfe/0x240
do_rmdir+0x13d/0x280
__x64_sys_rmdir+0x2c/0x30
do_syscall_64+0x43/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd |
In the Linux kernel, the following vulnerability has been resolved:
calipso: fix memory leak in netlbl_calipso_add_pass()
If IPv6 support is disabled at boot (ipv6.disable=1),
the calipso_init() -> netlbl_calipso_ops_register() function isn't called,
and the netlbl_calipso_ops_get() function always returns NULL.
In this case, the netlbl_calipso_add_pass() function allocates memory
for the doi_def variable but doesn't free it with the calipso_doi_free().
BUG: memory leak
unreferenced object 0xffff888011d68180 (size 64):
comm "syz-executor.1", pid 10746, jiffies 4295410986 (age 17.928s)
hex dump (first 32 bytes):
00 00 00 00 02 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<...>] kmalloc include/linux/slab.h:552 [inline]
[<...>] netlbl_calipso_add_pass net/netlabel/netlabel_calipso.c:76 [inline]
[<...>] netlbl_calipso_add+0x22e/0x4f0 net/netlabel/netlabel_calipso.c:111
[<...>] genl_family_rcv_msg_doit+0x22f/0x330 net/netlink/genetlink.c:739
[<...>] genl_family_rcv_msg net/netlink/genetlink.c:783 [inline]
[<...>] genl_rcv_msg+0x341/0x5a0 net/netlink/genetlink.c:800
[<...>] netlink_rcv_skb+0x14d/0x440 net/netlink/af_netlink.c:2515
[<...>] genl_rcv+0x29/0x40 net/netlink/genetlink.c:811
[<...>] netlink_unicast_kernel net/netlink/af_netlink.c:1313 [inline]
[<...>] netlink_unicast+0x54b/0x800 net/netlink/af_netlink.c:1339
[<...>] netlink_sendmsg+0x90a/0xdf0 net/netlink/af_netlink.c:1934
[<...>] sock_sendmsg_nosec net/socket.c:651 [inline]
[<...>] sock_sendmsg+0x157/0x190 net/socket.c:671
[<...>] ____sys_sendmsg+0x712/0x870 net/socket.c:2342
[<...>] ___sys_sendmsg+0xf8/0x170 net/socket.c:2396
[<...>] __sys_sendmsg+0xea/0x1b0 net/socket.c:2429
[<...>] do_syscall_64+0x30/0x40 arch/x86/entry/common.c:46
[<...>] entry_SYSCALL_64_after_hwframe+0x61/0xc6
Found by InfoTeCS on behalf of Linux Verification Center
(linuxtesting.org) with Syzkaller
[PM: merged via the LSM tree at Jakub Kicinski request] |
In the Linux kernel, the following vulnerability has been resolved:
powerpc/powernv: Add a null pointer check in opal_powercap_init()
kasprintf() returns a pointer to dynamically allocated memory
which can be NULL upon failure. |
In the Linux kernel, the following vulnerability has been resolved:
of: Fix double free in of_parse_phandle_with_args_map
In of_parse_phandle_with_args_map() the inner loop that
iterates through the map entries calls of_node_put(new)
to free the reference acquired by the previous iteration
of the inner loop. This assumes that the value of "new" is
NULL on the first iteration of the inner loop.
Make sure that this is true in all iterations of the outer
loop by setting "new" to NULL after its value is assigned to "cur".
Extend the unittest to detect the double free and add an additional
test case that actually triggers this path. |
In the Linux kernel, the following vulnerability has been resolved:
ALSA: scarlett2: Add clamp() in scarlett2_mixer_ctl_put()
Ensure the value passed to scarlett2_mixer_ctl_put() is between 0 and
SCARLETT2_MIXER_MAX_VALUE so we don't attempt to access outside
scarlett2_mixer_values[]. |
In the Linux kernel, the following vulnerability has been resolved:
pipe: wakeup wr_wait after setting max_usage
Commit c73be61cede5 ("pipe: Add general notification queue support") a
regression was introduced that would lock up resized pipes under certain
conditions. See the reproducer in [1].
The commit resizing the pipe ring size was moved to a different
function, doing that moved the wakeup for pipe->wr_wait before actually
raising pipe->max_usage. If a pipe was full before the resize occured it
would result in the wakeup never actually triggering pipe_write.
Set @max_usage and @nr_accounted before waking writers if this isn't a
watch queue.
[Christian Brauner <brauner@kernel.org>: rewrite to account for watch queues] |
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: fix a potential double-free in fs_any_create_groups
When kcalloc() for ft->g succeeds but kvzalloc() for in fails,
fs_any_create_groups() will free ft->g. However, its caller
fs_any_create_table() will free ft->g again through calling
mlx5e_destroy_flow_table(), which will lead to a double-free.
Fix this by setting ft->g to NULL in fs_any_create_groups(). |
In the Linux kernel, the following vulnerability has been resolved:
ASoC: SOF: amd: Fix memory leak in amd_sof_acp_probe()
Driver uses kasprintf() to initialize fw_{code,data}_bin members of
struct acp_dev_data, but kfree() is never called to deallocate the
memory, which results in a memory leak.
Fix the issue by switching to devm_kasprintf(). Additionally, ensure the
allocation was successful by checking the pointer validity. |