CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
idpf: fix memory leaks and crashes while performing a soft reset
The second tagged commit introduced a UAF, as it removed restoring
q_vector->vport pointers after reinitializating the structures.
This is due to that all queue allocation functions are performed here
with the new temporary vport structure and those functions rewrite
the backpointers to the vport. Then, this new struct is freed and
the pointers start leading to nowhere.
But generally speaking, the current logic is very fragile. It claims
to be more reliable when the system is low on memory, but in fact, it
consumes two times more memory as at the moment of running this
function, there are two vports allocated with their queues and vectors.
Moreover, it claims to prevent the driver from running into "bad state",
but in fact, any error during the rebuild leaves the old vport in the
partially allocated state.
Finally, if the interface is down when the function is called, it always
allocates a new queue set, but when the user decides to enable the
interface later on, vport_open() allocates them once again, IOW there's
a clear memory leak here.
Just don't allocate a new queue set when performing a reset, that solves
crashes and memory leaks. Readd the old queue number and reopen the
interface on rollback - that solves limbo states when the device is left
disabled and/or without HW queues enabled. |
In the Linux kernel, the following vulnerability has been resolved:
kcm: Serialise kcm_sendmsg() for the same socket.
syzkaller reported UAF in kcm_release(). [0]
The scenario is
1. Thread A builds a skb with MSG_MORE and sets kcm->seq_skb.
2. Thread A resumes building skb from kcm->seq_skb but is blocked
by sk_stream_wait_memory()
3. Thread B calls sendmsg() concurrently, finishes building kcm->seq_skb
and puts the skb to the write queue
4. Thread A faces an error and finally frees skb that is already in the
write queue
5. kcm_release() does double-free the skb in the write queue
When a thread is building a MSG_MORE skb, another thread must not touch it.
Let's add a per-sk mutex and serialise kcm_sendmsg().
[0]:
BUG: KASAN: slab-use-after-free in __skb_unlink include/linux/skbuff.h:2366 [inline]
BUG: KASAN: slab-use-after-free in __skb_dequeue include/linux/skbuff.h:2385 [inline]
BUG: KASAN: slab-use-after-free in __skb_queue_purge_reason include/linux/skbuff.h:3175 [inline]
BUG: KASAN: slab-use-after-free in __skb_queue_purge include/linux/skbuff.h:3181 [inline]
BUG: KASAN: slab-use-after-free in kcm_release+0x170/0x4c8 net/kcm/kcmsock.c:1691
Read of size 8 at addr ffff0000ced0fc80 by task syz-executor329/6167
CPU: 1 PID: 6167 Comm: syz-executor329 Tainted: G B 6.8.0-rc5-syzkaller-g9abbc24128bc #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024
Call trace:
dump_backtrace+0x1b8/0x1e4 arch/arm64/kernel/stacktrace.c:291
show_stack+0x2c/0x3c arch/arm64/kernel/stacktrace.c:298
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xd0/0x124 lib/dump_stack.c:106
print_address_description mm/kasan/report.c:377 [inline]
print_report+0x178/0x518 mm/kasan/report.c:488
kasan_report+0xd8/0x138 mm/kasan/report.c:601
__asan_report_load8_noabort+0x20/0x2c mm/kasan/report_generic.c:381
__skb_unlink include/linux/skbuff.h:2366 [inline]
__skb_dequeue include/linux/skbuff.h:2385 [inline]
__skb_queue_purge_reason include/linux/skbuff.h:3175 [inline]
__skb_queue_purge include/linux/skbuff.h:3181 [inline]
kcm_release+0x170/0x4c8 net/kcm/kcmsock.c:1691
__sock_release net/socket.c:659 [inline]
sock_close+0xa4/0x1e8 net/socket.c:1421
__fput+0x30c/0x738 fs/file_table.c:376
____fput+0x20/0x30 fs/file_table.c:404
task_work_run+0x230/0x2e0 kernel/task_work.c:180
exit_task_work include/linux/task_work.h:38 [inline]
do_exit+0x618/0x1f64 kernel/exit.c:871
do_group_exit+0x194/0x22c kernel/exit.c:1020
get_signal+0x1500/0x15ec kernel/signal.c:2893
do_signal+0x23c/0x3b44 arch/arm64/kernel/signal.c:1249
do_notify_resume+0x74/0x1f4 arch/arm64/kernel/entry-common.c:148
exit_to_user_mode_prepare arch/arm64/kernel/entry-common.c:169 [inline]
exit_to_user_mode arch/arm64/kernel/entry-common.c:178 [inline]
el0_svc+0xac/0x168 arch/arm64/kernel/entry-common.c:713
el0t_64_sync_handler+0x84/0xfc arch/arm64/kernel/entry-common.c:730
el0t_64_sync+0x190/0x194 arch/arm64/kernel/entry.S:598
Allocated by task 6166:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x40/0x78 mm/kasan/common.c:68
kasan_save_alloc_info+0x70/0x84 mm/kasan/generic.c:626
unpoison_slab_object mm/kasan/common.c:314 [inline]
__kasan_slab_alloc+0x74/0x8c mm/kasan/common.c:340
kasan_slab_alloc include/linux/kasan.h:201 [inline]
slab_post_alloc_hook mm/slub.c:3813 [inline]
slab_alloc_node mm/slub.c:3860 [inline]
kmem_cache_alloc_node+0x204/0x4c0 mm/slub.c:3903
__alloc_skb+0x19c/0x3d8 net/core/skbuff.c:641
alloc_skb include/linux/skbuff.h:1296 [inline]
kcm_sendmsg+0x1d3c/0x2124 net/kcm/kcmsock.c:783
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg net/socket.c:745 [inline]
sock_sendmsg+0x220/0x2c0 net/socket.c:768
splice_to_socket+0x7cc/0xd58 fs/splice.c:889
do_splice_from fs/splice.c:941 [inline]
direct_splice_actor+0xec/0x1d8 fs/splice.c:1164
splice_direct_to_actor+0x438/0xa0c fs/splice.c:1108
do_splice_direct_actor
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
net: bridge: mcast: wait for previous gc cycles when removing port
syzbot hit a use-after-free[1] which is caused because the bridge doesn't
make sure that all previous garbage has been collected when removing a
port. What happens is:
CPU 1 CPU 2
start gc cycle remove port
acquire gc lock first
wait for lock
call br_multicasg_gc() directly
acquire lock now but free port
the port can be freed
while grp timers still
running
Make sure all previous gc cycles have finished by using flush_work before
freeing the port.
[1]
BUG: KASAN: slab-use-after-free in br_multicast_port_group_expired+0x4c0/0x550 net/bridge/br_multicast.c:861
Read of size 8 at addr ffff888071d6d000 by task syz.5.1232/9699
CPU: 1 PID: 9699 Comm: syz.5.1232 Not tainted 6.10.0-rc5-syzkaller-00021-g24ca36a562d6 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 06/07/2024
Call Trace:
<IRQ>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:114
print_address_description mm/kasan/report.c:377 [inline]
print_report+0xc3/0x620 mm/kasan/report.c:488
kasan_report+0xd9/0x110 mm/kasan/report.c:601
br_multicast_port_group_expired+0x4c0/0x550 net/bridge/br_multicast.c:861
call_timer_fn+0x1a3/0x610 kernel/time/timer.c:1792
expire_timers kernel/time/timer.c:1843 [inline]
__run_timers+0x74b/0xaf0 kernel/time/timer.c:2417
__run_timer_base kernel/time/timer.c:2428 [inline]
__run_timer_base kernel/time/timer.c:2421 [inline]
run_timer_base+0x111/0x190 kernel/time/timer.c:2437 |
In the Linux kernel, the following vulnerability has been resolved:
idpf: fix UAFs when destroying the queues
The second tagged commit started sometimes (very rarely, but possible)
throwing WARNs from
net/core/page_pool.c:page_pool_disable_direct_recycling().
Turned out idpf frees interrupt vectors with embedded NAPIs *before*
freeing the queues making page_pools' NAPI pointers lead to freed
memory before these pools are destroyed by libeth.
It's not clear whether there are other accesses to the freed vectors
when destroying the queues, but anyway, we usually free queue/interrupt
vectors only when the queues are destroyed and the NAPIs are guaranteed
to not be referenced anywhere.
Invert the allocation and freeing logic making queue/interrupt vectors
be allocated first and freed last. Vectors don't require queues to be
present, so this is safe. Additionally, this change allows to remove
that useless queue->q_vector pointer cleanup, as vectors are still
valid when freeing the queues (+ both are freed within one function,
so it's not clear why nullify the pointers at all). |
In the Linux kernel, the following vulnerability has been resolved:
media: xc2028: avoid use-after-free in load_firmware_cb()
syzkaller reported use-after-free in load_firmware_cb() [1].
The reason is because the module allocated a struct tuner in tuner_probe(),
and then the module initialization failed, the struct tuner was released.
A worker which created during module initialization accesses this struct
tuner later, it caused use-after-free.
The process is as follows:
task-6504 worker_thread
tuner_probe <= alloc dvb_frontend [2]
...
request_firmware_nowait <= create a worker
...
tuner_remove <= free dvb_frontend
...
request_firmware_work_func <= the firmware is ready
load_firmware_cb <= but now the dvb_frontend has been freed
To fix the issue, check the dvd_frontend in load_firmware_cb(), if it is
null, report a warning and just return.
[1]:
==================================================================
BUG: KASAN: use-after-free in load_firmware_cb+0x1310/0x17a0
Read of size 8 at addr ffff8000d7ca2308 by task kworker/2:3/6504
Call trace:
load_firmware_cb+0x1310/0x17a0
request_firmware_work_func+0x128/0x220
process_one_work+0x770/0x1824
worker_thread+0x488/0xea0
kthread+0x300/0x430
ret_from_fork+0x10/0x20
Allocated by task 6504:
kzalloc
tuner_probe+0xb0/0x1430
i2c_device_probe+0x92c/0xaf0
really_probe+0x678/0xcd0
driver_probe_device+0x280/0x370
__device_attach_driver+0x220/0x330
bus_for_each_drv+0x134/0x1c0
__device_attach+0x1f4/0x410
device_initial_probe+0x20/0x30
bus_probe_device+0x184/0x200
device_add+0x924/0x12c0
device_register+0x24/0x30
i2c_new_device+0x4e0/0xc44
v4l2_i2c_new_subdev_board+0xbc/0x290
v4l2_i2c_new_subdev+0xc8/0x104
em28xx_v4l2_init+0x1dd0/0x3770
Freed by task 6504:
kfree+0x238/0x4e4
tuner_remove+0x144/0x1c0
i2c_device_remove+0xc8/0x290
__device_release_driver+0x314/0x5fc
device_release_driver+0x30/0x44
bus_remove_device+0x244/0x490
device_del+0x350/0x900
device_unregister+0x28/0xd0
i2c_unregister_device+0x174/0x1d0
v4l2_device_unregister+0x224/0x380
em28xx_v4l2_init+0x1d90/0x3770
The buggy address belongs to the object at ffff8000d7ca2000
which belongs to the cache kmalloc-2k of size 2048
The buggy address is located 776 bytes inside of
2048-byte region [ffff8000d7ca2000, ffff8000d7ca2800)
The buggy address belongs to the page:
page:ffff7fe00035f280 count:1 mapcount:0 mapping:ffff8000c001f000 index:0x0
flags: 0x7ff800000000100(slab)
raw: 07ff800000000100 ffff7fe00049d880 0000000300000003 ffff8000c001f000
raw: 0000000000000000 0000000080100010 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff8000d7ca2200: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff8000d7ca2280: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
>ffff8000d7ca2300: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff8000d7ca2380: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff8000d7ca2400: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
==================================================================
[2]
Actually, it is allocated for struct tuner, and dvb_frontend is inside. |
In the Linux kernel, the following vulnerability has been resolved:
tracing: Have format file honor EVENT_FILE_FL_FREED
When eventfs was introduced, special care had to be done to coordinate the
freeing of the file meta data with the files that are exposed to user
space. The file meta data would have a ref count that is set when the file
is created and would be decremented and freed after the last user that
opened the file closed it. When the file meta data was to be freed, it
would set a flag (EVENT_FILE_FL_FREED) to denote that the file is freed,
and any new references made (like new opens or reads) would fail as it is
marked freed. This allowed other meta data to be freed after this flag was
set (under the event_mutex).
All the files that were dynamically created in the events directory had a
pointer to the file meta data and would call event_release() when the last
reference to the user space file was closed. This would be the time that it
is safe to free the file meta data.
A shortcut was made for the "format" file. It's i_private would point to
the "call" entry directly and not point to the file's meta data. This is
because all format files are the same for the same "call", so it was
thought there was no reason to differentiate them. The other files
maintain state (like the "enable", "trigger", etc). But this meant if the
file were to disappear, the "format" file would be unaware of it.
This caused a race that could be trigger via the user_events test (that
would create dynamic events and free them), and running a loop that would
read the user_events format files:
In one console run:
# cd tools/testing/selftests/user_events
# while true; do ./ftrace_test; done
And in another console run:
# cd /sys/kernel/tracing/
# while true; do cat events/user_events/__test_event/format; done 2>/dev/null
With KASAN memory checking, it would trigger a use-after-free bug report
(which was a real bug). This was because the format file was not checking
the file's meta data flag "EVENT_FILE_FL_FREED", so it would access the
event that the file meta data pointed to after the event was freed.
After inspection, there are other locations that were found to not check
the EVENT_FILE_FL_FREED flag when accessing the trace_event_file. Add a
new helper function: event_file_file() that will make sure that the
event_mutex is held, and will return NULL if the trace_event_file has the
EVENT_FILE_FL_FREED flag set. Have the first reference of the struct file
pointer use event_file_file() and check for NULL. Later uses can still use
the event_file_data() helper function if the event_mutex is still held and
was not released since the event_file_file() call. |
In the Linux kernel, the following vulnerability has been resolved:
mm: list_lru: fix UAF for memory cgroup
The mem_cgroup_from_slab_obj() is supposed to be called under rcu lock or
cgroup_mutex or others which could prevent returned memcg from being
freed. Fix it by adding missing rcu read lock.
Found by code inspection.
[songmuchun@bytedance.com: only grab rcu lock when necessary, per Vlastimil] |
In the Linux kernel, the following vulnerability has been resolved:
usb: vhci-hcd: Do not drop references before new references are gained
At a few places the driver carries stale pointers
to references that can still be used. Make sure that does not happen.
This strictly speaking closes ZDI-CAN-22273, though there may be
similar races in the driver. |
In the Linux kernel, the following vulnerability has been resolved:
cgroup/cpuset: Prevent UAF in proc_cpuset_show()
An UAF can happen when /proc/cpuset is read as reported in [1].
This can be reproduced by the following methods:
1.add an mdelay(1000) before acquiring the cgroup_lock In the
cgroup_path_ns function.
2.$cat /proc/<pid>/cpuset repeatly.
3.$mount -t cgroup -o cpuset cpuset /sys/fs/cgroup/cpuset/
$umount /sys/fs/cgroup/cpuset/ repeatly.
The race that cause this bug can be shown as below:
(umount) | (cat /proc/<pid>/cpuset)
css_release | proc_cpuset_show
css_release_work_fn | css = task_get_css(tsk, cpuset_cgrp_id);
css_free_rwork_fn | cgroup_path_ns(css->cgroup, ...);
cgroup_destroy_root | mutex_lock(&cgroup_mutex);
rebind_subsystems |
cgroup_free_root |
| // cgrp was freed, UAF
| cgroup_path_ns_locked(cgrp,..);
When the cpuset is initialized, the root node top_cpuset.css.cgrp
will point to &cgrp_dfl_root.cgrp. In cgroup v1, the mount operation will
allocate cgroup_root, and top_cpuset.css.cgrp will point to the allocated
&cgroup_root.cgrp. When the umount operation is executed,
top_cpuset.css.cgrp will be rebound to &cgrp_dfl_root.cgrp.
The problem is that when rebinding to cgrp_dfl_root, there are cases
where the cgroup_root allocated by setting up the root for cgroup v1
is cached. This could lead to a Use-After-Free (UAF) if it is
subsequently freed. The descendant cgroups of cgroup v1 can only be
freed after the css is released. However, the css of the root will never
be released, yet the cgroup_root should be freed when it is unmounted.
This means that obtaining a reference to the css of the root does
not guarantee that css.cgrp->root will not be freed.
Fix this problem by using rcu_read_lock in proc_cpuset_show().
As cgroup_root is kfree_rcu after commit d23b5c577715
("cgroup: Make operations on the cgroup root_list RCU safe"),
css->cgroup won't be freed during the critical section.
To call cgroup_path_ns_locked, css_set_lock is needed, so it is safe to
replace task_get_css with task_css.
[1] https://syzkaller.appspot.com/bug?extid=9b1ff7be974a403aa4cd |
In the Linux kernel, the following vulnerability has been resolved:
leds: trigger: Unregister sysfs attributes before calling deactivate()
Triggers which have trigger specific sysfs attributes typically store
related data in trigger-data allocated by the activate() callback and
freed by the deactivate() callback.
Calling device_remove_groups() after calling deactivate() leaves a window
where the sysfs attributes show/store functions could be called after
deactivation and then operate on the just freed trigger-data.
Move the device_remove_groups() call to before deactivate() to close
this race window.
This also makes the deactivation path properly do things in reverse order
of the activation path which calls the activate() callback before calling
device_add_groups(). |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix extent map use-after-free when adding pages to compressed bio
At add_ra_bio_pages() we are accessing the extent map to calculate
'add_size' after we dropped our reference on the extent map, resulting
in a use-after-free. Fix this by computing 'add_size' before dropping our
extent map reference. |
In the Linux kernel, the following vulnerability has been resolved:
media: venus: fix use after free in vdec_close
There appears to be a possible use after free with vdec_close().
The firmware will add buffer release work to the work queue through
HFI callbacks as a normal part of decoding. Randomly closing the
decoder device from userspace during normal decoding can incur
a read after free for inst.
Fix it by cancelling the work in vdec_close. |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/iwcm: Fix a use-after-free related to destroying CM IDs
iw_conn_req_handler() associates a new struct rdma_id_private (conn_id) with
an existing struct iw_cm_id (cm_id) as follows:
conn_id->cm_id.iw = cm_id;
cm_id->context = conn_id;
cm_id->cm_handler = cma_iw_handler;
rdma_destroy_id() frees both the cm_id and the struct rdma_id_private. Make
sure that cm_work_handler() does not trigger a use-after-free by only
freeing of the struct rdma_id_private after all pending work has finished. |
In the Linux kernel, the following vulnerability has been resolved:
mISDN: Fix a use after free in hfcmulti_tx()
Don't dereference *sp after calling dev_kfree_skb(*sp). |
In the Linux kernel, the following vulnerability has been resolved:
net/iucv: fix use after free in iucv_sock_close()
iucv_sever_path() is called from process context and from bh context.
iucv->path is used as indicator whether somebody else is taking care of
severing the path (or it is already removed / never existed).
This needs to be done with atomic compare and swap, otherwise there is a
small window where iucv_sock_close() will try to work with a path that has
already been severed and freed by iucv_callback_connrej() called by
iucv_tasklet_fn().
Example:
[452744.123844] Call Trace:
[452744.123845] ([<0000001e87f03880>] 0x1e87f03880)
[452744.123966] [<00000000d593001e>] iucv_path_sever+0x96/0x138
[452744.124330] [<000003ff801ddbca>] iucv_sever_path+0xc2/0xd0 [af_iucv]
[452744.124336] [<000003ff801e01b6>] iucv_sock_close+0xa6/0x310 [af_iucv]
[452744.124341] [<000003ff801e08cc>] iucv_sock_release+0x3c/0xd0 [af_iucv]
[452744.124345] [<00000000d574794e>] __sock_release+0x5e/0xe8
[452744.124815] [<00000000d5747a0c>] sock_close+0x34/0x48
[452744.124820] [<00000000d5421642>] __fput+0xba/0x268
[452744.124826] [<00000000d51b382c>] task_work_run+0xbc/0xf0
[452744.124832] [<00000000d5145710>] do_notify_resume+0x88/0x90
[452744.124841] [<00000000d5978096>] system_call+0xe2/0x2c8
[452744.125319] Last Breaking-Event-Address:
[452744.125321] [<00000000d5930018>] iucv_path_sever+0x90/0x138
[452744.125324]
[452744.125325] Kernel panic - not syncing: Fatal exception in interrupt
Note that bh_lock_sock() is not serializing the tasklet context against
process context, because the check for sock_owned_by_user() and
corresponding handling is missing.
Ideas for a future clean-up patch:
A) Correct usage of bh_lock_sock() in tasklet context, as described in
Re-enqueue, if needed. This may require adding return values to the
tasklet functions and thus changes to all users of iucv.
B) Change iucv tasklet into worker and use only lock_sock() in af_iucv. |
In the Linux kernel, the following vulnerability has been resolved:
libceph: fix race between delayed_work() and ceph_monc_stop()
The way the delayed work is handled in ceph_monc_stop() is prone to
races with mon_fault() and possibly also finish_hunting(). Both of
these can requeue the delayed work which wouldn't be canceled by any of
the following code in case that happens after cancel_delayed_work_sync()
runs -- __close_session() doesn't mess with the delayed work in order
to avoid interfering with the hunting interval logic. This part was
missed in commit b5d91704f53e ("libceph: behave in mon_fault() if
cur_mon < 0") and use-after-free can still ensue on monc and objects
that hang off of it, with monc->auth and monc->monmap being
particularly susceptible to quickly being reused.
To fix this:
- clear monc->cur_mon and monc->hunting as part of closing the session
in ceph_monc_stop()
- bail from delayed_work() if monc->cur_mon is cleared, similar to how
it's done in mon_fault() and finish_hunting() (based on monc->hunting)
- call cancel_delayed_work_sync() after the session is closed |
In the Linux kernel, the following vulnerability has been resolved:
net: rswitch: Avoid use-after-free in rswitch_poll()
The use-after-free is actually in rswitch_tx_free(), which is inlined in
rswitch_poll(). Since `skb` and `gq->skbs[gq->dirty]` are in fact the
same pointer, the skb is first freed using dev_kfree_skb_any(), then the
value in skb->len is used to update the interface statistics.
Let's move around the instructions to use skb->len before the skb is
freed.
This bug is trivial to reproduce using KFENCE. It will trigger a splat
every few packets. A simple ARP request or ICMP echo request is enough. |
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: add missing check for inode numbers on directory entries
Syzbot reported that mounting and unmounting a specific pattern of
corrupted nilfs2 filesystem images causes a use-after-free of metadata
file inodes, which triggers a kernel bug in lru_add_fn().
As Jan Kara pointed out, this is because the link count of a metadata file
gets corrupted to 0, and nilfs_evict_inode(), which is called from iput(),
tries to delete that inode (ifile inode in this case).
The inconsistency occurs because directories containing the inode numbers
of these metadata files that should not be visible in the namespace are
read without checking.
Fix this issue by treating the inode numbers of these internal files as
errors in the sanity check helper when reading directory folios/pages.
Also thanks to Hillf Danton and Matthew Wilcox for their initial mm-layer
analysis. |
In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix remap of arena.
The bpf arena logic didn't account for mremap operation. Add a refcnt for
multiple mmap events to prevent use-after-free in arena_vm_close. |
In the Linux kernel, the following vulnerability has been resolved:
mlxsw: spectrum_buffers: Fix memory corruptions on Spectrum-4 systems
The following two shared buffer operations make use of the Shared Buffer
Status Register (SBSR):
# devlink sb occupancy snapshot pci/0000:01:00.0
# devlink sb occupancy clearmax pci/0000:01:00.0
The register has two masks of 256 bits to denote on which ingress /
egress ports the register should operate on. Spectrum-4 has more than
256 ports, so the register was extended by cited commit with a new
'port_page' field.
However, when filling the register's payload, the driver specifies the
ports as absolute numbers and not relative to the first port of the port
page, resulting in memory corruptions [1].
Fix by specifying the ports relative to the first port of the port page.
[1]
BUG: KASAN: slab-use-after-free in mlxsw_sp_sb_occ_snapshot+0xb6d/0xbc0
Read of size 1 at addr ffff8881068cb00f by task devlink/1566
[...]
Call Trace:
<TASK>
dump_stack_lvl+0xc6/0x120
print_report+0xce/0x670
kasan_report+0xd7/0x110
mlxsw_sp_sb_occ_snapshot+0xb6d/0xbc0
mlxsw_devlink_sb_occ_snapshot+0x75/0xb0
devlink_nl_sb_occ_snapshot_doit+0x1f9/0x2a0
genl_family_rcv_msg_doit+0x20c/0x300
genl_rcv_msg+0x567/0x800
netlink_rcv_skb+0x170/0x450
genl_rcv+0x2d/0x40
netlink_unicast+0x547/0x830
netlink_sendmsg+0x8d4/0xdb0
__sys_sendto+0x49b/0x510
__x64_sys_sendto+0xe5/0x1c0
do_syscall_64+0xc1/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
[...]
Allocated by task 1:
kasan_save_stack+0x33/0x60
kasan_save_track+0x14/0x30
__kasan_kmalloc+0x8f/0xa0
copy_verifier_state+0xbc2/0xfb0
do_check_common+0x2c51/0xc7e0
bpf_check+0x5107/0x9960
bpf_prog_load+0xf0e/0x2690
__sys_bpf+0x1a61/0x49d0
__x64_sys_bpf+0x7d/0xc0
do_syscall_64+0xc1/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Freed by task 1:
kasan_save_stack+0x33/0x60
kasan_save_track+0x14/0x30
kasan_save_free_info+0x3b/0x60
poison_slab_object+0x109/0x170
__kasan_slab_free+0x14/0x30
kfree+0xca/0x2b0
free_verifier_state+0xce/0x270
do_check_common+0x4828/0xc7e0
bpf_check+0x5107/0x9960
bpf_prog_load+0xf0e/0x2690
__sys_bpf+0x1a61/0x49d0
__x64_sys_bpf+0x7d/0xc0
do_syscall_64+0xc1/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f |