CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
A stored Cross-site scripting (XSS) vulnerability exists in the Customer Management Module of LionCoders SalePro POS 5.4.8. An authenticated attacker can inject arbitrary web script or HTML via the 'Customer Name' parameter when creating or editing customer profiles. This malicious input is improperly sanitized before storage and subsequent rendering, leading to script execution in the browsers of users who view the affected customer details. |
vLLM is an inference and serving engine for large language models (LLMs). Before version 0.11.0rc2, the API key support in vLLM performs validation using a method that was vulnerable to a timing attack. API key validation uses a string comparison that takes longer the more characters the provided API key gets correct. Data analysis across many attempts could allow an attacker to determine when it finds the next correct character in the key sequence. Deployments relying on vLLM's built-in API key validation are vulnerable to authentication bypass using this technique. Version 0.11.0rc2 fixes the issue. |
Components of the YoSmart YoLink ecosystem through 2025-10-02 leverage unencrypted MQTT to communicate over the internet. An attacker with the ability to monitor network traffic could therefore obtain sensitive information or tamper with the traffic to control affected devices. This affects YoLink Hub 0382, YoLink Mobile Application 1.40.41, and YoLink MQTT Broker. |
The YoSmart YoLink application through 2025-10-02 has session tokens with unexpectedly long lifetimes. |
In the Linux kernel, the following vulnerability has been resolved:
bpf, arm64: Fixed a BTI error on returning to patched function
When BPF_TRAMP_F_CALL_ORIG is set, BPF trampoline uses BLR to jump
back to the instruction next to call site to call the patched function.
For BTI-enabled kernel, the instruction next to call site is usually
PACIASP, in this case, it's safe to jump back with BLR. But when
the call site is not followed by a PACIASP or bti, a BTI exception
is triggered.
Here is a fault log:
Unhandled 64-bit el1h sync exception on CPU0, ESR 0x0000000034000002 -- BTI
CPU: 0 PID: 263 Comm: test_progs Tainted: GF
Hardware name: linux,dummy-virt (DT)
pstate: 40400805 (nZcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=-c)
pc : bpf_fentry_test1+0xc/0x30
lr : bpf_trampoline_6442573892_0+0x48/0x1000
sp : ffff80000c0c3a50
x29: ffff80000c0c3a90 x28: ffff0000c2e6c080 x27: 0000000000000000
x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000050
x23: 0000000000000000 x22: 0000ffffcfd2a7f0 x21: 000000000000000a
x20: 0000ffffcfd2a7f0 x19: 0000000000000000 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000 x15: 0000ffffcfd2a7f0
x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000
x11: 0000000000000000 x10: ffff80000914f5e4 x9 : ffff8000082a1528
x8 : 0000000000000000 x7 : 0000000000000000 x6 : 0101010101010101
x5 : 0000000000000000 x4 : 00000000fffffff2 x3 : 0000000000000001
x2 : ffff8001f4b82000 x1 : 0000000000000000 x0 : 0000000000000001
Kernel panic - not syncing: Unhandled exception
CPU: 0 PID: 263 Comm: test_progs Tainted: GF
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace+0xec/0x144
show_stack+0x24/0x7c
dump_stack_lvl+0x8c/0xb8
dump_stack+0x18/0x34
panic+0x1cc/0x3ec
__el0_error_handler_common+0x0/0x130
el1h_64_sync_handler+0x60/0xd0
el1h_64_sync+0x78/0x7c
bpf_fentry_test1+0xc/0x30
bpf_fentry_test1+0xc/0x30
bpf_prog_test_run_tracing+0xdc/0x2a0
__sys_bpf+0x438/0x22a0
__arm64_sys_bpf+0x30/0x54
invoke_syscall+0x78/0x110
el0_svc_common.constprop.0+0x6c/0x1d0
do_el0_svc+0x38/0xe0
el0_svc+0x30/0xd0
el0t_64_sync_handler+0x1ac/0x1b0
el0t_64_sync+0x1a0/0x1a4
Kernel Offset: disabled
CPU features: 0x0000,00034c24,f994fdab
Memory Limit: none
And the instruction next to call site of bpf_fentry_test1 is ADD,
not PACIASP:
<bpf_fentry_test1>:
bti c
nop
nop
add w0, w0, #0x1
paciasp
For BPF prog, JIT always puts a PACIASP after call site for BTI-enabled
kernel, so there is no problem. To fix it, replace BLR with RET to bypass
the branch target check. |
python-socketio is a Python implementation of the Socket.IO realtime client and server. A remote code execution vulnerability in python-socketio versions prior to 5.14.0 allows attackers to execute arbitrary Python code through malicious pickle deserialization in multi-server deployments on which the attacker previously gained access to the message queue that the servers use for internal communications. When Socket.IO servers are configured to use a message queue backend such as Redis for inter-server communication, messages sent between the servers are encoded using the `pickle` Python module. When a server receives one of these messages through the message queue, it assumes it is trusted and immediately deserializes it. The vulnerability stems from deserialization of messages using Python's `pickle.loads()` function. Having previously obtained access to the message queue, the attacker can send a python-socketio server a crafted pickle payload that executes arbitrary code during deserialization via Python's `__reduce__` method. This vulnerability only affects deployments with a compromised message queue. The attack can lead to the attacker executing random code in the context of, and with the privileges of a Socket.IO server process. Single-server systems that do not use a message queue, and multi-server systems with a secure message queue are not vulnerable. In addition to making sure standard security practices are followed in the deployment of the message queue, users of the python-socketio package can upgrade to version 5.14.0 or newer, which remove the `pickle` module and use the much safer JSON encoding for inter-server messaging. |
The Featured Image from URL (FIFU) plugin for WordPress is vulnerable to Stored Cross-Site Scripting via a post's Featured Image custom fields in all versions up to, and including, 5.2.7 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with Contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. NOTE: This vulnerability was partially fixed in version 5.2.2. |
A flaw has been found in ILIAS up to 8.23/9.13/10.1. Affected by this issue is the function unserialize of the component Test Import. This manipulation causes deserialization. It is possible to initiate the attack remotely. Upgrading to version 8.24, 9.14 and 10.2 can resolve this issue. Upgrading the affected component is advised. |
A vulnerability was detected in jakowenko double-take up to 1.13.1. The impacted element is the function app.use of the file api/src/app.js of the component API. The manipulation of the argument X-Ingress-Path results in cross site scripting. The attack can be executed remotely. Upgrading to version 1.13.2 is sufficient to resolve this issue. The patch is identified as e11de9dd6b4ea6b7ec9a5607a920d48961e9fa50. The affected component should be upgraded. |
The YoSmart YoLink MQTT broker through 2025-10-02 does not enforce sufficient authorization controls to prevent cross-account attacks, allowing an attacker to remotely operate affected devices if the attacker obtains the associated device IDs. Because YoLink device IDs are predictable, an attacker can exploit this to gain full control over any other YoLink user's devices. |
Bucket is a MediaWiki extension to store and retrieve structured data on articles. Prior to version 1.0.0, infinite recursion can occur if a user queries a bucket using the `!=` comparator. This will result in PHP's call stack limit exceeding, and/or increased memory consumption, potentially leading to a denial of service. Version 1.0.0 contains a patch for the issue. |
In the Linux kernel, the following vulnerability has been resolved:
media: i2c: hi846: Fix memory leak in hi846_parse_dt()
If any of the checks related to the supported link frequencies fail, then
the V4L2 fwnode resources don't get released before returning, which leads
to a memleak. Fix this by properly freeing the V4L2 fwnode data in a
designated label. |
In the Linux kernel, the following vulnerability has been resolved:
dm thin: Fix ABBA deadlock between shrink_slab and dm_pool_abort_metadata
Following concurrent processes:
P1(drop cache) P2(kworker)
drop_caches_sysctl_handler
drop_slab
shrink_slab
down_read(&shrinker_rwsem) - LOCK A
do_shrink_slab
super_cache_scan
prune_icache_sb
dispose_list
evict
ext4_evict_inode
ext4_clear_inode
ext4_discard_preallocations
ext4_mb_load_buddy_gfp
ext4_mb_init_cache
ext4_read_block_bitmap_nowait
ext4_read_bh_nowait
submit_bh
dm_submit_bio
do_worker
process_deferred_bios
commit
metadata_operation_failed
dm_pool_abort_metadata
down_write(&pmd->root_lock) - LOCK B
__destroy_persistent_data_objects
dm_block_manager_destroy
dm_bufio_client_destroy
unregister_shrinker
down_write(&shrinker_rwsem)
thin_map |
dm_thin_find_block ↓
down_read(&pmd->root_lock) --> ABBA deadlock
, which triggers hung task:
[ 76.974820] INFO: task kworker/u4:3:63 blocked for more than 15 seconds.
[ 76.976019] Not tainted 6.1.0-rc4-00011-g8f17dd350364-dirty #910
[ 76.978521] task:kworker/u4:3 state:D stack:0 pid:63 ppid:2
[ 76.978534] Workqueue: dm-thin do_worker
[ 76.978552] Call Trace:
[ 76.978564] __schedule+0x6ba/0x10f0
[ 76.978582] schedule+0x9d/0x1e0
[ 76.978588] rwsem_down_write_slowpath+0x587/0xdf0
[ 76.978600] down_write+0xec/0x110
[ 76.978607] unregister_shrinker+0x2c/0xf0
[ 76.978616] dm_bufio_client_destroy+0x116/0x3d0
[ 76.978625] dm_block_manager_destroy+0x19/0x40
[ 76.978629] __destroy_persistent_data_objects+0x5e/0x70
[ 76.978636] dm_pool_abort_metadata+0x8e/0x100
[ 76.978643] metadata_operation_failed+0x86/0x110
[ 76.978649] commit+0x6a/0x230
[ 76.978655] do_worker+0xc6e/0xd90
[ 76.978702] process_one_work+0x269/0x630
[ 76.978714] worker_thread+0x266/0x630
[ 76.978730] kthread+0x151/0x1b0
[ 76.978772] INFO: task test.sh:2646 blocked for more than 15 seconds.
[ 76.979756] Not tainted 6.1.0-rc4-00011-g8f17dd350364-dirty #910
[ 76.982111] task:test.sh state:D stack:0 pid:2646 ppid:2459
[ 76.982128] Call Trace:
[ 76.982139] __schedule+0x6ba/0x10f0
[ 76.982155] schedule+0x9d/0x1e0
[ 76.982159] rwsem_down_read_slowpath+0x4f4/0x910
[ 76.982173] down_read+0x84/0x170
[ 76.982177] dm_thin_find_block+0x4c/0xd0
[ 76.982183] thin_map+0x201/0x3d0
[ 76.982188] __map_bio+0x5b/0x350
[ 76.982195] dm_submit_bio+0x2b6/0x930
[ 76.982202] __submit_bio+0x123/0x2d0
[ 76.982209] submit_bio_noacct_nocheck+0x101/0x3e0
[ 76.982222] submit_bio_noacct+0x389/0x770
[ 76.982227] submit_bio+0x50/0xc0
[ 76.982232] submit_bh_wbc+0x15e/0x230
[ 76.982238] submit_bh+0x14/0x20
[ 76.982241] ext4_read_bh_nowait+0xc5/0x130
[ 76.982247] ext4_read_block_bitmap_nowait+0x340/0xc60
[ 76.982254] ext4_mb_init_cache+0x1ce/0xdc0
[ 76.982259] ext4_mb_load_buddy_gfp+0x987/0xfa0
[ 76.982263] ext4_discard_preallocations+0x45d/0x830
[ 76.982274] ext4_clear_inode+0x48/0xf0
[ 76.982280] ext4_evict_inode+0xcf/0xc70
[ 76.982285] evict+0x119/0x2b0
[ 76.982290] dispose_list+0x43/0xa0
[ 76.982294] prune_icache_sb+0x64/0x90
[ 76.982298] super_cache_scan+0x155/0x210
[ 76.982303] do_shrink_slab+0x19e/0x4e0
[ 76.982310] shrink_slab+0x2bd/0x450
[ 76.982317] drop_slab+0xcc/0x1a0
[ 76.982323] drop_caches_sysctl_handler+0xb7/0xe0
[ 76.982327] proc_sys_call_handler+0x1bc/0x300
[ 76.982331] proc_sys_write+0x17/0x20
[ 76.982334] vfs_write+0x3d3/0x570
[ 76.982342] ksys_write+0x73/0x160
[ 76.982347] __x64_sys_write+0x1e/0x30
[ 76.982352] do_syscall_64+0x35/0x80
[ 76.982357] entry_SYSCALL_64_after_hwframe+0x63/0xcd
Funct
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: Fix potential shift-out-of-bounds in brcmf_fw_alloc_request()
This patch fixes a shift-out-of-bounds in brcmfmac that occurs in
BIT(chiprev) when a 'chiprev' provided by the device is too large.
It should also not be equal to or greater than BITS_PER_TYPE(u32)
as we do bitwise AND with a u32 variable and BIT(chiprev). The patch
adds a check that makes the function return NULL if that is the case.
Note that the NULL case is later handled by the bus-specific caller,
brcmf_usb_probe_cb() or brcmf_usb_reset_resume(), for example.
Found by a modified version of syzkaller.
UBSAN: shift-out-of-bounds in drivers/net/wireless/broadcom/brcm80211/brcmfmac/firmware.c
shift exponent 151055786 is too large for 64-bit type 'long unsigned int'
CPU: 0 PID: 1885 Comm: kworker/0:2 Tainted: G O 5.14.0+ #132
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014
Workqueue: usb_hub_wq hub_event
Call Trace:
dump_stack_lvl+0x57/0x7d
ubsan_epilogue+0x5/0x40
__ubsan_handle_shift_out_of_bounds.cold+0x53/0xdb
? lock_chain_count+0x20/0x20
brcmf_fw_alloc_request.cold+0x19/0x3ea
? brcmf_fw_get_firmwares+0x250/0x250
? brcmf_usb_ioctl_resp_wait+0x1a7/0x1f0
brcmf_usb_get_fwname+0x114/0x1a0
? brcmf_usb_reset_resume+0x120/0x120
? number+0x6c4/0x9a0
brcmf_c_process_clm_blob+0x168/0x590
? put_dec+0x90/0x90
? enable_ptr_key_workfn+0x20/0x20
? brcmf_common_pd_remove+0x50/0x50
? rcu_read_lock_sched_held+0xa1/0xd0
brcmf_c_preinit_dcmds+0x673/0xc40
? brcmf_c_set_joinpref_default+0x100/0x100
? rcu_read_lock_sched_held+0xa1/0xd0
? rcu_read_lock_bh_held+0xb0/0xb0
? lock_acquire+0x19d/0x4e0
? find_held_lock+0x2d/0x110
? brcmf_usb_deq+0x1cc/0x260
? mark_held_locks+0x9f/0xe0
? lockdep_hardirqs_on_prepare+0x273/0x3e0
? _raw_spin_unlock_irqrestore+0x47/0x50
? trace_hardirqs_on+0x1c/0x120
? brcmf_usb_deq+0x1a7/0x260
? brcmf_usb_rx_fill_all+0x5a/0xf0
brcmf_attach+0x246/0xd40
? wiphy_new_nm+0x1476/0x1d50
? kmemdup+0x30/0x40
brcmf_usb_probe+0x12de/0x1690
? brcmf_usbdev_qinit.constprop.0+0x470/0x470
usb_probe_interface+0x25f/0x710
really_probe+0x1be/0xa90
__driver_probe_device+0x2ab/0x460
? usb_match_id.part.0+0x88/0xc0
driver_probe_device+0x49/0x120
__device_attach_driver+0x18a/0x250
? driver_allows_async_probing+0x120/0x120
bus_for_each_drv+0x123/0x1a0
? bus_rescan_devices+0x20/0x20
? lockdep_hardirqs_on_prepare+0x273/0x3e0
? trace_hardirqs_on+0x1c/0x120
__device_attach+0x207/0x330
? device_bind_driver+0xb0/0xb0
? kobject_uevent_env+0x230/0x12c0
bus_probe_device+0x1a2/0x260
device_add+0xa61/0x1ce0
? __mutex_unlock_slowpath+0xe7/0x660
? __fw_devlink_link_to_suppliers+0x550/0x550
usb_set_configuration+0x984/0x1770
? kernfs_create_link+0x175/0x230
usb_generic_driver_probe+0x69/0x90
usb_probe_device+0x9c/0x220
really_probe+0x1be/0xa90
__driver_probe_device+0x2ab/0x460
driver_probe_device+0x49/0x120
__device_attach_driver+0x18a/0x250
? driver_allows_async_probing+0x120/0x120
bus_for_each_drv+0x123/0x1a0
? bus_rescan_devices+0x20/0x20
? lockdep_hardirqs_on_prepare+0x273/0x3e0
? trace_hardirqs_on+0x1c/0x120
__device_attach+0x207/0x330
? device_bind_driver+0xb0/0xb0
? kobject_uevent_env+0x230/0x12c0
bus_probe_device+0x1a2/0x260
device_add+0xa61/0x1ce0
? __fw_devlink_link_to_suppliers+0x550/0x550
usb_new_device.cold+0x463/0xf66
? hub_disconnect+0x400/0x400
? _raw_spin_unlock_irq+0x24/0x30
hub_event+0x10d5/0x3330
? hub_port_debounce+0x280/0x280
? __lock_acquire+0x1671/0x5790
? wq_calc_node_cpumask+0x170/0x2a0
? lock_release+0x640/0x640
? rcu_read_lock_sched_held+0xa1/0xd0
? rcu_read_lock_bh_held+0xb0/0xb0
? lockdep_hardirqs_on_prepare+0x273/0x3e0
process_one_work+0x873/0x13e0
? lock_release+0x640/0x640
? pwq_dec_nr_in_flight+0x320/0x320
? rwlock_bug.part.0+0x90/0x90
worker_thread+0x8b/0xd10
? __kthread_parkme+0xd9/0x1d0
? pr
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
blk-mq: avoid double ->queue_rq() because of early timeout
David Jeffery found one double ->queue_rq() issue, so far it can
be triggered in VM use case because of long vmexit latency or preempt
latency of vCPU pthread or long page fault in vCPU pthread, then block
IO req could be timed out before queuing the request to hardware but after
calling blk_mq_start_request() during ->queue_rq(), then timeout handler
may handle it by requeue, then double ->queue_rq() is caused, and kernel
panic.
So far, it is driver's responsibility to cover the race between timeout
and completion, so it seems supposed to be solved in driver in theory,
given driver has enough knowledge.
But it is really one common problem, lots of driver could have similar
issue, and could be hard to fix all affected drivers, even it isn't easy
for driver to handle the race. So David suggests this patch by draining
in-progress ->queue_rq() for solving this issue. |
In the Linux kernel, the following vulnerability has been resolved:
soc: aspeed: socinfo: Add kfree for kstrdup
Add kfree() in the later error handling in order to avoid memory leak. |
In the Linux kernel, the following vulnerability has been resolved:
net/sched: sch_fq: fix integer overflow of "credit"
if sch_fq is configured with "initial quantum" having values greater than
INT_MAX, the first assignment of "credit" does signed integer overflow to
a very negative value.
In this situation, the syzkaller script provided by Cristoph triggers the
CPU soft-lockup warning even with few sockets. It's not an infinite loop,
but "credit" wasn't probably meant to be minus 2Gb for each new flow.
Capping "initial quantum" to INT_MAX proved to fix the issue.
v2: validation of "initial quantum" is done in fq_policy, instead of open
coding in fq_change() _ suggested by Jakub Kicinski |
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix possible double unlock when moving a directory |
In the Linux kernel, the following vulnerability has been resolved:
fs: dlm: fix use after free in midcomms commit
While working on processing dlm message in softirq context I experienced
the following KASAN use-after-free warning:
[ 151.760477] ==================================================================
[ 151.761803] BUG: KASAN: use-after-free in dlm_midcomms_commit_mhandle+0x19d/0x4b0
[ 151.763414] Read of size 4 at addr ffff88811a980c60 by task lock_torture/1347
[ 151.765284] CPU: 7 PID: 1347 Comm: lock_torture Not tainted 6.1.0-rc4+ #2828
[ 151.766778] Hardware name: Red Hat KVM/RHEL-AV, BIOS 1.16.0-3.module+el8.7.0+16134+e5908aa2 04/01/2014
[ 151.768726] Call Trace:
[ 151.769277] <TASK>
[ 151.769748] dump_stack_lvl+0x5b/0x86
[ 151.770556] print_report+0x180/0x4c8
[ 151.771378] ? kasan_complete_mode_report_info+0x7c/0x1e0
[ 151.772241] ? dlm_midcomms_commit_mhandle+0x19d/0x4b0
[ 151.773069] kasan_report+0x93/0x1a0
[ 151.773668] ? dlm_midcomms_commit_mhandle+0x19d/0x4b0
[ 151.774514] __asan_load4+0x7e/0xa0
[ 151.775089] dlm_midcomms_commit_mhandle+0x19d/0x4b0
[ 151.775890] ? create_message.isra.29.constprop.64+0x57/0xc0
[ 151.776770] send_common+0x19f/0x1b0
[ 151.777342] ? remove_from_waiters+0x60/0x60
[ 151.778017] ? lock_downgrade+0x410/0x410
[ 151.778648] ? __this_cpu_preempt_check+0x13/0x20
[ 151.779421] ? rcu_lockdep_current_cpu_online+0x88/0xc0
[ 151.780292] _convert_lock+0x46/0x150
[ 151.780893] convert_lock+0x7b/0xc0
[ 151.781459] dlm_lock+0x3ac/0x580
[ 151.781993] ? 0xffffffffc0540000
[ 151.782522] ? torture_stop+0x120/0x120 [dlm_locktorture]
[ 151.783379] ? dlm_scan_rsbs+0xa70/0xa70
[ 151.784003] ? preempt_count_sub+0xd6/0x130
[ 151.784661] ? is_module_address+0x47/0x70
[ 151.785309] ? torture_stop+0x120/0x120 [dlm_locktorture]
[ 151.786166] ? 0xffffffffc0540000
[ 151.786693] ? lockdep_init_map_type+0xc3/0x360
[ 151.787414] ? 0xffffffffc0540000
[ 151.787947] torture_dlm_lock_sync.isra.3+0xe9/0x150 [dlm_locktorture]
[ 151.789004] ? torture_stop+0x120/0x120 [dlm_locktorture]
[ 151.789858] ? 0xffffffffc0540000
[ 151.790392] ? lock_torture_cleanup+0x20/0x20 [dlm_locktorture]
[ 151.791347] ? delay_tsc+0x94/0xc0
[ 151.791898] torture_ex_iter+0xc3/0xea [dlm_locktorture]
[ 151.792735] ? torture_start+0x30/0x30 [dlm_locktorture]
[ 151.793606] lock_torture+0x177/0x270 [dlm_locktorture]
[ 151.794448] ? torture_dlm_lock_sync.isra.3+0x150/0x150 [dlm_locktorture]
[ 151.795539] ? lock_torture_stats+0x80/0x80 [dlm_locktorture]
[ 151.796476] ? do_raw_spin_lock+0x11e/0x1e0
[ 151.797152] ? mark_held_locks+0x34/0xb0
[ 151.797784] ? _raw_spin_unlock_irqrestore+0x30/0x70
[ 151.798581] ? __kthread_parkme+0x79/0x110
[ 151.799246] ? trace_preempt_on+0x2a/0xf0
[ 151.799902] ? __kthread_parkme+0x79/0x110
[ 151.800579] ? preempt_count_sub+0xd6/0x130
[ 151.801271] ? __kasan_check_read+0x11/0x20
[ 151.801963] ? __kthread_parkme+0xec/0x110
[ 151.802630] ? lock_torture_stats+0x80/0x80 [dlm_locktorture]
[ 151.803569] kthread+0x192/0x1d0
[ 151.804104] ? kthread_complete_and_exit+0x30/0x30
[ 151.804881] ret_from_fork+0x1f/0x30
[ 151.805480] </TASK>
[ 151.806111] Allocated by task 1347:
[ 151.806681] kasan_save_stack+0x26/0x50
[ 151.807308] kasan_set_track+0x25/0x30
[ 151.807920] kasan_save_alloc_info+0x1e/0x30
[ 151.808609] __kasan_slab_alloc+0x63/0x80
[ 151.809263] kmem_cache_alloc+0x1ad/0x830
[ 151.809916] dlm_allocate_mhandle+0x17/0x20
[ 151.810590] dlm_midcomms_get_mhandle+0x96/0x260
[ 151.811344] _create_message+0x95/0x180
[ 151.811994] create_message.isra.29.constprop.64+0x57/0xc0
[ 151.812880] send_common+0x129/0x1b0
[ 151.813467] _convert_lock+0x46/0x150
[ 151.814074] convert_lock+0x7b/0xc0
[ 151.814648] dlm_lock+0x3ac/0x580
[ 151.815199] torture_dlm_lock_sync.isra.3+0xe9/0x150 [dlm_locktorture]
[ 151.816258] torture_ex_iter+0xc3/0xea [dlm_locktorture]
[ 151.817129] lock_t
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
octeon_ep: cancel queued works in probe error path
If it fails to get the devices's MAC address, octep_probe exits while
leaving the delayed work intr_poll_task queued. When the work later
runs, it's a use after free.
Move the cancelation of intr_poll_task from octep_remove into
octep_device_cleanup. This does not change anything in the octep_remove
flow, but octep_device_cleanup is called also in the octep_probe error
path, where the cancelation is needed.
Note that the cancelation of ctrl_mbox_task has to follow
intr_poll_task's, because the ctrl_mbox_task may be queued by
intr_poll_task. |