| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915/gem: Fix Virtual Memory mapping boundaries calculation
Calculating the size of the mapped area as the lesser value
between the requested size and the actual size does not consider
the partial mapping offset. This can cause page fault access.
Fix the calculation of the starting and ending addresses, the
total size is now deduced from the difference between the end and
start addresses.
Additionally, the calculations have been rewritten in a clearer
and more understandable form.
[Joonas: Add Requires: tag]
Requires: 60a2066c5005 ("drm/i915/gem: Adjust vma offset for framebuffer mmap offset")
(cherry picked from commit 97b6784753da06d9d40232328efc5c5367e53417) |
| In the Linux kernel, the following vulnerability has been resolved:
wireguard: allowedips: avoid unaligned 64-bit memory accesses
On the parisc platform, the kernel issues kernel warnings because
swap_endian() tries to load a 128-bit IPv6 address from an unaligned
memory location:
Kernel: unaligned access to 0x55f4688c in wg_allowedips_insert_v6+0x2c/0x80 [wireguard] (iir 0xf3010df)
Kernel: unaligned access to 0x55f46884 in wg_allowedips_insert_v6+0x38/0x80 [wireguard] (iir 0xf2010dc)
Avoid such unaligned memory accesses by instead using the
get_unaligned_be64() helper macro.
[Jason: replace src[8] in original patch with src+8] |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: cs_dsp: Return error if block header overflows file
Return an error from cs_dsp_power_up() if a block header is longer
than the amount of data left in the file.
The previous code in cs_dsp_load() and cs_dsp_load_coeff() would loop
while there was enough data left in the file for a valid region. This
protected against overrunning the end of the file data, but it didn't
abort the file processing with an error. |
| In the Linux kernel, the following vulnerability has been resolved:
media: dvb-frontends: tda10048: Fix integer overflow
state->xtal_hz can be up to 16M, so it can overflow a 32 bit integer
when multiplied by pll_mfactor.
Create a new 64 bit variable to hold the calculations. |
| In the Linux kernel, the following vulnerability has been resolved:
tcp_metrics: validate source addr length
I don't see anything checking that TCP_METRICS_ATTR_SADDR_IPV4
is at least 4 bytes long, and the policy doesn't have an entry
for this attribute at all (neither does it for IPv6 but v6 is
manually validated). |
| In the Linux kernel, the following vulnerability has been resolved:
bnx2x: Fix multiple UBSAN array-index-out-of-bounds
Fix UBSAN warnings that occur when using a system with 32 physical
cpu cores or more, or when the user defines a number of Ethernet
queues greater than or equal to FP_SB_MAX_E1x using the num_queues
module parameter.
Currently there is a read/write out of bounds that occurs on the array
"struct stats_query_entry query" present inside the "bnx2x_fw_stats_req"
struct in "drivers/net/ethernet/broadcom/bnx2x/bnx2x.h".
Looking at the definition of the "struct stats_query_entry query" array:
struct stats_query_entry query[FP_SB_MAX_E1x+
BNX2X_FIRST_QUEUE_QUERY_IDX];
FP_SB_MAX_E1x is defined as the maximum number of fast path interrupts and
has a value of 16, while BNX2X_FIRST_QUEUE_QUERY_IDX has a value of 3
meaning the array has a total size of 19.
Since accesses to "struct stats_query_entry query" are offset-ted by
BNX2X_FIRST_QUEUE_QUERY_IDX, that means that the total number of Ethernet
queues should not exceed FP_SB_MAX_E1x (16). However one of these queues
is reserved for FCOE and thus the number of Ethernet queues should be set
to [FP_SB_MAX_E1x -1] (15) if FCOE is enabled or [FP_SB_MAX_E1x] (16) if
it is not.
This is also described in a comment in the source code in
drivers/net/ethernet/broadcom/bnx2x/bnx2x.h just above the Macro definition
of FP_SB_MAX_E1x. Below is the part of this explanation that it important
for this patch
/*
* The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is
* control by the number of fast-path status blocks supported by the
* device (HW/FW). Each fast-path status block (FP-SB) aka non-default
* status block represents an independent interrupts context that can
* serve a regular L2 networking queue. However special L2 queues such
* as the FCoE queue do not require a FP-SB and other components like
* the CNIC may consume FP-SB reducing the number of possible L2 queues
*
* If the maximum number of FP-SB available is X then:
* a. If CNIC is supported it consumes 1 FP-SB thus the max number of
* regular L2 queues is Y=X-1
* b. In MF mode the actual number of L2 queues is Y= (X-1/MF_factor)
* c. If the FCoE L2 queue is supported the actual number of L2 queues
* is Y+1
* d. The number of irqs (MSIX vectors) is either Y+1 (one extra for
* slow-path interrupts) or Y+2 if CNIC is supported (one additional
* FP interrupt context for the CNIC).
* e. The number of HW context (CID count) is always X or X+1 if FCoE
* L2 queue is supported. The cid for the FCoE L2 queue is always X.
*/
However this driver also supports NICs that use the E2 controller which can
handle more queues due to having more FP-SB represented by FP_SB_MAX_E2.
Looking at the commits when the E2 support was added, it was originally
using the E1x parameters: commit f2e0899f0f27 ("bnx2x: Add 57712 support").
Back then FP_SB_MAX_E2 was set to 16 the same as E1x. However the driver
was later updated to take full advantage of the E2 instead of having it be
limited to the capabilities of the E1x. But as far as we can tell, the
array "stats_query_entry query" was still limited to using the FP-SB
available to the E1x cards as part of an oversignt when the driver was
updated to take full advantage of the E2, and now with the driver being
aware of the greater queue size supported by E2 NICs, it causes the UBSAN
warnings seen in the stack traces below.
This patch increases the size of the "stats_query_entry query" array by
replacing FP_SB_MAX_E1x with FP_SB_MAX_E2 to be large enough to handle
both types of NICs.
Stack traces:
UBSAN: array-index-out-of-bounds in
drivers/net/ethernet/broadcom/bnx2x/bnx2x_stats.c:1529:11
index 20 is out of range for type 'stats_query_entry [19]'
CPU: 12 PID: 858 Comm: systemd-network Not tainted 6.9.0-060900rc7-generic
#202405052133
Hardware name: HP ProLiant DL360 Gen9/ProLiant DL360
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
cdrom: rearrange last_media_change check to avoid unintentional overflow
When running syzkaller with the newly reintroduced signed integer wrap
sanitizer we encounter this splat:
[ 366.015950] UBSAN: signed-integer-overflow in ../drivers/cdrom/cdrom.c:2361:33
[ 366.021089] -9223372036854775808 - 346321 cannot be represented in type '__s64' (aka 'long long')
[ 366.025894] program syz-executor.4 is using a deprecated SCSI ioctl, please convert it to SG_IO
[ 366.027502] CPU: 5 PID: 28472 Comm: syz-executor.7 Not tainted 6.8.0-rc2-00035-gb3ef86b5a957 #1
[ 366.027512] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 366.027518] Call Trace:
[ 366.027523] <TASK>
[ 366.027533] dump_stack_lvl+0x93/0xd0
[ 366.027899] handle_overflow+0x171/0x1b0
[ 366.038787] ata1.00: invalid multi_count 32 ignored
[ 366.043924] cdrom_ioctl+0x2c3f/0x2d10
[ 366.063932] ? __pm_runtime_resume+0xe6/0x130
[ 366.071923] sr_block_ioctl+0x15d/0x1d0
[ 366.074624] ? __pfx_sr_block_ioctl+0x10/0x10
[ 366.077642] blkdev_ioctl+0x419/0x500
[ 366.080231] ? __pfx_blkdev_ioctl+0x10/0x10
...
Historically, the signed integer overflow sanitizer did not work in the
kernel due to its interaction with `-fwrapv` but this has since been
changed [1] in the newest version of Clang. It was re-enabled in the
kernel with Commit 557f8c582a9ba8ab ("ubsan: Reintroduce signed overflow
sanitizer").
Let's rearrange the check to not perform any arithmetic, thus not
tripping the sanitizer. |
| In the Linux kernel, the following vulnerability has been resolved:
mm: avoid overflows in dirty throttling logic
The dirty throttling logic is interspersed with assumptions that dirty
limits in PAGE_SIZE units fit into 32-bit (so that various multiplications
fit into 64-bits). If limits end up being larger, we will hit overflows,
possible divisions by 0 etc. Fix these problems by never allowing so
large dirty limits as they have dubious practical value anyway. For
dirty_bytes / dirty_background_bytes interfaces we can just refuse to set
so large limits. For dirty_ratio / dirty_background_ratio it isn't so
simple as the dirty limit is computed from the amount of available memory
which can change due to memory hotplug etc. So when converting dirty
limits from ratios to numbers of pages, we just don't allow the result to
exceed UINT_MAX.
This is root-only triggerable problem which occurs when the operator
sets dirty limits to >16 TB. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Check index msg_id before read or write
[WHAT]
msg_id is used as an array index and it cannot be a negative value, and
therefore cannot be equal to MOD_HDCP_MESSAGE_ID_INVALID (-1).
[HOW]
Check whether msg_id is valid before reading and setting.
This fixes 4 OVERRUN issues reported by Coverity. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Check pipe offset before setting vblank
pipe_ctx has a size of MAX_PIPES so checking its index before accessing
the array.
This fixes an OVERRUN issue reported by Coverity. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Skip finding free audio for unknown engine_id
[WHY]
ENGINE_ID_UNKNOWN = -1 and can not be used as an array index. Plus, it
also means it is uninitialized and does not need free audio.
[HOW]
Skip and return NULL.
This fixes 2 OVERRUN issues reported by Coverity. |
| In the Linux kernel, the following vulnerability has been resolved:
x86: stop playing stack games in profile_pc()
The 'profile_pc()' function is used for timer-based profiling, which
isn't really all that relevant any more to begin with, but it also ends
up making assumptions based on the stack layout that aren't necessarily
valid.
Basically, the code tries to account the time spent in spinlocks to the
caller rather than the spinlock, and while I support that as a concept,
it's not worth the code complexity or the KASAN warnings when no serious
profiling is done using timers anyway these days.
And the code really does depend on stack layout that is only true in the
simplest of cases. We've lost the comment at some point (I think when
the 32-bit and 64-bit code was unified), but it used to say:
Assume the lock function has either no stack frame or a copy
of eflags from PUSHF.
which explains why it just blindly loads a word or two straight off the
stack pointer and then takes a minimal look at the values to just check
if they might be eflags or the return pc:
Eflags always has bits 22 and up cleared unlike kernel addresses
but that basic stack layout assumption assumes that there isn't any lock
debugging etc going on that would complicate the code and cause a stack
frame.
It causes KASAN unhappiness reported for years by syzkaller [1] and
others [2].
With no real practical reason for this any more, just remove the code.
Just for historical interest, here's some background commits relating to
this code from 2006:
0cb91a229364 ("i386: Account spinlocks to the caller during profiling for !FP kernels")
31679f38d886 ("Simplify profile_pc on x86-64")
and a code unification from 2009:
ef4512882dbe ("x86: time_32/64.c unify profile_pc")
but the basics of this thing actually goes back to before the git tree. |
| In the Linux kernel, the following vulnerability has been resolved:
net/dpaa2: Avoid explicit cpumask var allocation on stack
For CONFIG_CPUMASK_OFFSTACK=y kernel, explicit allocation of cpumask
variable on stack is not recommended since it can cause potential stack
overflow.
Instead, kernel code should always use *cpumask_var API(s) to allocate
cpumask var in config-neutral way, leaving allocation strategy to
CONFIG_CPUMASK_OFFSTACK.
Use *cpumask_var API(s) to address it. |
| In the Linux kernel, the following vulnerability has been resolved:
gpio: davinci: Validate the obtained number of IRQs
Value of pdata->gpio_unbanked is taken from Device Tree. In case of broken
DT due to any error this value can be any. Without this value validation
there can be out of chips->irqs array boundaries access in
davinci_gpio_probe().
Validate the obtained nirq value so that it won't exceed the maximum
number of IRQs per bank.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
iio: chemical: bme680: Fix overflows in compensate() functions
There are cases in the compensate functions of the driver that
there could be overflows of variables due to bit shifting ops.
These implications were initially discussed here [1] and they
were mentioned in log message of Commit 1b3bd8592780 ("iio:
chemical: Add support for Bosch BME680 sensor").
[1]: https://lore.kernel.org/linux-iio/20180728114028.3c1bbe81@archlinux/ |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Take return from set_memory_ro() into account with bpf_prog_lock_ro()
set_memory_ro() can fail, leaving memory unprotected.
Check its return and take it into account as an error. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Mark bpf prog stack with kmsan_unposion_memory in interpreter mode
syzbot reported uninit memory usages during map_{lookup,delete}_elem.
==========
BUG: KMSAN: uninit-value in __dev_map_lookup_elem kernel/bpf/devmap.c:441 [inline]
BUG: KMSAN: uninit-value in dev_map_lookup_elem+0xf3/0x170 kernel/bpf/devmap.c:796
__dev_map_lookup_elem kernel/bpf/devmap.c:441 [inline]
dev_map_lookup_elem+0xf3/0x170 kernel/bpf/devmap.c:796
____bpf_map_lookup_elem kernel/bpf/helpers.c:42 [inline]
bpf_map_lookup_elem+0x5c/0x80 kernel/bpf/helpers.c:38
___bpf_prog_run+0x13fe/0xe0f0 kernel/bpf/core.c:1997
__bpf_prog_run256+0xb5/0xe0 kernel/bpf/core.c:2237
==========
The reproducer should be in the interpreter mode.
The C reproducer is trying to run the following bpf prog:
0: (18) r0 = 0x0
2: (18) r1 = map[id:49]
4: (b7) r8 = 16777216
5: (7b) *(u64 *)(r10 -8) = r8
6: (bf) r2 = r10
7: (07) r2 += -229
^^^^^^^^^^
8: (b7) r3 = 8
9: (b7) r4 = 0
10: (85) call dev_map_lookup_elem#1543472
11: (95) exit
It is due to the "void *key" (r2) passed to the helper. bpf allows uninit
stack memory access for bpf prog with the right privileges. This patch
uses kmsan_unpoison_memory() to mark the stack as initialized.
This should address different syzbot reports on the uninit "void *key"
argument during map_{lookup,delete}_elem. |
| In the Linux kernel, the following vulnerability has been resolved:
tun: add missing verification for short frame
The cited commit missed to check against the validity of the frame length
in the tun_xdp_one() path, which could cause a corrupted skb to be sent
downstack. Even before the skb is transmitted, the
tun_xdp_one-->eth_type_trans() may access the Ethernet header although it
can be less than ETH_HLEN. Once transmitted, this could either cause
out-of-bound access beyond the actual length, or confuse the underlayer
with incorrect or inconsistent header length in the skb metadata.
In the alternative path, tun_get_user() already prohibits short frame which
has the length less than Ethernet header size from being transmitted for
IFF_TAP.
This is to drop any frame shorter than the Ethernet header size just like
how tun_get_user() does.
CVE: CVE-2024-41091 |
| In the Linux kernel, the following vulnerability has been resolved:
tap: add missing verification for short frame
The cited commit missed to check against the validity of the frame length
in the tap_get_user_xdp() path, which could cause a corrupted skb to be
sent downstack. Even before the skb is transmitted, the
tap_get_user_xdp()-->skb_set_network_header() may assume the size is more
than ETH_HLEN. Once transmitted, this could either cause out-of-bound
access beyond the actual length, or confuse the underlayer with incorrect
or inconsistent header length in the skb metadata.
In the alternative path, tap_get_user() already prohibits short frame which
has the length less than Ethernet header size from being transmitted.
This is to drop any frame shorter than the Ethernet header size just like
how tap_get_user() does.
CVE: CVE-2024-41090 |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: prefer nft_chain_validate
nft_chain_validate already performs loop detection because a cycle will
result in a call stack overflow (ctx->level >= NFT_JUMP_STACK_SIZE).
It also follows maps via ->validate callback in nft_lookup, so there
appears no reason to iterate the maps again.
nf_tables_check_loops() and all its helper functions can be removed.
This improves ruleset load time significantly, from 23s down to 12s.
This also fixes a crash bug. Old loop detection code can result in
unbounded recursion:
BUG: TASK stack guard page was hit at ....
Oops: stack guard page: 0000 [#1] PREEMPT SMP KASAN
CPU: 4 PID: 1539 Comm: nft Not tainted 6.10.0-rc5+ #1
[..]
with a suitable ruleset during validation of register stores.
I can't see any actual reason to attempt to check for this from
nft_validate_register_store(), at this point the transaction is still in
progress, so we don't have a full picture of the rule graph.
For nf-next it might make sense to either remove it or make this depend
on table->validate_state in case we could catch an error earlier
(for improved error reporting to userspace). |