Filtered by vendor Redhat Subscriptions
Filtered by product Enterprise Linux Subscriptions
Total 14101 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2023-52530 1 Redhat 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more 2024-11-21 5.8 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: fix potential key use-after-free When ieee80211_key_link() is called by ieee80211_gtk_rekey_add() but returns 0 due to KRACK protection (identical key reinstall), ieee80211_gtk_rekey_add() will still return a pointer into the key, in a potential use-after-free. This normally doesn't happen since it's only called by iwlwifi in case of WoWLAN rekey offload which has its own KRACK protection, but still better to fix, do that by returning an error code and converting that to success on the cfg80211 boundary only, leaving the error for bad callers of ieee80211_gtk_rekey_add().
CVE-2023-52529 1 Redhat 1 Enterprise Linux 2024-11-21 6 Medium
In the Linux kernel, the following vulnerability has been resolved: HID: sony: Fix a potential memory leak in sony_probe() If an error occurs after a successful usb_alloc_urb() call, usb_free_urb() should be called.
CVE-2023-52528 1 Redhat 1 Enterprise Linux 2024-11-21 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: net: usb: smsc75xx: Fix uninit-value access in __smsc75xx_read_reg syzbot reported the following uninit-value access issue: ===================================================== BUG: KMSAN: uninit-value in smsc75xx_wait_ready drivers/net/usb/smsc75xx.c:975 [inline] BUG: KMSAN: uninit-value in smsc75xx_bind+0x5c9/0x11e0 drivers/net/usb/smsc75xx.c:1482 CPU: 0 PID: 8696 Comm: kworker/0:3 Not tainted 5.8.0-rc5-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: usb_hub_wq hub_event Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x21c/0x280 lib/dump_stack.c:118 kmsan_report+0xf7/0x1e0 mm/kmsan/kmsan_report.c:121 __msan_warning+0x58/0xa0 mm/kmsan/kmsan_instr.c:215 smsc75xx_wait_ready drivers/net/usb/smsc75xx.c:975 [inline] smsc75xx_bind+0x5c9/0x11e0 drivers/net/usb/smsc75xx.c:1482 usbnet_probe+0x1152/0x3f90 drivers/net/usb/usbnet.c:1737 usb_probe_interface+0xece/0x1550 drivers/usb/core/driver.c:374 really_probe+0xf20/0x20b0 drivers/base/dd.c:529 driver_probe_device+0x293/0x390 drivers/base/dd.c:701 __device_attach_driver+0x63f/0x830 drivers/base/dd.c:807 bus_for_each_drv+0x2ca/0x3f0 drivers/base/bus.c:431 __device_attach+0x4e2/0x7f0 drivers/base/dd.c:873 device_initial_probe+0x4a/0x60 drivers/base/dd.c:920 bus_probe_device+0x177/0x3d0 drivers/base/bus.c:491 device_add+0x3b0e/0x40d0 drivers/base/core.c:2680 usb_set_configuration+0x380f/0x3f10 drivers/usb/core/message.c:2032 usb_generic_driver_probe+0x138/0x300 drivers/usb/core/generic.c:241 usb_probe_device+0x311/0x490 drivers/usb/core/driver.c:272 really_probe+0xf20/0x20b0 drivers/base/dd.c:529 driver_probe_device+0x293/0x390 drivers/base/dd.c:701 __device_attach_driver+0x63f/0x830 drivers/base/dd.c:807 bus_for_each_drv+0x2ca/0x3f0 drivers/base/bus.c:431 __device_attach+0x4e2/0x7f0 drivers/base/dd.c:873 device_initial_probe+0x4a/0x60 drivers/base/dd.c:920 bus_probe_device+0x177/0x3d0 drivers/base/bus.c:491 device_add+0x3b0e/0x40d0 drivers/base/core.c:2680 usb_new_device+0x1bd4/0x2a30 drivers/usb/core/hub.c:2554 hub_port_connect drivers/usb/core/hub.c:5208 [inline] hub_port_connect_change drivers/usb/core/hub.c:5348 [inline] port_event drivers/usb/core/hub.c:5494 [inline] hub_event+0x5e7b/0x8a70 drivers/usb/core/hub.c:5576 process_one_work+0x1688/0x2140 kernel/workqueue.c:2269 worker_thread+0x10bc/0x2730 kernel/workqueue.c:2415 kthread+0x551/0x590 kernel/kthread.c:292 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:293 Local variable ----buf.i87@smsc75xx_bind created at: __smsc75xx_read_reg drivers/net/usb/smsc75xx.c:83 [inline] smsc75xx_wait_ready drivers/net/usb/smsc75xx.c:968 [inline] smsc75xx_bind+0x485/0x11e0 drivers/net/usb/smsc75xx.c:1482 __smsc75xx_read_reg drivers/net/usb/smsc75xx.c:83 [inline] smsc75xx_wait_ready drivers/net/usb/smsc75xx.c:968 [inline] smsc75xx_bind+0x485/0x11e0 drivers/net/usb/smsc75xx.c:1482 This issue is caused because usbnet_read_cmd() reads less bytes than requested (zero byte in the reproducer). In this case, 'buf' is not properly filled. This patch fixes the issue by returning -ENODATA if usbnet_read_cmd() reads less bytes than requested.
CVE-2023-52522 1 Redhat 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more 2024-11-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: fix possible store tearing in neigh_periodic_work() While looking at a related syzbot report involving neigh_periodic_work(), I found that I forgot to add an annotation when deleting an RCU protected item from a list. Readers use rcu_deference(*np), we need to use either rcu_assign_pointer() or WRITE_ONCE() on writer side to prevent store tearing. I use rcu_assign_pointer() to have lockdep support, this was the choice made in neigh_flush_dev().
CVE-2023-52520 1 Redhat 1 Enterprise Linux 2024-11-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: platform/x86: think-lmi: Fix reference leak If a duplicate attribute is found using kset_find_obj(), a reference to that attribute is returned which needs to be disposed accordingly using kobject_put(). Move the setting name validation into a separate function to allow for this change without having to duplicate the cleanup code for this setting. As a side note, a very similar bug was fixed in commit 7295a996fdab ("platform/x86: dell-sysman: Fix reference leak"), so it seems that the bug was copied from that driver. Compile-tested only.
CVE-2023-52513 1 Redhat 1 Enterprise Linux 2024-11-21 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: RDMA/siw: Fix connection failure handling In case immediate MPA request processing fails, the newly created endpoint unlinks the listening endpoint and is ready to be dropped. This special case was not handled correctly by the code handling the later TCP socket close, causing a NULL dereference crash in siw_cm_work_handler() when dereferencing a NULL listener. We now also cancel the useless MPA timeout, if immediate MPA request processing fails. This patch furthermore simplifies MPA processing in general: Scheduling a useless TCP socket read in sk_data_ready() upcall is now surpressed, if the socket is already moved out of TCP_ESTABLISHED state.
CVE-2023-52501 1 Redhat 1 Enterprise Linux 2024-11-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ring-buffer: Do not attempt to read past "commit" When iterating over the ring buffer while the ring buffer is active, the writer can corrupt the reader. There's barriers to help detect this and handle it, but that code missed the case where the last event was at the very end of the page and has only 4 bytes left. The checks to detect the corruption by the writer to reads needs to see the length of the event. If the length in the first 4 bytes is zero then the length is stored in the second 4 bytes. But if the writer is in the process of updating that code, there's a small window where the length in the first 4 bytes could be zero even though the length is only 4 bytes. That will cause rb_event_length() to read the next 4 bytes which could happen to be off the allocated page. To protect against this, fail immediately if the next event pointer is less than 8 bytes from the end of the commit (last byte of data), as all events must be a minimum of 8 bytes anyway.
CVE-2023-52498 1 Redhat 1 Enterprise Linux 2024-11-21 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: PM: sleep: Fix possible deadlocks in core system-wide PM code It is reported that in low-memory situations the system-wide resume core code deadlocks, because async_schedule_dev() executes its argument function synchronously if it cannot allocate memory (and not only in that case) and that function attempts to acquire a mutex that is already held. Executing the argument function synchronously from within dpm_async_fn() may also be problematic for ordering reasons (it may cause a consumer device's resume callback to be invoked before a requisite supplier device's one, for example). Address this by changing the code in question to use async_schedule_dev_nocall() for scheduling the asynchronous execution of device suspend and resume functions and to directly run them synchronously if async_schedule_dev_nocall() returns false.
CVE-2023-52492 1 Redhat 1 Enterprise Linux 2024-11-21 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: dmaengine: fix NULL pointer in channel unregistration function __dma_async_device_channel_register() can fail. In case of failure, chan->local is freed (with free_percpu()), and chan->local is nullified. When dma_async_device_unregister() is called (because of managed API or intentionally by DMA controller driver), channels are unconditionally unregistered, leading to this NULL pointer: [ 1.318693] Unable to handle kernel NULL pointer dereference at virtual address 00000000000000d0 [...] [ 1.484499] Call trace: [ 1.486930] device_del+0x40/0x394 [ 1.490314] device_unregister+0x20/0x7c [ 1.494220] __dma_async_device_channel_unregister+0x68/0xc0 Look at dma_async_device_register() function error path, channel device unregistration is done only if chan->local is not NULL. Then add the same condition at the beginning of __dma_async_device_channel_unregister() function, to avoid NULL pointer issue whatever the API used to reach this function.
CVE-2023-52490 1 Redhat 1 Enterprise Linux 2024-11-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm: migrate: fix getting incorrect page mapping during page migration When running stress-ng testing, we found below kernel crash after a few hours: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 pc : dentry_name+0xd8/0x224 lr : pointer+0x22c/0x370 sp : ffff800025f134c0 ...... Call trace: dentry_name+0xd8/0x224 pointer+0x22c/0x370 vsnprintf+0x1ec/0x730 vscnprintf+0x2c/0x60 vprintk_store+0x70/0x234 vprintk_emit+0xe0/0x24c vprintk_default+0x3c/0x44 vprintk_func+0x84/0x2d0 printk+0x64/0x88 __dump_page+0x52c/0x530 dump_page+0x14/0x20 set_migratetype_isolate+0x110/0x224 start_isolate_page_range+0xc4/0x20c offline_pages+0x124/0x474 memory_block_offline+0x44/0xf4 memory_subsys_offline+0x3c/0x70 device_offline+0xf0/0x120 ...... After analyzing the vmcore, I found this issue is caused by page migration. The scenario is that, one thread is doing page migration, and we will use the target page's ->mapping field to save 'anon_vma' pointer between page unmap and page move, and now the target page is locked and refcount is 1. Currently, there is another stress-ng thread performing memory hotplug, attempting to offline the target page that is being migrated. It discovers that the refcount of this target page is 1, preventing the offline operation, thus proceeding to dump the page. However, page_mapping() of the target page may return an incorrect file mapping to crash the system in dump_mapping(), since the target page->mapping only saves 'anon_vma' pointer without setting PAGE_MAPPING_ANON flag. There are seveval ways to fix this issue: (1) Setting the PAGE_MAPPING_ANON flag for target page's ->mapping when saving 'anon_vma', but this can confuse PageAnon() for PFN walkers, since the target page has not built mappings yet. (2) Getting the page lock to call page_mapping() in __dump_page() to avoid crashing the system, however, there are still some PFN walkers that call page_mapping() without holding the page lock, such as compaction. (3) Using target page->private field to save the 'anon_vma' pointer and 2 bits page state, just as page->mapping records an anonymous page, which can remove the page_mapping() impact for PFN walkers and also seems a simple way. So I choose option 3 to fix this issue, and this can also fix other potential issues for PFN walkers, such as compaction.
CVE-2023-52489 1 Redhat 3 Enterprise Linux, Rhel E4s, Rhel Eus 2024-11-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm/sparsemem: fix race in accessing memory_section->usage The below race is observed on a PFN which falls into the device memory region with the system memory configuration where PFN's are such that [ZONE_NORMAL ZONE_DEVICE ZONE_NORMAL]. Since normal zone start and end pfn contains the device memory PFN's as well, the compaction triggered will try on the device memory PFN's too though they end up in NOP(because pfn_to_online_page() returns NULL for ZONE_DEVICE memory sections). When from other core, the section mappings are being removed for the ZONE_DEVICE region, that the PFN in question belongs to, on which compaction is currently being operated is resulting into the kernel crash with CONFIG_SPASEMEM_VMEMAP enabled. The crash logs can be seen at [1]. compact_zone() memunmap_pages ------------- --------------- __pageblock_pfn_to_page ...... (a)pfn_valid(): valid_section()//return true (b)__remove_pages()-> sparse_remove_section()-> section_deactivate(): [Free the array ms->usage and set ms->usage = NULL] pfn_section_valid() [Access ms->usage which is NULL] NOTE: From the above it can be said that the race is reduced to between the pfn_valid()/pfn_section_valid() and the section deactivate with SPASEMEM_VMEMAP enabled. The commit b943f045a9af("mm/sparse: fix kernel crash with pfn_section_valid check") tried to address the same problem by clearing the SECTION_HAS_MEM_MAP with the expectation of valid_section() returns false thus ms->usage is not accessed. Fix this issue by the below steps: a) Clear SECTION_HAS_MEM_MAP before freeing the ->usage. b) RCU protected read side critical section will either return NULL when SECTION_HAS_MEM_MAP is cleared or can successfully access ->usage. c) Free the ->usage with kfree_rcu() and set ms->usage = NULL. No attempt will be made to access ->usage after this as the SECTION_HAS_MEM_MAP is cleared thus valid_section() return false. Thanks to David/Pavan for their inputs on this patch. [1] https://lore.kernel.org/linux-mm/994410bb-89aa-d987-1f50-f514903c55aa@quicinc.com/ On Snapdragon SoC, with the mentioned memory configuration of PFN's as [ZONE_NORMAL ZONE_DEVICE ZONE_NORMAL], we are able to see bunch of issues daily while testing on a device farm. For this particular issue below is the log. Though the below log is not directly pointing to the pfn_section_valid(){ ms->usage;}, when we loaded this dump on T32 lauterbach tool, it is pointing. [ 540.578056] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 [ 540.578068] Mem abort info: [ 540.578070] ESR = 0x0000000096000005 [ 540.578073] EC = 0x25: DABT (current EL), IL = 32 bits [ 540.578077] SET = 0, FnV = 0 [ 540.578080] EA = 0, S1PTW = 0 [ 540.578082] FSC = 0x05: level 1 translation fault [ 540.578085] Data abort info: [ 540.578086] ISV = 0, ISS = 0x00000005 [ 540.578088] CM = 0, WnR = 0 [ 540.579431] pstate: 82400005 (Nzcv daif +PAN -UAO +TCO -DIT -SSBSBTYPE=--) [ 540.579436] pc : __pageblock_pfn_to_page+0x6c/0x14c [ 540.579454] lr : compact_zone+0x994/0x1058 [ 540.579460] sp : ffffffc03579b510 [ 540.579463] x29: ffffffc03579b510 x28: 0000000000235800 x27:000000000000000c [ 540.579470] x26: 0000000000235c00 x25: 0000000000000068 x24:ffffffc03579b640 [ 540.579477] x23: 0000000000000001 x22: ffffffc03579b660 x21:0000000000000000 [ 540.579483] x20: 0000000000235bff x19: ffffffdebf7e3940 x18:ffffffdebf66d140 [ 540.579489] x17: 00000000739ba063 x16: 00000000739ba063 x15:00000000009f4bff [ 540.579495] x14: 0000008000000000 x13: 0000000000000000 x12:0000000000000001 [ 540.579501] x11: 0000000000000000 x10: 0000000000000000 x9 :ffffff897d2cd440 [ 540.579507] x8 : 0000000000000000 x7 : 0000000000000000 x6 :ffffffc03579b5b4 [ 540.579512] x5 : 0000000000027f25 x4 : ffffffc03579b5b8 x3 :0000000000000 ---truncated---
CVE-2023-52486 1 Redhat 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more 2024-11-21 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: drm: Don't unref the same fb many times by mistake due to deadlock handling If we get a deadlock after the fb lookup in drm_mode_page_flip_ioctl() we proceed to unref the fb and then retry the whole thing from the top. But we forget to reset the fb pointer back to NULL, and so if we then get another error during the retry, before the fb lookup, we proceed the unref the same fb again without having gotten another reference. The end result is that the fb will (eventually) end up being freed while it's still in use. Reset fb to NULL once we've unreffed it to avoid doing it again until we've done another fb lookup. This turned out to be pretty easy to hit on a DG2 when doing async flips (and CONFIG_DEBUG_WW_MUTEX_SLOWPATH=y). The first symptom I saw that drm_closefb() simply got stuck in a busy loop while walking the framebuffer list. Fortunately I was able to convince it to oops instead, and from there it was easier to track down the culprit.
CVE-2023-52482 1 Redhat 1 Enterprise Linux 2024-11-21 6.7 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/srso: Add SRSO mitigation for Hygon processors Add mitigation for the speculative return stack overflow vulnerability which exists on Hygon processors too.
CVE-2023-52478 1 Redhat 1 Enterprise Linux 2024-11-21 6.0 Medium
In the Linux kernel, the following vulnerability has been resolved: HID: logitech-hidpp: Fix kernel crash on receiver USB disconnect hidpp_connect_event() has *four* time-of-check vs time-of-use (TOCTOU) races when it races with itself. hidpp_connect_event() primarily runs from a workqueue but it also runs on probe() and if a "device-connected" packet is received by the hw when the thread running hidpp_connect_event() from probe() is waiting on the hw, then a second thread running hidpp_connect_event() will be started from the workqueue. This opens the following races (note the below code is simplified): 1. Retrieving + printing the protocol (harmless race): if (!hidpp->protocol_major) { hidpp_root_get_protocol_version() hidpp->protocol_major = response.rap.params[0]; } We can actually see this race hit in the dmesg in the abrt output attached to rhbz#2227968: [ 3064.624215] logitech-hidpp-device 0003:046D:4071.0049: HID++ 4.5 device connected. [ 3064.658184] logitech-hidpp-device 0003:046D:4071.0049: HID++ 4.5 device connected. Testing with extra logging added has shown that after this the 2 threads take turn grabbing the hw access mutex (send_mutex) so they ping-pong through all the other TOCTOU cases managing to hit all of them: 2. Updating the name to the HIDPP name (harmless race): if (hidpp->name == hdev->name) { ... hidpp->name = new_name; } 3. Initializing the power_supply class for the battery (problematic!): hidpp_initialize_battery() { if (hidpp->battery.ps) return 0; probe_battery(); /* Blocks, threads take turns executing this */ hidpp->battery.desc.properties = devm_kmemdup(dev, hidpp_battery_props, cnt, GFP_KERNEL); hidpp->battery.ps = devm_power_supply_register(&hidpp->hid_dev->dev, &hidpp->battery.desc, cfg); } 4. Creating delayed input_device (potentially problematic): if (hidpp->delayed_input) return; hidpp->delayed_input = hidpp_allocate_input(hdev); The really big problem here is 3. Hitting the race leads to the following sequence: hidpp->battery.desc.properties = devm_kmemdup(dev, hidpp_battery_props, cnt, GFP_KERNEL); hidpp->battery.ps = devm_power_supply_register(&hidpp->hid_dev->dev, &hidpp->battery.desc, cfg); ... hidpp->battery.desc.properties = devm_kmemdup(dev, hidpp_battery_props, cnt, GFP_KERNEL); hidpp->battery.ps = devm_power_supply_register(&hidpp->hid_dev->dev, &hidpp->battery.desc, cfg); So now we have registered 2 power supplies for the same battery, which looks a bit weird from userspace's pov but this is not even the really big problem. Notice how: 1. This is all devm-maganaged 2. The hidpp->battery.desc struct is shared between the 2 power supplies 3. hidpp->battery.desc.properties points to the result from the second devm_kmemdup() This causes a use after free scenario on USB disconnect of the receiver: 1. The last registered power supply class device gets unregistered 2. The memory from the last devm_kmemdup() call gets freed, hidpp->battery.desc.properties now points to freed memory 3. The first registered power supply class device gets unregistered, this involves sending a remove uevent to userspace which invokes power_supply_uevent() to fill the uevent data 4. power_supply_uevent() uses hidpp->battery.desc.properties which now points to freed memory leading to backtraces like this one: Sep 22 20:01:35 eric kernel: BUG: unable to handle page fault for address: ffffb2140e017f08 ... Sep 22 20:01:35 eric kernel: Workqueue: usb_hub_wq hub_event Sep 22 20:01:35 eric kernel: RIP: 0010:power_supply_uevent+0xee/0x1d0 ... Sep 22 20:01:35 eric kernel: ? asm_exc_page_fault+0x26/0x30 Sep 22 20:01:35 eric kernel: ? power_supply_uevent+0xee/0x1d0 Sep 22 20:01:35 eric kernel: ? power_supply_uevent+0x10d/0x1d0 Sep 22 20:01:35 eric kernel: dev_uevent+0x10f/0x2d0 Sep 22 20:01:35 eric kernel: kobject_uevent_env+0x291/0x680 Sep 22 20:01:35 eric kernel: ---truncated---
CVE-2023-52477 1 Redhat 1 Enterprise Linux 2024-11-21 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: usb: hub: Guard against accesses to uninitialized BOS descriptors Many functions in drivers/usb/core/hub.c and drivers/usb/core/hub.h access fields inside udev->bos without checking if it was allocated and initialized. If usb_get_bos_descriptor() fails for whatever reason, udev->bos will be NULL and those accesses will result in a crash: BUG: kernel NULL pointer dereference, address: 0000000000000018 PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 5 PID: 17818 Comm: kworker/5:1 Tainted: G W 5.15.108-18910-gab0e1cb584e1 #1 <HASH:1f9e 1> Hardware name: Google Kindred/Kindred, BIOS Google_Kindred.12672.413.0 02/03/2021 Workqueue: usb_hub_wq hub_event RIP: 0010:hub_port_reset+0x193/0x788 Code: 89 f7 e8 20 f7 15 00 48 8b 43 08 80 b8 96 03 00 00 03 75 36 0f b7 88 92 03 00 00 81 f9 10 03 00 00 72 27 48 8b 80 a8 03 00 00 <48> 83 78 18 00 74 19 48 89 df 48 8b 75 b0 ba 02 00 00 00 4c 89 e9 RSP: 0018:ffffab740c53fcf8 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffffa1bc5f678000 RCX: 0000000000000310 RDX: fffffffffffffdff RSI: 0000000000000286 RDI: ffffa1be9655b840 RBP: ffffab740c53fd70 R08: 00001b7d5edaa20c R09: ffffffffb005e060 R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000 R13: ffffab740c53fd3e R14: 0000000000000032 R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffffa1be96540000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000018 CR3: 000000022e80c005 CR4: 00000000003706e0 Call Trace: hub_event+0x73f/0x156e ? hub_activate+0x5b7/0x68f process_one_work+0x1a2/0x487 worker_thread+0x11a/0x288 kthread+0x13a/0x152 ? process_one_work+0x487/0x487 ? kthread_associate_blkcg+0x70/0x70 ret_from_fork+0x1f/0x30 Fall back to a default behavior if the BOS descriptor isn't accessible and skip all the functionalities that depend on it: LPM support checks, Super Speed capabilitiy checks, U1/U2 states setup.
CVE-2023-52476 1 Redhat 1 Enterprise Linux 2024-11-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: perf/x86/lbr: Filter vsyscall addresses We found that a panic can occur when a vsyscall is made while LBR sampling is active. If the vsyscall is interrupted (NMI) for perf sampling, this call sequence can occur (most recent at top): __insn_get_emulate_prefix() insn_get_emulate_prefix() insn_get_prefixes() insn_get_opcode() decode_branch_type() get_branch_type() intel_pmu_lbr_filter() intel_pmu_handle_irq() perf_event_nmi_handler() Within __insn_get_emulate_prefix() at frame 0, a macro is called: peek_nbyte_next(insn_byte_t, insn, i) Within this macro, this dereference occurs: (insn)->next_byte Inspecting registers at this point, the value of the next_byte field is the address of the vsyscall made, for example the location of the vsyscall version of gettimeofday() at 0xffffffffff600000. The access to an address in the vsyscall region will trigger an oops due to an unhandled page fault. To fix the bug, filtering for vsyscalls can be done when determining the branch type. This patch will return a "none" branch if a kernel address if found to lie in the vsyscall region.
CVE-2023-52475 1 Redhat 1 Enterprise Linux 2024-11-21 6.1 Medium
In the Linux kernel, the following vulnerability has been resolved: Input: powermate - fix use-after-free in powermate_config_complete syzbot has found a use-after-free bug [1] in the powermate driver. This happens when the device is disconnected, which leads to a memory free from the powermate_device struct. When an asynchronous control message completes after the kfree and its callback is invoked, the lock does not exist anymore and hence the bug. Use usb_kill_urb() on pm->config to cancel any in-progress requests upon device disconnection. [1] https://syzkaller.appspot.com/bug?extid=0434ac83f907a1dbdd1e
CVE-2023-52473 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2024-11-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: thermal: core: Fix NULL pointer dereference in zone registration error path If device_register() in thermal_zone_device_register_with_trips() returns an error, the tz variable is set to NULL and subsequently dereferenced in kfree(tz->tzp). Commit adc8749b150c ("thermal/drivers/core: Use put_device() if device_register() fails") added the tz = NULL assignment in question to avoid a possible double-free after dropping the reference to the zone device. However, after commit 4649620d9404 ("thermal: core: Make thermal_zone_device_unregister() return after freeing the zone"), that assignment has become redundant, because dropping the reference to the zone device does not cause the zone object to be freed any more. Drop it to address the NULL pointer dereference.
CVE-2023-52471 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2024-11-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ice: Fix some null pointer dereference issues in ice_ptp.c devm_kasprintf() returns a pointer to dynamically allocated memory which can be NULL upon failure.
CVE-2023-52470 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2024-11-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/radeon: check the alloc_workqueue return value in radeon_crtc_init() check the alloc_workqueue return value in radeon_crtc_init() to avoid null-ptr-deref.