CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
net: qcom/emac: fix UAF in emac_remove
adpt is netdev private data and it cannot be
used after free_netdev() call. Using adpt after free_netdev()
can cause UAF bug. Fix it by moving free_netdev() at the end of the
function. |
In the Linux kernel, the following vulnerability has been resolved:
net: ti: fix UAF in tlan_remove_one
priv is netdev private data and it cannot be
used after free_netdev() call. Using priv after free_netdev()
can cause UAF bug. Fix it by moving free_netdev() at the end of the
function. |
In the Linux kernel, the following vulnerability has been resolved:
igb: Fix use-after-free error during reset
Cleans the next descriptor to watch (next_to_watch) when cleaning the
TX ring.
Failure to do so can cause invalid memory accesses. If igb_poll() runs
while the controller is reset this can lead to the driver try to free
a skb that was already freed.
(The crash is harder to reproduce with the igb driver, but the same
potential problem exists as the code is identical to igc) |
In the Linux kernel, the following vulnerability has been resolved:
ACPI: fix NULL pointer dereference
Commit 71f642833284 ("ACPI: utils: Fix reference counting in
for_each_acpi_dev_match()") started doing "acpi_dev_put()" on a pointer
that was possibly NULL. That fails miserably, because that helper
inline function is not set up to handle that case.
Just make acpi_dev_put() silently accept a NULL pointer, rather than
calling down to put_device() with an invalid offset off that NULL
pointer. |
In the Linux kernel, the following vulnerability has been resolved:
driver core: auxiliary bus: Fix memory leak when driver_register() fail
If driver_register() returns with error we need to free the memory
allocated for auxdrv->driver.name before returning from
__auxiliary_driver_register() |
In the Linux kernel, the following vulnerability has been resolved:
isdn: mISDN: netjet: Fix crash in nj_probe:
'nj_setup' in netjet.c might fail with -EIO and in this case
'card->irq' is initialized and is bigger than zero. A subsequent call to
'nj_release' will free the irq that has not been requested.
Fix this bug by deleting the previous assignment to 'card->irq' and just
keep the assignment before 'request_irq'.
The KASAN's log reveals it:
[ 3.354615 ] WARNING: CPU: 0 PID: 1 at kernel/irq/manage.c:1826
free_irq+0x100/0x480
[ 3.355112 ] Modules linked in:
[ 3.355310 ] CPU: 0 PID: 1 Comm: swapper/0 Not tainted
5.13.0-rc1-00144-g25a1298726e #13
[ 3.355816 ] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS
rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
[ 3.356552 ] RIP: 0010:free_irq+0x100/0x480
[ 3.356820 ] Code: 6e 08 74 6f 4d 89 f4 e8 5e ac 09 00 4d 8b 74 24 18
4d 85 f6 75 e3 e8 4f ac 09 00 8b 75 c8 48 c7 c7 78 c1 2e 85 e8 e0 cf f5
ff <0f> 0b 48 8b 75 c0 4c 89 ff e8 72 33 0b 03 48 8b 43 40 4c 8b a0 80
[ 3.358012 ] RSP: 0000:ffffc90000017b48 EFLAGS: 00010082
[ 3.358357 ] RAX: 0000000000000000 RBX: ffff888104dc8000 RCX:
0000000000000000
[ 3.358814 ] RDX: ffff8881003c8000 RSI: ffffffff8124a9e6 RDI:
00000000ffffffff
[ 3.359272 ] RBP: ffffc90000017b88 R08: 0000000000000000 R09:
0000000000000000
[ 3.359732 ] R10: ffffc900000179f0 R11: 0000000000001d04 R12:
0000000000000000
[ 3.360195 ] R13: ffff888107dc6000 R14: ffff888107dc6928 R15:
ffff888104dc80a8
[ 3.360652 ] FS: 0000000000000000(0000) GS:ffff88817bc00000(0000)
knlGS:0000000000000000
[ 3.361170 ] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 3.361538 ] CR2: 0000000000000000 CR3: 000000000582e000 CR4:
00000000000006f0
[ 3.362003 ] DR0: 0000000000000000 DR1: 0000000000000000 DR2:
0000000000000000
[ 3.362175 ] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7:
0000000000000400
[ 3.362175 ] Call Trace:
[ 3.362175 ] nj_release+0x51/0x1e0
[ 3.362175 ] nj_probe+0x450/0x950
[ 3.362175 ] ? pci_device_remove+0x110/0x110
[ 3.362175 ] local_pci_probe+0x45/0xa0
[ 3.362175 ] pci_device_probe+0x12b/0x1d0
[ 3.362175 ] really_probe+0x2a9/0x610
[ 3.362175 ] driver_probe_device+0x90/0x1d0
[ 3.362175 ] ? mutex_lock_nested+0x1b/0x20
[ 3.362175 ] device_driver_attach+0x68/0x70
[ 3.362175 ] __driver_attach+0x124/0x1b0
[ 3.362175 ] ? device_driver_attach+0x70/0x70
[ 3.362175 ] bus_for_each_dev+0xbb/0x110
[ 3.362175 ] ? rdinit_setup+0x45/0x45
[ 3.362175 ] driver_attach+0x27/0x30
[ 3.362175 ] bus_add_driver+0x1eb/0x2a0
[ 3.362175 ] driver_register+0xa9/0x180
[ 3.362175 ] __pci_register_driver+0x82/0x90
[ 3.362175 ] ? w6692_init+0x38/0x38
[ 3.362175 ] nj_init+0x36/0x38
[ 3.362175 ] do_one_initcall+0x7f/0x3d0
[ 3.362175 ] ? rdinit_setup+0x45/0x45
[ 3.362175 ] ? rcu_read_lock_sched_held+0x4f/0x80
[ 3.362175 ] kernel_init_freeable+0x2aa/0x301
[ 3.362175 ] ? rest_init+0x2c0/0x2c0
[ 3.362175 ] kernel_init+0x18/0x190
[ 3.362175 ] ? rest_init+0x2c0/0x2c0
[ 3.362175 ] ? rest_init+0x2c0/0x2c0
[ 3.362175 ] ret_from_fork+0x1f/0x30
[ 3.362175 ] Kernel panic - not syncing: panic_on_warn set ...
[ 3.362175 ] CPU: 0 PID: 1 Comm: swapper/0 Not tainted
5.13.0-rc1-00144-g25a1298726e #13
[ 3.362175 ] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS
rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
[ 3.362175 ] Call Trace:
[ 3.362175 ] dump_stack+0xba/0xf5
[ 3.362175 ] ? free_irq+0x100/0x480
[ 3.362175 ] panic+0x15a/0x3f2
[ 3.362175 ] ? __warn+0xf2/0x150
[ 3.362175 ] ? free_irq+0x100/0x480
[ 3.362175 ] __warn+0x108/0x150
[ 3.362175 ] ? free_irq+0x100/0x480
[ 3.362175 ] report_bug+0x119/0x1c0
[ 3.362175 ] handle_bug+0x3b/0x80
[ 3.362175 ] exc_invalid_op+0x18/0x70
[ 3.362175 ] asm_exc_invalid_op+0x12/0x20
[ 3.362175 ] RIP: 0010:free_irq+0x100
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
net: ieee802154: fix null deref in parse dev addr
Fix a logic error that could result in a null deref if the user sets
the mode incorrectly for the given addr type. |
In the Linux kernel, the following vulnerability has been resolved:
net: cdc_eem: fix tx fixup skb leak
when usbnet transmit a skb, eem fixup it in eem_tx_fixup(),
if skb_copy_expand() failed, it return NULL,
usbnet_start_xmit() will have no chance to free original skb.
fix it by free orginal skb in eem_tx_fixup() first,
then check skb clone status, if failed, return NULL to usbnet. |
In the Linux kernel, the following vulnerability has been resolved:
mm/slub: actually fix freelist pointer vs redzoning
It turns out that SLUB redzoning ("slub_debug=Z") checks from
s->object_size rather than from s->inuse (which is normally bumped to
make room for the freelist pointer), so a cache created with an object
size less than 24 would have the freelist pointer written beyond
s->object_size, causing the redzone to be corrupted by the freelist
pointer. This was very visible with "slub_debug=ZF":
BUG test (Tainted: G B ): Right Redzone overwritten
-----------------------------------------------------------------------------
INFO: 0xffff957ead1c05de-0xffff957ead1c05df @offset=1502. First byte 0x1a instead of 0xbb
INFO: Slab 0xffffef3950b47000 objects=170 used=170 fp=0x0000000000000000 flags=0x8000000000000200
INFO: Object 0xffff957ead1c05d8 @offset=1496 fp=0xffff957ead1c0620
Redzone (____ptrval____): bb bb bb bb bb bb bb bb ........
Object (____ptrval____): 00 00 00 00 00 f6 f4 a5 ........
Redzone (____ptrval____): 40 1d e8 1a aa @....
Padding (____ptrval____): 00 00 00 00 00 00 00 00 ........
Adjust the offset to stay within s->object_size.
(Note that no caches of in this size range are known to exist in the
kernel currently.) |
In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Fix list_add() corruption in lpfc_drain_txq()
When parsing the txq list in lpfc_drain_txq(), the driver attempts to pass
the requests to the adapter. If such an attempt fails, a local "fail_msg"
string is set and a log message output. The job is then added to a
completions list for cancellation.
Processing of any further jobs from the txq list continues, but since
"fail_msg" remains set, jobs are added to the completions list regardless
of whether a wqe was passed to the adapter. If successfully added to
txcmplq, jobs are added to both lists resulting in list corruption.
Fix by clearing the fail_msg string after adding a job to the completions
list. This stops the subsequent jobs from being added to the completions
list unless they had an appropriate failure. |
In the Linux kernel, the following vulnerability has been resolved:
tty: tty_buffer: Fix the softlockup issue in flush_to_ldisc
When running ltp testcase(ltp/testcases/kernel/pty/pty04.c) with arm64, there is a soft lockup,
which look like this one:
Workqueue: events_unbound flush_to_ldisc
Call trace:
dump_backtrace+0x0/0x1ec
show_stack+0x24/0x30
dump_stack+0xd0/0x128
panic+0x15c/0x374
watchdog_timer_fn+0x2b8/0x304
__run_hrtimer+0x88/0x2c0
__hrtimer_run_queues+0xa4/0x120
hrtimer_interrupt+0xfc/0x270
arch_timer_handler_phys+0x40/0x50
handle_percpu_devid_irq+0x94/0x220
__handle_domain_irq+0x88/0xf0
gic_handle_irq+0x84/0xfc
el1_irq+0xc8/0x180
slip_unesc+0x80/0x214 [slip]
tty_ldisc_receive_buf+0x64/0x80
tty_port_default_receive_buf+0x50/0x90
flush_to_ldisc+0xbc/0x110
process_one_work+0x1d4/0x4b0
worker_thread+0x180/0x430
kthread+0x11c/0x120
In the testcase pty04, The first process call the write syscall to send
data to the pty master. At the same time, the workqueue will do the
flush_to_ldisc to pop data in a loop until there is no more data left.
When the sender and workqueue running in different core, the sender sends
data fastly in full time which will result in workqueue doing work in loop
for a long time and occuring softlockup in flush_to_ldisc with kernel
configured without preempt. So I add need_resched check and cond_resched
in the flush_to_ldisc loop to avoid it. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: target: core: Avoid smp_processor_id() in preemptible code
The BUG message "BUG: using smp_processor_id() in preemptible [00000000]
code" was observed for TCMU devices with kernel config DEBUG_PREEMPT.
The message was observed when blktests block/005 was run on TCMU devices
with fileio backend or user:zbc backend [1]. The commit 1130b499b4a7
("scsi: target: tcm_loop: Use LIO wq cmd submission helper") triggered the
symptom. The commit modified work queue to handle commands and changed
'current->nr_cpu_allowed' at smp_processor_id() call.
The message was also observed at system shutdown when TCMU devices were not
cleaned up [2]. The function smp_processor_id() was called in SCSI host
work queue for abort handling, and triggered the BUG message. This symptom
was observed regardless of the commit 1130b499b4a7 ("scsi: target:
tcm_loop: Use LIO wq cmd submission helper").
To avoid the preemptible code check at smp_processor_id(), get CPU ID with
raw_smp_processor_id() instead. The CPU ID is used for performance
improvement then thread move to other CPU will not affect the code.
[1]
[ 56.468103] run blktests block/005 at 2021-05-12 14:16:38
[ 57.369473] check_preemption_disabled: 85 callbacks suppressed
[ 57.369480] BUG: using smp_processor_id() in preemptible [00000000] code: fio/1511
[ 57.369506] BUG: using smp_processor_id() in preemptible [00000000] code: fio/1510
[ 57.369512] BUG: using smp_processor_id() in preemptible [00000000] code: fio/1506
[ 57.369552] caller is __target_init_cmd+0x157/0x170 [target_core_mod]
[ 57.369606] CPU: 4 PID: 1506 Comm: fio Not tainted 5.13.0-rc1+ #34
[ 57.369613] Hardware name: System manufacturer System Product Name/PRIME Z270-A, BIOS 1302 03/15/2018
[ 57.369617] Call Trace:
[ 57.369621] BUG: using smp_processor_id() in preemptible [00000000] code: fio/1507
[ 57.369628] dump_stack+0x6d/0x89
[ 57.369642] check_preemption_disabled+0xc8/0xd0
[ 57.369628] caller is __target_init_cmd+0x157/0x170 [target_core_mod]
[ 57.369655] __target_init_cmd+0x157/0x170 [target_core_mod]
[ 57.369695] target_init_cmd+0x76/0x90 [target_core_mod]
[ 57.369732] tcm_loop_queuecommand+0x109/0x210 [tcm_loop]
[ 57.369744] scsi_queue_rq+0x38e/0xc40
[ 57.369761] __blk_mq_try_issue_directly+0x109/0x1c0
[ 57.369779] blk_mq_try_issue_directly+0x43/0x90
[ 57.369790] blk_mq_submit_bio+0x4e5/0x5d0
[ 57.369812] submit_bio_noacct+0x46e/0x4e0
[ 57.369830] __blkdev_direct_IO_simple+0x1a3/0x2d0
[ 57.369859] ? set_init_blocksize.isra.0+0x60/0x60
[ 57.369880] generic_file_read_iter+0x89/0x160
[ 57.369898] blkdev_read_iter+0x44/0x60
[ 57.369906] new_sync_read+0x102/0x170
[ 57.369929] vfs_read+0xd4/0x160
[ 57.369941] __x64_sys_pread64+0x6e/0xa0
[ 57.369946] ? lockdep_hardirqs_on+0x79/0x100
[ 57.369958] do_syscall_64+0x3a/0x70
[ 57.369965] entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 57.369973] RIP: 0033:0x7f7ed4c1399f
[ 57.369979] Code: 08 89 3c 24 48 89 4c 24 18 e8 7d f3 ff ff 4c 8b 54 24 18 48 8b 54 24 10 41 89 c0 48 8b 74 24 08 8b 3c 24 b8 11 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 31 44 89 c7 48 89 04 24 e8 cd f3 ff ff 48 8b
[ 57.369983] RSP: 002b:00007ffd7918c580 EFLAGS: 00000293 ORIG_RAX: 0000000000000011
[ 57.369990] RAX: ffffffffffffffda RBX: 00000000015b4540 RCX: 00007f7ed4c1399f
[ 57.369993] RDX: 0000000000001000 RSI: 00000000015de000 RDI: 0000000000000009
[ 57.369996] RBP: 00000000015b4540 R08: 0000000000000000 R09: 0000000000000001
[ 57.369999] R10: 0000000000e5c000 R11: 0000000000000293 R12: 00007f7eb5269a70
[ 57.370002] R13: 0000000000000000 R14: 0000000000001000 R15: 00000000015b4568
[ 57.370031] CPU: 7 PID: 1507 Comm: fio Not tainted 5.13.0-rc1+ #34
[ 57.370036] Hardware name: System manufacturer System Product Name/PRIME Z270-A, BIOS 1302 03/15/2018
[ 57.370039] Call Trace:
[ 57.370045] dump_stack+0x6d/0x89
[ 57.370056] ch
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
net: usb: fix memory leak in smsc75xx_bind
Syzbot reported memory leak in smsc75xx_bind().
The problem was is non-freed memory in case of
errors after memory allocation.
backtrace:
[<ffffffff84245b62>] kmalloc include/linux/slab.h:556 [inline]
[<ffffffff84245b62>] kzalloc include/linux/slab.h:686 [inline]
[<ffffffff84245b62>] smsc75xx_bind+0x7a/0x334 drivers/net/usb/smsc75xx.c:1460
[<ffffffff82b5b2e6>] usbnet_probe+0x3b6/0xc30 drivers/net/usb/usbnet.c:1728 |
In the Linux kernel, the following vulnerability has been resolved:
cxgb4: avoid accessing registers when clearing filters
Hardware register having the server TID base can contain
invalid values when adapter is in bad state (for example,
due to AER fatal error). Reading these invalid values in the
register can lead to out-of-bound memory access. So, fix
by using the saved server TID base when clearing filters. |
In the Linux kernel, the following vulnerability has been resolved:
pid: take a reference when initializing `cad_pid`
During boot, kernel_init_freeable() initializes `cad_pid` to the init
task's struct pid. Later on, we may change `cad_pid` via a sysctl, and
when this happens proc_do_cad_pid() will increment the refcount on the
new pid via get_pid(), and will decrement the refcount on the old pid
via put_pid(). As we never called get_pid() when we initialized
`cad_pid`, we decrement a reference we never incremented, can therefore
free the init task's struct pid early. As there can be dangling
references to the struct pid, we can later encounter a use-after-free
(e.g. when delivering signals).
This was spotted when fuzzing v5.13-rc3 with Syzkaller, but seems to
have been around since the conversion of `cad_pid` to struct pid in
commit 9ec52099e4b8 ("[PATCH] replace cad_pid by a struct pid") from the
pre-KASAN stone age of v2.6.19.
Fix this by getting a reference to the init task's struct pid when we
assign it to `cad_pid`.
Full KASAN splat below.
==================================================================
BUG: KASAN: use-after-free in ns_of_pid include/linux/pid.h:153 [inline]
BUG: KASAN: use-after-free in task_active_pid_ns+0xc0/0xc8 kernel/pid.c:509
Read of size 4 at addr ffff23794dda0004 by task syz-executor.0/273
CPU: 1 PID: 273 Comm: syz-executor.0 Not tainted 5.12.0-00001-g9aef892b2d15 #1
Hardware name: linux,dummy-virt (DT)
Call trace:
ns_of_pid include/linux/pid.h:153 [inline]
task_active_pid_ns+0xc0/0xc8 kernel/pid.c:509
do_notify_parent+0x308/0xe60 kernel/signal.c:1950
exit_notify kernel/exit.c:682 [inline]
do_exit+0x2334/0x2bd0 kernel/exit.c:845
do_group_exit+0x108/0x2c8 kernel/exit.c:922
get_signal+0x4e4/0x2a88 kernel/signal.c:2781
do_signal arch/arm64/kernel/signal.c:882 [inline]
do_notify_resume+0x300/0x970 arch/arm64/kernel/signal.c:936
work_pending+0xc/0x2dc
Allocated by task 0:
slab_post_alloc_hook+0x50/0x5c0 mm/slab.h:516
slab_alloc_node mm/slub.c:2907 [inline]
slab_alloc mm/slub.c:2915 [inline]
kmem_cache_alloc+0x1f4/0x4c0 mm/slub.c:2920
alloc_pid+0xdc/0xc00 kernel/pid.c:180
copy_process+0x2794/0x5e18 kernel/fork.c:2129
kernel_clone+0x194/0x13c8 kernel/fork.c:2500
kernel_thread+0xd4/0x110 kernel/fork.c:2552
rest_init+0x44/0x4a0 init/main.c:687
arch_call_rest_init+0x1c/0x28
start_kernel+0x520/0x554 init/main.c:1064
0x0
Freed by task 270:
slab_free_hook mm/slub.c:1562 [inline]
slab_free_freelist_hook+0x98/0x260 mm/slub.c:1600
slab_free mm/slub.c:3161 [inline]
kmem_cache_free+0x224/0x8e0 mm/slub.c:3177
put_pid.part.4+0xe0/0x1a8 kernel/pid.c:114
put_pid+0x30/0x48 kernel/pid.c:109
proc_do_cad_pid+0x190/0x1b0 kernel/sysctl.c:1401
proc_sys_call_handler+0x338/0x4b0 fs/proc/proc_sysctl.c:591
proc_sys_write+0x34/0x48 fs/proc/proc_sysctl.c:617
call_write_iter include/linux/fs.h:1977 [inline]
new_sync_write+0x3ac/0x510 fs/read_write.c:518
vfs_write fs/read_write.c:605 [inline]
vfs_write+0x9c4/0x1018 fs/read_write.c:585
ksys_write+0x124/0x240 fs/read_write.c:658
__do_sys_write fs/read_write.c:670 [inline]
__se_sys_write fs/read_write.c:667 [inline]
__arm64_sys_write+0x78/0xb0 fs/read_write.c:667
__invoke_syscall arch/arm64/kernel/syscall.c:37 [inline]
invoke_syscall arch/arm64/kernel/syscall.c:49 [inline]
el0_svc_common.constprop.1+0x16c/0x388 arch/arm64/kernel/syscall.c:129
do_el0_svc+0xf8/0x150 arch/arm64/kernel/syscall.c:168
el0_svc+0x28/0x38 arch/arm64/kernel/entry-common.c:416
el0_sync_handler+0x134/0x180 arch/arm64/kernel/entry-common.c:432
el0_sync+0x154/0x180 arch/arm64/kernel/entry.S:701
The buggy address belongs to the object at ffff23794dda0000
which belongs to the cache pid of size 224
The buggy address is located 4 bytes inside of
224-byte region [ff
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
NFSD: Fix READDIR buffer overflow
If a client sends a READDIR count argument that is too small (say,
zero), then the buffer size calculation in the new init_dirlist
helper functions results in an underflow, allowing the XDR stream
functions to write beyond the actual buffer.
This calculation has always been suspect. NFSD has never sanity-
checked the READDIR count argument, but the old entry encoders
managed the problem correctly.
With the commits below, entry encoding changed, exposing the
underflow to the pointer arithmetic in xdr_reserve_space().
Modern NFS clients attempt to retrieve as much data as possible
for each READDIR request. Also, we have no unit tests that
exercise the behavior of READDIR at the lower bound of @count
values. Thus this case was missed during testing. |
In the Linux kernel, the following vulnerability has been resolved:
inet: fully convert sk->sk_rx_dst to RCU rules
syzbot reported various issues around early demux,
one being included in this changelog [1]
sk->sk_rx_dst is using RCU protection without clearly
documenting it.
And following sequences in tcp_v4_do_rcv()/tcp_v6_do_rcv()
are not following standard RCU rules.
[a] dst_release(dst);
[b] sk->sk_rx_dst = NULL;
They look wrong because a delete operation of RCU protected
pointer is supposed to clear the pointer before
the call_rcu()/synchronize_rcu() guarding actual memory freeing.
In some cases indeed, dst could be freed before [b] is done.
We could cheat by clearing sk_rx_dst before calling
dst_release(), but this seems the right time to stick
to standard RCU annotations and debugging facilities.
[1]
BUG: KASAN: use-after-free in dst_check include/net/dst.h:470 [inline]
BUG: KASAN: use-after-free in tcp_v4_early_demux+0x95b/0x960 net/ipv4/tcp_ipv4.c:1792
Read of size 2 at addr ffff88807f1cb73a by task syz-executor.5/9204
CPU: 0 PID: 9204 Comm: syz-executor.5 Not tainted 5.16.0-rc5-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106
print_address_description.constprop.0.cold+0x8d/0x320 mm/kasan/report.c:247
__kasan_report mm/kasan/report.c:433 [inline]
kasan_report.cold+0x83/0xdf mm/kasan/report.c:450
dst_check include/net/dst.h:470 [inline]
tcp_v4_early_demux+0x95b/0x960 net/ipv4/tcp_ipv4.c:1792
ip_rcv_finish_core.constprop.0+0x15de/0x1e80 net/ipv4/ip_input.c:340
ip_list_rcv_finish.constprop.0+0x1b2/0x6e0 net/ipv4/ip_input.c:583
ip_sublist_rcv net/ipv4/ip_input.c:609 [inline]
ip_list_rcv+0x34e/0x490 net/ipv4/ip_input.c:644
__netif_receive_skb_list_ptype net/core/dev.c:5508 [inline]
__netif_receive_skb_list_core+0x549/0x8e0 net/core/dev.c:5556
__netif_receive_skb_list net/core/dev.c:5608 [inline]
netif_receive_skb_list_internal+0x75e/0xd80 net/core/dev.c:5699
gro_normal_list net/core/dev.c:5853 [inline]
gro_normal_list net/core/dev.c:5849 [inline]
napi_complete_done+0x1f1/0x880 net/core/dev.c:6590
virtqueue_napi_complete drivers/net/virtio_net.c:339 [inline]
virtnet_poll+0xca2/0x11b0 drivers/net/virtio_net.c:1557
__napi_poll+0xaf/0x440 net/core/dev.c:7023
napi_poll net/core/dev.c:7090 [inline]
net_rx_action+0x801/0xb40 net/core/dev.c:7177
__do_softirq+0x29b/0x9c2 kernel/softirq.c:558
invoke_softirq kernel/softirq.c:432 [inline]
__irq_exit_rcu+0x123/0x180 kernel/softirq.c:637
irq_exit_rcu+0x5/0x20 kernel/softirq.c:649
common_interrupt+0x52/0xc0 arch/x86/kernel/irq.c:240
asm_common_interrupt+0x1e/0x40 arch/x86/include/asm/idtentry.h:629
RIP: 0033:0x7f5e972bfd57
Code: 39 d1 73 14 0f 1f 80 00 00 00 00 48 8b 50 f8 48 83 e8 08 48 39 ca 77 f3 48 39 c3 73 3e 48 89 13 48 8b 50 f8 48 89 38 49 8b 0e <48> 8b 3e 48 83 c3 08 48 83 c6 08 eb bc 48 39 d1 72 9e 48 39 d0 73
RSP: 002b:00007fff8a413210 EFLAGS: 00000283
RAX: 00007f5e97108990 RBX: 00007f5e97108338 RCX: ffffffff81d3aa45
RDX: ffffffff81d3aa45 RSI: 00007f5e97108340 RDI: ffffffff81d3aa45
RBP: 00007f5e97107eb8 R08: 00007f5e97108d88 R09: 0000000093c2e8d9
R10: 0000000000000000 R11: 0000000000000000 R12: 00007f5e97107eb0
R13: 00007f5e97108338 R14: 00007f5e97107ea8 R15: 0000000000000019
</TASK>
Allocated by task 13:
kasan_save_stack+0x1e/0x50 mm/kasan/common.c:38
kasan_set_track mm/kasan/common.c:46 [inline]
set_alloc_info mm/kasan/common.c:434 [inline]
__kasan_slab_alloc+0x90/0xc0 mm/kasan/common.c:467
kasan_slab_alloc include/linux/kasan.h:259 [inline]
slab_post_alloc_hook mm/slab.h:519 [inline]
slab_alloc_node mm/slub.c:3234 [inline]
slab_alloc mm/slub.c:3242 [inline]
kmem_cache_alloc+0x202/0x3a0 mm/slub.c:3247
dst_alloc+0x146/0x1f0 net/core/dst.c:92
rt_dst_alloc+0x73/0x430 net/ipv4/route.c:1613
ip_route_input_slow+0x1817/0x3a20 net/ipv4/route.c:234
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
asix: fix uninit-value in asix_mdio_read()
asix_read_cmd() may read less than sizeof(smsr) bytes and in this case
smsr will be uninitialized.
Fail log:
BUG: KMSAN: uninit-value in asix_check_host_enable drivers/net/usb/asix_common.c:82 [inline]
BUG: KMSAN: uninit-value in asix_check_host_enable drivers/net/usb/asix_common.c:82 [inline] drivers/net/usb/asix_common.c:497
BUG: KMSAN: uninit-value in asix_mdio_read+0x3c1/0xb00 drivers/net/usb/asix_common.c:497 drivers/net/usb/asix_common.c:497
asix_check_host_enable drivers/net/usb/asix_common.c:82 [inline]
asix_check_host_enable drivers/net/usb/asix_common.c:82 [inline] drivers/net/usb/asix_common.c:497
asix_mdio_read+0x3c1/0xb00 drivers/net/usb/asix_common.c:497 drivers/net/usb/asix_common.c:497 |
In the Linux kernel, the following vulnerability has been resolved:
veth: ensure skb entering GRO are not cloned.
After commit d3256efd8e8b ("veth: allow enabling NAPI even without XDP"),
if GRO is enabled on a veth device and TSO is disabled on the peer
device, TCP skbs will go through the NAPI callback. If there is no XDP
program attached, the veth code does not perform any share check, and
shared/cloned skbs could enter the GRO engine.
Ignat reported a BUG triggered later-on due to the above condition:
[ 53.970529][ C1] kernel BUG at net/core/skbuff.c:3574!
[ 53.981755][ C1] invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI
[ 53.982634][ C1] CPU: 1 PID: 19 Comm: ksoftirqd/1 Not tainted 5.16.0-rc5+ #25
[ 53.982634][ C1] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
[ 53.982634][ C1] RIP: 0010:skb_shift+0x13ef/0x23b0
[ 53.982634][ C1] Code: ea 03 0f b6 04 02 48 89 fa 83 e2 07 38 d0
7f 08 84 c0 0f 85 41 0c 00 00 41 80 7f 02 00 4d 8d b5 d0 00 00 00 0f
85 74 f5 ff ff <0f> 0b 4d 8d 77 20 be 04 00 00 00 4c 89 44 24 78 4c 89
f7 4c 89 8c
[ 53.982634][ C1] RSP: 0018:ffff8881008f7008 EFLAGS: 00010246
[ 53.982634][ C1] RAX: 0000000000000000 RBX: ffff8881180b4c80 RCX: 0000000000000000
[ 53.982634][ C1] RDX: 0000000000000002 RSI: ffff8881180b4d3c RDI: ffff88810bc9cac2
[ 53.982634][ C1] RBP: ffff8881008f70b8 R08: ffff8881180b4cf4 R09: ffff8881180b4cf0
[ 53.982634][ C1] R10: ffffed1022999e5c R11: 0000000000000002 R12: 0000000000000590
[ 53.982634][ C1] R13: ffff88810f940c80 R14: ffff88810f940d50 R15: ffff88810bc9cac0
[ 53.982634][ C1] FS: 0000000000000000(0000) GS:ffff888235880000(0000) knlGS:0000000000000000
[ 53.982634][ C1] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 53.982634][ C1] CR2: 00007ff5f9b86680 CR3: 0000000108ce8004 CR4: 0000000000170ee0
[ 53.982634][ C1] Call Trace:
[ 53.982634][ C1] <TASK>
[ 53.982634][ C1] tcp_sacktag_walk+0xaba/0x18e0
[ 53.982634][ C1] tcp_sacktag_write_queue+0xe7b/0x3460
[ 53.982634][ C1] tcp_ack+0x2666/0x54b0
[ 53.982634][ C1] tcp_rcv_established+0x4d9/0x20f0
[ 53.982634][ C1] tcp_v4_do_rcv+0x551/0x810
[ 53.982634][ C1] tcp_v4_rcv+0x22ed/0x2ed0
[ 53.982634][ C1] ip_protocol_deliver_rcu+0x96/0xaf0
[ 53.982634][ C1] ip_local_deliver_finish+0x1e0/0x2f0
[ 53.982634][ C1] ip_sublist_rcv_finish+0x211/0x440
[ 53.982634][ C1] ip_list_rcv_finish.constprop.0+0x424/0x660
[ 53.982634][ C1] ip_list_rcv+0x2c8/0x410
[ 53.982634][ C1] __netif_receive_skb_list_core+0x65c/0x910
[ 53.982634][ C1] netif_receive_skb_list_internal+0x5f9/0xcb0
[ 53.982634][ C1] napi_complete_done+0x188/0x6e0
[ 53.982634][ C1] gro_cell_poll+0x10c/0x1d0
[ 53.982634][ C1] __napi_poll+0xa1/0x530
[ 53.982634][ C1] net_rx_action+0x567/0x1270
[ 53.982634][ C1] __do_softirq+0x28a/0x9ba
[ 53.982634][ C1] run_ksoftirqd+0x32/0x60
[ 53.982634][ C1] smpboot_thread_fn+0x559/0x8c0
[ 53.982634][ C1] kthread+0x3b9/0x490
[ 53.982634][ C1] ret_from_fork+0x22/0x30
[ 53.982634][ C1] </TASK>
Address the issue by skipping the GRO stage for shared or cloned skbs.
To reduce the chance of OoO, try to unclone the skbs before giving up.
v1 -> v2:
- use avoid skb_copy and fallback to netif_receive_skb - Eric |
In the Linux kernel, the following vulnerability has been resolved:
hwmon: (lm90) Prevent integer overflow/underflow in hysteresis calculations
Commit b50aa49638c7 ("hwmon: (lm90) Prevent integer underflows of
temperature calculations") addressed a number of underflow situations
when writing temperature limits. However, it missed one situation, seen
when an attempt is made to set the hysteresis value to MAX_LONG and the
critical temperature limit is negative.
Use clamp_val() when setting the hysteresis temperature to ensure that
the provided value can never overflow or underflow. |