| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: simple-card-utils: Don't use __free(device_node) at graph_util_parse_dai()
commit 419d1918105e ("ASoC: simple-card-utils: use __free(device_node) for
device node") uses __free(device_node) for dlc->of_node, but we need to
keep it while driver is in use.
Don't use __free(device_node) in graph_util_parse_dai(). |
| In the Linux kernel, the following vulnerability has been resolved:
x86/mce: use is_copy_from_user() to determine copy-from-user context
Patch series "mm/hwpoison: Fix regressions in memory failure handling",
v4.
## 1. What am I trying to do:
This patchset resolves two critical regressions related to memory failure
handling that have appeared in the upstream kernel since version 5.17, as
compared to 5.10 LTS.
- copyin case: poison found in user page while kernel copying from user space
- instr case: poison found while instruction fetching in user space
## 2. What is the expected outcome and why
- For copyin case:
Kernel can recover from poison found where kernel is doing get_user() or
copy_from_user() if those places get an error return and the kernel return
-EFAULT to the process instead of crashing. More specifily, MCE handler
checks the fixup handler type to decide whether an in kernel #MC can be
recovered. When EX_TYPE_UACCESS is found, the PC jumps to recovery code
specified in _ASM_EXTABLE_FAULT() and return a -EFAULT to user space.
- For instr case:
If a poison found while instruction fetching in user space, full recovery
is possible. User process takes #PF, Linux allocates a new page and fills
by reading from storage.
## 3. What actually happens and why
- For copyin case: kernel panic since v5.17
Commit 4c132d1d844a ("x86/futex: Remove .fixup usage") introduced a new
extable fixup type, EX_TYPE_EFAULT_REG, and later patches updated the
extable fixup type for copy-from-user operations, changing it from
EX_TYPE_UACCESS to EX_TYPE_EFAULT_REG. It breaks previous EX_TYPE_UACCESS
handling when posion found in get_user() or copy_from_user().
- For instr case: user process is killed by a SIGBUS signal due to #CMCI
and #MCE race
When an uncorrected memory error is consumed there is a race between the
CMCI from the memory controller reporting an uncorrected error with a UCNA
signature, and the core reporting and SRAR signature machine check when
the data is about to be consumed.
### Background: why *UN*corrected errors tied to *C*MCI in Intel platform [1]
Prior to Icelake memory controllers reported patrol scrub events that
detected a previously unseen uncorrected error in memory by signaling a
broadcast machine check with an SRAO (Software Recoverable Action
Optional) signature in the machine check bank. This was overkill because
it's not an urgent problem that no core is on the verge of consuming that
bad data. It's also found that multi SRAO UCE may cause nested MCE
interrupts and finally become an IERR.
Hence, Intel downgrades the machine check bank signature of patrol scrub
from SRAO to UCNA (Uncorrected, No Action required), and signal changed to
#CMCI. Just to add to the confusion, Linux does take an action (in
uc_decode_notifier()) to try to offline the page despite the UC*NA*
signature name.
### Background: why #CMCI and #MCE race when poison is consuming in
Intel platform [1]
Having decided that CMCI/UCNA is the best action for patrol scrub errors,
the memory controller uses it for reads too. But the memory controller is
executing asynchronously from the core, and can't tell the difference
between a "real" read and a speculative read. So it will do CMCI/UCNA if
an error is found in any read.
Thus:
1) Core is clever and thinks address A is needed soon, issues a
speculative read.
2) Core finds it is going to use address A soon after sending the read
request
3) The CMCI from the memory controller is in a race with MCE from the
core that will soon try to retire the load from address A.
Quite often (because speculation has got better) the CMCI from the memory
controller is delivered before the core is committed to the instruction
reading address A, so the interrupt is taken, and Linux offlines the page
(marking it as poison).
## Why user process is killed for instr case
Commit 046545a661af ("mm/hwpoison: fix error page recovered but reported
"not
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
md/raid10: wait barrier before returning discard request with REQ_NOWAIT
raid10_handle_discard should wait barrier before returning a discard bio
which has REQ_NOWAIT. And there is no need to print warning calltrace
if a discard bio has REQ_NOWAIT flag. Quality engineer usually checks
dmesg and reports error if dmesg has warning/error calltrace. |
| In the Linux kernel, the following vulnerability has been resolved:
media: mediatek: vcodec: Fix a resource leak related to the scp device in FW initialization
On Mediatek devices with a system companion processor (SCP) the mtk_scp
structure has to be removed explicitly to avoid a resource leak.
Free the structure in case the allocation of the firmware structure fails
during the firmware initialization. |
| A memory leak flaw was found in Golang in the RSA encrypting/decrypting code, which might lead to a resource exhaustion vulnerability using attacker-controlled inputs. The memory leak happens in github.com/golang-fips/openssl/openssl/rsa.go#L113. The objects leaked are pkey and ctx. That function uses named return parameters to free pkey and ctx if there is an error initializing the context or setting the different properties. All return statements related to error cases follow the "return nil, nil, fail(...)" pattern, meaning that pkey and ctx will be nil inside the deferred function that should free them. |
| runc is a CLI tool for spawning and running containers according to the OCI specification. Versions 1.0.0-rc3 through 1.2.7, 1.3.0-rc.1 through 1.3.2, and 1.4.0-rc.1 through 1.4.0-rc.2, due to insufficient checks when bind-mounting `/dev/pts/$n` to `/dev/console` inside the container, an attacker can trick runc into bind-mounting paths which would normally be made read-only or be masked onto a path that the attacker can write to. This attack is very similar in concept and application to CVE-2025-31133, except that it attacks a similar vulnerability in a different target (namely, the bind-mount of `/dev/pts/$n` to `/dev/console` as configured for all containers that allocate a console). This happens after `pivot_root(2)`, so this cannot be used to write to host files directly -- however, as with CVE-2025-31133, this can load to denial of service of the host or a container breakout by providing the attacker with a writable copy of `/proc/sysrq-trigger` or `/proc/sys/kernel/core_pattern` (respectively). This issue is fixed in versions 1.2.8, 1.3.3 and 1.4.0-rc.3. |
| A vulnerability was found in Buildah. Cache mounts do not properly validate that user-specified paths for the cache are within our cache directory, allowing a `RUN` instruction in a Container file to mount an arbitrary directory from the host (read/write) into the container as long as those files can be accessed by the user running Buildah. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix UAF in decryption with multichannel
After commit f7025d861694 ("smb: client: allocate crypto only for
primary server") and commit b0abcd65ec54 ("smb: client: fix UAF in
async decryption"), the channels started reusing AEAD TFM from primary
channel to perform synchronous decryption, but that can't done as
there could be multiple cifsd threads (one per channel) simultaneously
accessing it to perform decryption.
This fixes the following KASAN splat when running fstest generic/249
with 'vers=3.1.1,multichannel,max_channels=4,seal' against Windows
Server 2022:
BUG: KASAN: slab-use-after-free in gf128mul_4k_lle+0xba/0x110
Read of size 8 at addr ffff8881046c18a0 by task cifsd/986
CPU: 3 UID: 0 PID: 986 Comm: cifsd Not tainted 6.15.0-rc1 #1
PREEMPT(voluntary)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-3.fc41
04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x5d/0x80
print_report+0x156/0x528
? gf128mul_4k_lle+0xba/0x110
? __virt_addr_valid+0x145/0x300
? __phys_addr+0x46/0x90
? gf128mul_4k_lle+0xba/0x110
kasan_report+0xdf/0x1a0
? gf128mul_4k_lle+0xba/0x110
gf128mul_4k_lle+0xba/0x110
ghash_update+0x189/0x210
shash_ahash_update+0x295/0x370
? __pfx_shash_ahash_update+0x10/0x10
? __pfx_shash_ahash_update+0x10/0x10
? __pfx_extract_iter_to_sg+0x10/0x10
? ___kmalloc_large_node+0x10e/0x180
? __asan_memset+0x23/0x50
crypto_ahash_update+0x3c/0xc0
gcm_hash_assoc_remain_continue+0x93/0xc0
crypt_message+0xe09/0xec0 [cifs]
? __pfx_crypt_message+0x10/0x10 [cifs]
? _raw_spin_unlock+0x23/0x40
? __pfx_cifs_readv_from_socket+0x10/0x10 [cifs]
decrypt_raw_data+0x229/0x380 [cifs]
? __pfx_decrypt_raw_data+0x10/0x10 [cifs]
? __pfx_cifs_read_iter_from_socket+0x10/0x10 [cifs]
smb3_receive_transform+0x837/0xc80 [cifs]
? __pfx_smb3_receive_transform+0x10/0x10 [cifs]
? __pfx___might_resched+0x10/0x10
? __pfx_smb3_is_transform_hdr+0x10/0x10 [cifs]
cifs_demultiplex_thread+0x692/0x1570 [cifs]
? __pfx_cifs_demultiplex_thread+0x10/0x10 [cifs]
? rcu_is_watching+0x20/0x50
? rcu_lockdep_current_cpu_online+0x62/0xb0
? find_held_lock+0x32/0x90
? kvm_sched_clock_read+0x11/0x20
? local_clock_noinstr+0xd/0xd0
? trace_irq_enable.constprop.0+0xa8/0xe0
? __pfx_cifs_demultiplex_thread+0x10/0x10 [cifs]
kthread+0x1fe/0x380
? kthread+0x10f/0x380
? __pfx_kthread+0x10/0x10
? local_clock_noinstr+0xd/0xd0
? ret_from_fork+0x1b/0x60
? local_clock+0x15/0x30
? lock_release+0x29b/0x390
? rcu_is_watching+0x20/0x50
? __pfx_kthread+0x10/0x10
ret_from_fork+0x31/0x60
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
x86/cpu: Avoid running off the end of an AMD erratum table
The NULL array terminator at the end of erratum_1386_microcode was
removed during the switch from x86_cpu_desc to x86_cpu_id. This
causes readers to run off the end of the array.
Replace the NULL. |
| A flaw was found in Rubygem MQTT. By default, the package used to not have hostname validation, resulting in possible Man-in-the-Middle (MITM) attack. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915/huc: Fix fence not released on early probe errors
HuC delayed loading fence, introduced with commit 27536e03271da
("drm/i915/huc: track delayed HuC load with a fence"), is registered with
object tracker early on driver probe but unregistered only from driver
remove, which is not called on early probe errors. Since its memory is
allocated under devres, then released anyway, it may happen to be
allocated again to the fence and reused on future driver probes, resulting
in kernel warnings that taint the kernel:
<4> [309.731371] ------------[ cut here ]------------
<3> [309.731373] ODEBUG: init destroyed (active state 0) object: ffff88813d7dd2e0 object type: i915_sw_fence hint: sw_fence_dummy_notify+0x0/0x20 [i915]
<4> [309.731575] WARNING: CPU: 2 PID: 3161 at lib/debugobjects.c:612 debug_print_object+0x93/0xf0
...
<4> [309.731693] CPU: 2 UID: 0 PID: 3161 Comm: i915_module_loa Tainted: G U 6.14.0-CI_DRM_16362-gf0fd77956987+ #1
...
<4> [309.731700] RIP: 0010:debug_print_object+0x93/0xf0
...
<4> [309.731728] Call Trace:
<4> [309.731730] <TASK>
...
<4> [309.731949] __debug_object_init+0x17b/0x1c0
<4> [309.731957] debug_object_init+0x34/0x50
<4> [309.732126] __i915_sw_fence_init+0x34/0x60 [i915]
<4> [309.732256] intel_huc_init_early+0x4b/0x1d0 [i915]
<4> [309.732468] intel_uc_init_early+0x61/0x680 [i915]
<4> [309.732667] intel_gt_common_init_early+0x105/0x130 [i915]
<4> [309.732804] intel_root_gt_init_early+0x63/0x80 [i915]
<4> [309.732938] i915_driver_probe+0x1fa/0xeb0 [i915]
<4> [309.733075] i915_pci_probe+0xe6/0x220 [i915]
<4> [309.733198] local_pci_probe+0x44/0xb0
<4> [309.733203] pci_device_probe+0xf4/0x270
<4> [309.733209] really_probe+0xee/0x3c0
<4> [309.733215] __driver_probe_device+0x8c/0x180
<4> [309.733219] driver_probe_device+0x24/0xd0
<4> [309.733223] __driver_attach+0x10f/0x220
<4> [309.733230] bus_for_each_dev+0x7d/0xe0
<4> [309.733236] driver_attach+0x1e/0x30
<4> [309.733239] bus_add_driver+0x151/0x290
<4> [309.733244] driver_register+0x5e/0x130
<4> [309.733247] __pci_register_driver+0x7d/0x90
<4> [309.733251] i915_pci_register_driver+0x23/0x30 [i915]
<4> [309.733413] i915_init+0x34/0x120 [i915]
<4> [309.733655] do_one_initcall+0x62/0x3f0
<4> [309.733667] do_init_module+0x97/0x2a0
<4> [309.733671] load_module+0x25ff/0x2890
<4> [309.733688] init_module_from_file+0x97/0xe0
<4> [309.733701] idempotent_init_module+0x118/0x330
<4> [309.733711] __x64_sys_finit_module+0x77/0x100
<4> [309.733715] x64_sys_call+0x1f37/0x2650
<4> [309.733719] do_syscall_64+0x91/0x180
<4> [309.733763] entry_SYSCALL_64_after_hwframe+0x76/0x7e
<4> [309.733792] </TASK>
...
<4> [309.733806] ---[ end trace 0000000000000000 ]---
That scenario is most easily reproducible with
igt@i915_module_load@reload-with-fault-injection.
Fix the issue by moving the cleanup step to driver release path.
(cherry picked from commit 795dbde92fe5c6996a02a5b579481de73035e7bf) |
| In the Linux kernel, the following vulnerability has been resolved:
net: libwx: handle page_pool_dev_alloc_pages error
page_pool_dev_alloc_pages could return NULL. There was a WARN_ON(!page)
but it would still proceed to use the NULL pointer and then crash.
This is similar to commit 001ba0902046
("net: fec: handle page_pool_dev_alloc_pages error").
This is found by our static analysis tool KNighter. |
| A DMA reentrancy issue leading to a use-after-free error was found in the e1000e NIC emulation code in QEMU. This issue could allow a privileged guest user to crash the QEMU process on the host, resulting in a denial of service. |
| Improper authentication in the API authentication middleware of HCL DevOps Loop allows authentication tokens to be accepted without proper validation of their expiration and cryptographic signature. As a result, an attacker could potentially use expired or tampered tokens to gain unauthorized access to sensitive resources and perform actions with elevated privileges. |
| Youki is a container runtime written in Rust. In versions 0.5.6 and below, the initial validation of the source /dev/null is insufficient, allowing container escape when youki utilizes bind mounting the container's /dev/null as a file mask. This issue is fixed in version 0.5.7. |
| ClipBucket v5 is an open source video sharing platform. Versions 5.5.2 - #151 and below allow authenticated administrators with plugin management privileges to execute arbitrary SQL commands against the database through its ClipBucket Custom Fields plugin. The vulnerabilities require the Custom Fields plugin to be installed and accessible, and can only be exploited by users with administrative access to the plugin interface. This issue is fixed in version 5.5.2 - #. |
| DataEase is an open source data visualization analysis tool. In versions 2.10.14 and below, the vendor added a blacklist to filter ldap:// and ldaps://. However, omission of protection for the dns:// protocol results in an SSRF vulnerability. This issue is fixed in version 2.10.15. |
| Weblate is a web based localization tool. In versions 5.14 and below, Weblate leaks the IP address of the project member inviting the user to the project in the audit log. The audit log includes IP addresses from admin-triggered actions, which can be viewed by invited users. This issue is fixed in version 5.14.1. |
| Dataease is an open source data visualization analysis tool. In versions 2.10.14 and below, DataEase did not properly filter when establishing JDBC connections to Oracle, resulting in a risk of JNDI injection (Java Naming and Directory Interface injection). This issue is fixed in version 2.10.15. |
| MARIN3R is a lightweight, CRD based envoy control plane for kubernetes. In versions 0.13.3 and below, there is a cross-namespace secret access vulnerability in the project's DiscoveryServiceCertificate which allows users to bypass RBAC and access secrets in unauthorized namespaces. This issue is fixed in version 0.13.4. |