CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
mlxsw: spectrum_acl_tcam: Fix memory leak during rehash
The rehash delayed work migrates filters from one region to another.
This is done by iterating over all chunks (all the filters with the same
priority) in the region and in each chunk iterating over all the
filters.
If the migration fails, the code tries to migrate the filters back to
the old region. However, the rollback itself can also fail in which case
another migration will be erroneously performed. Besides the fact that
this ping pong is not a very good idea, it also creates a problem.
Each virtual chunk references two chunks: The currently used one
('vchunk->chunk') and a backup ('vchunk->chunk2'). During migration the
first holds the chunk we want to migrate filters to and the second holds
the chunk we are migrating filters from.
The code currently assumes - but does not verify - that the backup chunk
does not exist (NULL) if the currently used chunk does not reference the
target region. This assumption breaks when we are trying to rollback a
rollback, resulting in the backup chunk being overwritten and leaked
[1].
Fix by not rolling back a failed rollback and add a warning to avoid
future cases.
[1]
WARNING: CPU: 5 PID: 1063 at lib/parman.c:291 parman_destroy+0x17/0x20
Modules linked in:
CPU: 5 PID: 1063 Comm: kworker/5:11 Tainted: G W 6.9.0-rc2-custom-00784-gc6a05c468a0b #14
Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019
Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work
RIP: 0010:parman_destroy+0x17/0x20
[...]
Call Trace:
<TASK>
mlxsw_sp_acl_atcam_region_fini+0x19/0x60
mlxsw_sp_acl_tcam_region_destroy+0x49/0xf0
mlxsw_sp_acl_tcam_vregion_rehash_work+0x1f1/0x470
process_one_work+0x151/0x370
worker_thread+0x2cb/0x3e0
kthread+0xd0/0x100
ret_from_fork+0x34/0x50
ret_from_fork_asm+0x1a/0x30
</TASK> |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix information leak in btrfs_ioctl_logical_to_ino()
Syzbot reported the following information leak for in
btrfs_ioctl_logical_to_ino():
BUG: KMSAN: kernel-infoleak in instrument_copy_to_user include/linux/instrumented.h:114 [inline]
BUG: KMSAN: kernel-infoleak in _copy_to_user+0xbc/0x110 lib/usercopy.c:40
instrument_copy_to_user include/linux/instrumented.h:114 [inline]
_copy_to_user+0xbc/0x110 lib/usercopy.c:40
copy_to_user include/linux/uaccess.h:191 [inline]
btrfs_ioctl_logical_to_ino+0x440/0x750 fs/btrfs/ioctl.c:3499
btrfs_ioctl+0x714/0x1260
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:904 [inline]
__se_sys_ioctl+0x261/0x450 fs/ioctl.c:890
__x64_sys_ioctl+0x96/0xe0 fs/ioctl.c:890
x64_sys_call+0x1883/0x3b50 arch/x86/include/generated/asm/syscalls_64.h:17
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Uninit was created at:
__kmalloc_large_node+0x231/0x370 mm/slub.c:3921
__do_kmalloc_node mm/slub.c:3954 [inline]
__kmalloc_node+0xb07/0x1060 mm/slub.c:3973
kmalloc_node include/linux/slab.h:648 [inline]
kvmalloc_node+0xc0/0x2d0 mm/util.c:634
kvmalloc include/linux/slab.h:766 [inline]
init_data_container+0x49/0x1e0 fs/btrfs/backref.c:2779
btrfs_ioctl_logical_to_ino+0x17c/0x750 fs/btrfs/ioctl.c:3480
btrfs_ioctl+0x714/0x1260
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:904 [inline]
__se_sys_ioctl+0x261/0x450 fs/ioctl.c:890
__x64_sys_ioctl+0x96/0xe0 fs/ioctl.c:890
x64_sys_call+0x1883/0x3b50 arch/x86/include/generated/asm/syscalls_64.h:17
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Bytes 40-65535 of 65536 are uninitialized
Memory access of size 65536 starts at ffff888045a40000
This happens, because we're copying a 'struct btrfs_data_container' back
to user-space. This btrfs_data_container is allocated in
'init_data_container()' via kvmalloc(), which does not zero-fill the
memory.
Fix this by using kvzalloc() which zeroes out the memory on allocation. |
In the Linux kernel, the following vulnerability has been resolved:
irqchip/gic-v3-its: Prevent double free on error
The error handling path in its_vpe_irq_domain_alloc() causes a double free
when its_vpe_init() fails after successfully allocating at least one
interrupt. This happens because its_vpe_irq_domain_free() frees the
interrupts along with the area bitmap and the vprop_page and
its_vpe_irq_domain_alloc() subsequently frees the area bitmap and the
vprop_page again.
Fix this by unconditionally invoking its_vpe_irq_domain_free() which
handles all cases correctly and by removing the bitmap/vprop_page freeing
from its_vpe_irq_domain_alloc().
[ tglx: Massaged change log ] |
In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: dbg-tlv: ensure NUL termination
The iwl_fw_ini_debug_info_tlv is used as a string, so we must
ensure the string is terminated correctly before using it. |
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: fix a double-free in arfs_create_groups
When `in` allocated by kvzalloc fails, arfs_create_groups will free
ft->g and return an error. However, arfs_create_table, the only caller of
arfs_create_groups, will hold this error and call to
mlx5e_destroy_flow_table, in which the ft->g will be freed again. |
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: fsl-qdma: Fix a memory leak related to the queue command DMA
This dma_alloc_coherent() is undone neither in the remove function, nor in
the error handling path of fsl_qdma_probe().
Switch to the managed version to fix both issues. |
In the Linux kernel, the following vulnerability has been resolved:
drm/lima: fix a memleak in lima_heap_alloc
When lima_vm_map_bo fails, the resources need to be deallocated, or
there will be memleaks. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: libertas: fix some memleaks in lbs_allocate_cmd_buffer()
In the for statement of lbs_allocate_cmd_buffer(), if the allocation of
cmdarray[i].cmdbuf fails, both cmdarray and cmdarray[i].cmdbuf needs to
be freed. Otherwise, there will be memleaks in lbs_allocate_cmd_buffer(). |
In the Linux kernel, the following vulnerability has been resolved:
vt: fix unicode buffer corruption when deleting characters
This is the same issue that was fixed for the VGA text buffer in commit
39cdb68c64d8 ("vt: fix memory overlapping when deleting chars in the
buffer"). The cure is also the same i.e. replace memcpy() with memmove()
due to the overlaping buffers. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: Fix use-after-free bug in brcmf_cfg80211_detach
This is the candidate patch of CVE-2023-47233 :
https://nvd.nist.gov/vuln/detail/CVE-2023-47233
In brcm80211 driver,it starts with the following invoking chain
to start init a timeout worker:
->brcmf_usb_probe
->brcmf_usb_probe_cb
->brcmf_attach
->brcmf_bus_started
->brcmf_cfg80211_attach
->wl_init_priv
->brcmf_init_escan
->INIT_WORK(&cfg->escan_timeout_work,
brcmf_cfg80211_escan_timeout_worker);
If we disconnect the USB by hotplug, it will call
brcmf_usb_disconnect to make cleanup. The invoking chain is :
brcmf_usb_disconnect
->brcmf_usb_disconnect_cb
->brcmf_detach
->brcmf_cfg80211_detach
->kfree(cfg);
While the timeout woker may still be running. This will cause
a use-after-free bug on cfg in brcmf_cfg80211_escan_timeout_worker.
Fix it by deleting the timer and canceling the worker in
brcmf_cfg80211_detach.
[arend.vanspriel@broadcom.com: keep timer delete as is and cancel work just before free] |
In the Linux kernel, the following vulnerability has been resolved:
vfio/pci: Disable auto-enable of exclusive INTx IRQ
Currently for devices requiring masking at the irqchip for INTx, ie.
devices without DisINTx support, the IRQ is enabled in request_irq()
and subsequently disabled as necessary to align with the masked status
flag. This presents a window where the interrupt could fire between
these events, resulting in the IRQ incrementing the disable depth twice.
This would be unrecoverable for a user since the masked flag prevents
nested enables through vfio.
Instead, invert the logic using IRQF_NO_AUTOEN such that exclusive INTx
is never auto-enabled, then unmask as required. |
In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: ncm: Avoid dropping datagrams of properly parsed NTBs
It is observed sometimes when tethering is used over NCM with Windows 11
as host, at some instances, the gadget_giveback has one byte appended at
the end of a proper NTB. When the NTB is parsed, unwrap call looks for
any leftover bytes in SKB provided by u_ether and if there are any pending
bytes, it treats them as a separate NTB and parses it. But in case the
second NTB (as per unwrap call) is faulty/corrupt, all the datagrams that
were parsed properly in the first NTB and saved in rx_list are dropped.
Adding a few custom traces showed the following:
[002] d..1 7828.532866: dwc3_gadget_giveback: ep1out:
req 000000003868811a length 1025/16384 zsI ==> 0
[002] d..1 7828.532867: ncm_unwrap_ntb: K: ncm_unwrap_ntb toprocess: 1025
[002] d..1 7828.532867: ncm_unwrap_ntb: K: ncm_unwrap_ntb nth: 1751999342
[002] d..1 7828.532868: ncm_unwrap_ntb: K: ncm_unwrap_ntb seq: 0xce67
[002] d..1 7828.532868: ncm_unwrap_ntb: K: ncm_unwrap_ntb blk_len: 0x400
[002] d..1 7828.532868: ncm_unwrap_ntb: K: ncm_unwrap_ntb ndp_len: 0x10
[002] d..1 7828.532869: ncm_unwrap_ntb: K: Parsed NTB with 1 frames
In this case, the giveback is of 1025 bytes and block length is 1024.
The rest 1 byte (which is 0x00) won't be parsed resulting in drop of
all datagrams in rx_list.
Same is case with packets of size 2048:
[002] d..1 7828.557948: dwc3_gadget_giveback: ep1out:
req 0000000011dfd96e length 2049/16384 zsI ==> 0
[002] d..1 7828.557949: ncm_unwrap_ntb: K: ncm_unwrap_ntb nth: 1751999342
[002] d..1 7828.557950: ncm_unwrap_ntb: K: ncm_unwrap_ntb blk_len: 0x800
Lecroy shows one byte coming in extra confirming that the byte is coming
in from PC:
Transfer 2959 - Bytes Transferred(1025) Timestamp((18.524 843 590)
- Transaction 8391 - Data(1025 bytes) Timestamp(18.524 843 590)
--- Packet 4063861
Data(1024 bytes)
Duration(2.117us) Idle(14.700ns) Timestamp(18.524 843 590)
--- Packet 4063863
Data(1 byte)
Duration(66.160ns) Time(282.000ns) Timestamp(18.524 845 722)
According to Windows driver, no ZLP is needed if wBlockLength is non-zero,
because the non-zero wBlockLength has already told the function side the
size of transfer to be expected. However, there are in-market NCM devices
that rely on ZLP as long as the wBlockLength is multiple of wMaxPacketSize.
To deal with such devices, it pads an extra 0 at end so the transfer is no
longer multiple of wMaxPacketSize. |
In the Linux kernel, the following vulnerability has been resolved:
net: openvswitch: Fix Use-After-Free in ovs_ct_exit
Since kfree_rcu, which is called in the hlist_for_each_entry_rcu traversal
of ovs_ct_limit_exit, is not part of the RCU read critical section, it
is possible that the RCU grace period will pass during the traversal and
the key will be free.
To prevent this, it should be changed to hlist_for_each_entry_safe. |
In the Linux kernel, the following vulnerability has been resolved:
SUNRPC: fix some memleaks in gssx_dec_option_array
The creds and oa->data need to be freed in the error-handling paths after
their allocation. So this patch add these deallocations in the
corresponding paths. |
In the Linux kernel, the following vulnerability has been resolved:
media: v4l2-mem2mem: fix a memleak in v4l2_m2m_register_entity
The entity->name (i.e. name) is allocated in v4l2_m2m_register_entity
but isn't freed in its following error-handling paths. This patch
adds such deallocation to prevent memleak of entity->name. |
In the Linux kernel, the following vulnerability has been resolved:
media: imx: csc/scaler: fix v4l2_ctrl_handler memory leak
Free the memory allocated in v4l2_ctrl_handler_init on release. |
In the Linux kernel, the following vulnerability has been resolved:
media: go7007: fix a memleak in go7007_load_encoder
In go7007_load_encoder, bounce(i.e. go->boot_fw), is allocated without
a deallocation thereafter. After the following call chain:
saa7134_go7007_init
|-> go7007_boot_encoder
|-> go7007_load_encoder
|-> kfree(go)
go is freed and thus bounce is leaked. |
In the Linux kernel, the following vulnerability has been resolved:
media: ttpci: fix two memleaks in budget_av_attach
When saa7146_register_device and saa7146_vv_init fails, budget_av_attach
should free the resources it allocates, like the error-handling of
ttpci_budget_init does. Besides, there are two fixme comment refers to
such deallocations. |
In the Linux kernel, the following vulnerability has been resolved:
USB: usb-storage: Prevent divide-by-0 error in isd200_ata_command
The isd200 sub-driver in usb-storage uses the HEADS and SECTORS values
in the ATA ID information to calculate cylinder and head values when
creating a CDB for READ or WRITE commands. The calculation involves
division and modulus operations, which will cause a crash if either of
these values is 0. While this never happens with a genuine device, it
could happen with a flawed or subversive emulation, as reported by the
syzbot fuzzer.
Protect against this possibility by refusing to bind to the device if
either the ATA_ID_HEADS or ATA_ID_SECTORS value in the device's ID
information is 0. This requires isd200_Initialization() to return a
negative error code when initialization fails; currently it always
returns 0 (even when there is an error). |
In the Linux kernel, the following vulnerability has been resolved:
wifi: wilc1000: fix RCU usage in connect path
With lockdep enabled, calls to the connect function from cfg802.11 layer
lead to the following warning:
=============================
WARNING: suspicious RCU usage
6.7.0-rc1-wt+ #333 Not tainted
-----------------------------
drivers/net/wireless/microchip/wilc1000/hif.c:386
suspicious rcu_dereference_check() usage!
[...]
stack backtrace:
CPU: 0 PID: 100 Comm: wpa_supplicant Not tainted 6.7.0-rc1-wt+ #333
Hardware name: Atmel SAMA5
unwind_backtrace from show_stack+0x18/0x1c
show_stack from dump_stack_lvl+0x34/0x48
dump_stack_lvl from wilc_parse_join_bss_param+0x7dc/0x7f4
wilc_parse_join_bss_param from connect+0x2c4/0x648
connect from cfg80211_connect+0x30c/0xb74
cfg80211_connect from nl80211_connect+0x860/0xa94
nl80211_connect from genl_rcv_msg+0x3fc/0x59c
genl_rcv_msg from netlink_rcv_skb+0xd0/0x1f8
netlink_rcv_skb from genl_rcv+0x2c/0x3c
genl_rcv from netlink_unicast+0x3b0/0x550
netlink_unicast from netlink_sendmsg+0x368/0x688
netlink_sendmsg from ____sys_sendmsg+0x190/0x430
____sys_sendmsg from ___sys_sendmsg+0x110/0x158
___sys_sendmsg from sys_sendmsg+0xe8/0x150
sys_sendmsg from ret_fast_syscall+0x0/0x1c
This warning is emitted because in the connect path, when trying to parse
target BSS parameters, we dereference a RCU pointer whithout being in RCU
critical section.
Fix RCU dereference usage by moving it to a RCU read critical section. To
avoid wrapping the whole wilc_parse_join_bss_param under the critical
section, just use the critical section to copy ies data |