CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/siw: Fix refcounting leak in siw_create_qp()
The atomic_inc() needs to be paired with an atomic_dec() on the error
path. |
In the Linux kernel, the following vulnerability has been resolved:
spi: uniphier: fix reference count leak in uniphier_spi_probe()
The issue happens in several error paths in uniphier_spi_probe().
When either dma_get_slave_caps() or devm_spi_register_master() returns
an error code, the function forgets to decrease the refcount of both
`dma_rx` and `dma_tx` objects, which may lead to refcount leaks.
Fix it by decrementing the reference count of specific objects in
those error paths. |
In the Linux kernel, the following vulnerability has been resolved:
ice: switch: fix potential memleak in ice_add_adv_recipe()
When ice_add_special_words() fails, the 'rm' is not released, which will
lead to a memory leak. Fix this up by going to 'err_unroll' label.
Compile tested only. |
In the Linux kernel, the following vulnerability has been resolved:
io_uring/poll: add hash if ready poll request can't complete inline
If we don't, then we may lose access to it completely, leading to a
request leak. This will eventually stall the ring exit process as
well. |
In the Linux kernel, the following vulnerability has been resolved:
platform/x86: wmi: Fix opening of char device
Since commit fa1f68db6ca7 ("drivers: misc: pass miscdevice pointer via
file private data"), the miscdevice stores a pointer to itself inside
filp->private_data, which means that private_data will not be NULL when
wmi_char_open() is called. This might cause memory corruption should
wmi_char_open() be unable to find its driver, something which can
happen when the associated WMI device is deleted in wmi_free_devices().
Fix the problem by using the miscdevice pointer to retrieve the WMI
device data associated with a char device using container_of(). This
also avoids wmi_char_open() picking a wrong WMI device bound to a
driver with the same name as the original driver. |
In the Linux kernel, the following vulnerability has been resolved:
IB/hfi1: Restore allocated resources on failed copyout
Fix a resource leak if an error occurs. |
In the Linux kernel, the following vulnerability has been resolved:
mmc: sdio: fix possible resource leaks in some error paths
If sdio_add_func() or sdio_init_func() fails, sdio_remove_func() can
not release the resources, because the sdio function is not presented
in these two cases, it won't call of_node_put() or put_device().
To fix these leaks, make sdio_func_present() only control whether
device_del() needs to be called or not, then always call of_node_put()
and put_device().
In error case in sdio_init_func(), the reference of 'card->dev' is
not get, to avoid redundant put in sdio_free_func_cis(), move the
get_device() to sdio_alloc_func() and put_device() to sdio_release_func(),
it can keep the get/put function be balanced.
Without this patch, while doing fault inject test, it can get the
following leak reports, after this fix, the leak is gone.
unreferenced object 0xffff888112514000 (size 2048):
comm "kworker/3:2", pid 65, jiffies 4294741614 (age 124.774s)
hex dump (first 32 bytes):
00 e0 6f 12 81 88 ff ff 60 58 8d 06 81 88 ff ff ..o.....`X......
10 40 51 12 81 88 ff ff 10 40 51 12 81 88 ff ff .@Q......@Q.....
backtrace:
[<000000009e5931da>] kmalloc_trace+0x21/0x110
[<000000002f839ccb>] mmc_alloc_card+0x38/0xb0 [mmc_core]
[<0000000004adcbf6>] mmc_sdio_init_card+0xde/0x170 [mmc_core]
[<000000007538fea0>] mmc_attach_sdio+0xcb/0x1b0 [mmc_core]
[<00000000d4fdeba7>] mmc_rescan+0x54a/0x640 [mmc_core]
unreferenced object 0xffff888112511000 (size 2048):
comm "kworker/3:2", pid 65, jiffies 4294741623 (age 124.766s)
hex dump (first 32 bytes):
00 40 51 12 81 88 ff ff e0 58 8d 06 81 88 ff ff .@Q......X......
10 10 51 12 81 88 ff ff 10 10 51 12 81 88 ff ff ..Q.......Q.....
backtrace:
[<000000009e5931da>] kmalloc_trace+0x21/0x110
[<00000000fcbe706c>] sdio_alloc_func+0x35/0x100 [mmc_core]
[<00000000c68f4b50>] mmc_attach_sdio.cold.18+0xb1/0x395 [mmc_core]
[<00000000d4fdeba7>] mmc_rescan+0x54a/0x640 [mmc_core] |
In the Linux kernel, the following vulnerability has been resolved:
iio: core: fix memleak in iio_device_register_sysfs
When iio_device_register_sysfs_group() fails, we should
free iio_dev_opaque->chan_attr_group.attrs to prevent
potential memleak. |
In the Linux kernel, the following vulnerability has been resolved:
net/sched: act_ct: fix skb leak and crash on ooo frags
act_ct adds skb->users before defragmentation. If frags arrive in order,
the last frag's reference is reset in:
inet_frag_reasm_prepare
skb_morph
which is not straightforward.
However when frags arrive out of order, nobody unref the last frag, and
all frags are leaked. The situation is even worse, as initiating packet
capture can lead to a crash[0] when skb has been cloned and shared at the
same time.
Fix the issue by removing skb_get() before defragmentation. act_ct
returns TC_ACT_CONSUMED when defrag failed or in progress.
[0]:
[ 843.804823] ------------[ cut here ]------------
[ 843.809659] kernel BUG at net/core/skbuff.c:2091!
[ 843.814516] invalid opcode: 0000 [#1] PREEMPT SMP
[ 843.819296] CPU: 7 PID: 0 Comm: swapper/7 Kdump: loaded Tainted: G S 6.7.0-rc3 #2
[ 843.824107] Hardware name: XFUSION 1288H V6/BC13MBSBD, BIOS 1.29 11/25/2022
[ 843.828953] RIP: 0010:pskb_expand_head+0x2ac/0x300
[ 843.833805] Code: 8b 70 28 48 85 f6 74 82 48 83 c6 08 bf 01 00 00 00 e8 38 bd ff ff 8b 83 c0 00 00 00 48 03 83 c8 00 00 00 e9 62 ff ff ff 0f 0b <0f> 0b e8 8d d0 ff ff e9 b3 fd ff ff 81 7c 24 14 40 01 00 00 4c 89
[ 843.843698] RSP: 0018:ffffc9000cce07c0 EFLAGS: 00010202
[ 843.848524] RAX: 0000000000000002 RBX: ffff88811a211d00 RCX: 0000000000000820
[ 843.853299] RDX: 0000000000000640 RSI: 0000000000000000 RDI: ffff88811a211d00
[ 843.857974] RBP: ffff888127d39518 R08: 00000000bee97314 R09: 0000000000000000
[ 843.862584] R10: 0000000000000000 R11: ffff8881109f0000 R12: 0000000000000880
[ 843.867147] R13: ffff888127d39580 R14: 0000000000000640 R15: ffff888170f7b900
[ 843.871680] FS: 0000000000000000(0000) GS:ffff889ffffc0000(0000) knlGS:0000000000000000
[ 843.876242] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 843.880778] CR2: 00007fa42affcfb8 CR3: 000000011433a002 CR4: 0000000000770ef0
[ 843.885336] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 843.889809] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 843.894229] PKRU: 55555554
[ 843.898539] Call Trace:
[ 843.902772] <IRQ>
[ 843.906922] ? __die_body+0x1e/0x60
[ 843.911032] ? die+0x3c/0x60
[ 843.915037] ? do_trap+0xe2/0x110
[ 843.918911] ? pskb_expand_head+0x2ac/0x300
[ 843.922687] ? do_error_trap+0x65/0x80
[ 843.926342] ? pskb_expand_head+0x2ac/0x300
[ 843.929905] ? exc_invalid_op+0x50/0x60
[ 843.933398] ? pskb_expand_head+0x2ac/0x300
[ 843.936835] ? asm_exc_invalid_op+0x1a/0x20
[ 843.940226] ? pskb_expand_head+0x2ac/0x300
[ 843.943580] inet_frag_reasm_prepare+0xd1/0x240
[ 843.946904] ip_defrag+0x5d4/0x870
[ 843.950132] nf_ct_handle_fragments+0xec/0x130 [nf_conntrack]
[ 843.953334] tcf_ct_act+0x252/0xd90 [act_ct]
[ 843.956473] ? tcf_mirred_act+0x516/0x5a0 [act_mirred]
[ 843.959657] tcf_action_exec+0xa1/0x160
[ 843.962823] fl_classify+0x1db/0x1f0 [cls_flower]
[ 843.966010] ? skb_clone+0x53/0xc0
[ 843.969173] tcf_classify+0x24d/0x420
[ 843.972333] tc_run+0x8f/0xf0
[ 843.975465] __netif_receive_skb_core+0x67a/0x1080
[ 843.978634] ? dev_gro_receive+0x249/0x730
[ 843.981759] __netif_receive_skb_list_core+0x12d/0x260
[ 843.984869] netif_receive_skb_list_internal+0x1cb/0x2f0
[ 843.987957] ? mlx5e_handle_rx_cqe_mpwrq_rep+0xfa/0x1a0 [mlx5_core]
[ 843.991170] napi_complete_done+0x72/0x1a0
[ 843.994305] mlx5e_napi_poll+0x28c/0x6d0 [mlx5_core]
[ 843.997501] __napi_poll+0x25/0x1b0
[ 844.000627] net_rx_action+0x256/0x330
[ 844.003705] __do_softirq+0xb3/0x29b
[ 844.006718] irq_exit_rcu+0x9e/0xc0
[ 844.009672] common_interrupt+0x86/0xa0
[ 844.012537] </IRQ>
[ 844.015285] <TASK>
[ 844.017937] asm_common_interrupt+0x26/0x40
[ 844.020591] RIP: 0010:acpi_safe_halt+0x1b/0x20
[ 844.023247] Code: ff 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 65 48 8b 04 25 00 18 03 00 48 8b 00 a8 08 75 0c 66 90 0f 00 2d 81 d0 44 00 fb
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_codec: Fix leaking content of local_codecs
The following memory leak can be observed when the controller supports
codecs which are stored in local_codecs list but the elements are never
freed:
unreferenced object 0xffff88800221d840 (size 32):
comm "kworker/u3:0", pid 36, jiffies 4294898739 (age 127.060s)
hex dump (first 32 bytes):
f8 d3 02 03 80 88 ff ff 80 d8 21 02 80 88 ff ff ..........!.....
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<ffffffffb324f557>] __kmalloc+0x47/0x120
[<ffffffffb39ef37d>] hci_codec_list_add.isra.0+0x2d/0x160
[<ffffffffb39ef643>] hci_read_codec_capabilities+0x183/0x270
[<ffffffffb39ef9ab>] hci_read_supported_codecs+0x1bb/0x2d0
[<ffffffffb39f162e>] hci_read_local_codecs_sync+0x3e/0x60
[<ffffffffb39ff1b3>] hci_dev_open_sync+0x943/0x11e0
[<ffffffffb396d55d>] hci_power_on+0x10d/0x3f0
[<ffffffffb30c99b4>] process_one_work+0x404/0x800
[<ffffffffb30ca134>] worker_thread+0x374/0x670
[<ffffffffb30d9108>] kthread+0x188/0x1c0
[<ffffffffb304db6b>] ret_from_fork+0x2b/0x50
[<ffffffffb300206a>] ret_from_fork_asm+0x1a/0x30 |
In the Linux kernel, the following vulnerability has been resolved:
scsi: pm80xx: Avoid leaking tags when processing OPC_INB_SET_CONTROLLER_CONFIG command
Tags allocated for OPC_INB_SET_CONTROLLER_CONFIG command need to be freed
when we receive the response. |
In the Linux kernel, the following vulnerability has been resolved:
inet_diag: fix kernel-infoleak for UDP sockets
KMSAN reported a kernel-infoleak [1], that can exploited
by unpriv users.
After analysis it turned out UDP was not initializing
r->idiag_expires. Other users of inet_sk_diag_fill()
might make the same mistake in the future, so fix this
in inet_sk_diag_fill().
[1]
BUG: KMSAN: kernel-infoleak in instrument_copy_to_user include/linux/instrumented.h:121 [inline]
BUG: KMSAN: kernel-infoleak in copyout lib/iov_iter.c:156 [inline]
BUG: KMSAN: kernel-infoleak in _copy_to_iter+0x69d/0x25c0 lib/iov_iter.c:670
instrument_copy_to_user include/linux/instrumented.h:121 [inline]
copyout lib/iov_iter.c:156 [inline]
_copy_to_iter+0x69d/0x25c0 lib/iov_iter.c:670
copy_to_iter include/linux/uio.h:155 [inline]
simple_copy_to_iter+0xf3/0x140 net/core/datagram.c:519
__skb_datagram_iter+0x2cb/0x1280 net/core/datagram.c:425
skb_copy_datagram_iter+0xdc/0x270 net/core/datagram.c:533
skb_copy_datagram_msg include/linux/skbuff.h:3657 [inline]
netlink_recvmsg+0x660/0x1c60 net/netlink/af_netlink.c:1974
sock_recvmsg_nosec net/socket.c:944 [inline]
sock_recvmsg net/socket.c:962 [inline]
sock_read_iter+0x5a9/0x630 net/socket.c:1035
call_read_iter include/linux/fs.h:2156 [inline]
new_sync_read fs/read_write.c:400 [inline]
vfs_read+0x1631/0x1980 fs/read_write.c:481
ksys_read+0x28c/0x520 fs/read_write.c:619
__do_sys_read fs/read_write.c:629 [inline]
__se_sys_read fs/read_write.c:627 [inline]
__x64_sys_read+0xdb/0x120 fs/read_write.c:627
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x54/0xd0 arch/x86/entry/common.c:82
entry_SYSCALL_64_after_hwframe+0x44/0xae
Uninit was created at:
slab_post_alloc_hook mm/slab.h:524 [inline]
slab_alloc_node mm/slub.c:3251 [inline]
__kmalloc_node_track_caller+0xe0c/0x1510 mm/slub.c:4974
kmalloc_reserve net/core/skbuff.c:354 [inline]
__alloc_skb+0x545/0xf90 net/core/skbuff.c:426
alloc_skb include/linux/skbuff.h:1126 [inline]
netlink_dump+0x3d5/0x16a0 net/netlink/af_netlink.c:2245
__netlink_dump_start+0xd1c/0xee0 net/netlink/af_netlink.c:2370
netlink_dump_start include/linux/netlink.h:254 [inline]
inet_diag_handler_cmd+0x2e7/0x400 net/ipv4/inet_diag.c:1343
sock_diag_rcv_msg+0x24a/0x620
netlink_rcv_skb+0x447/0x800 net/netlink/af_netlink.c:2491
sock_diag_rcv+0x63/0x80 net/core/sock_diag.c:276
netlink_unicast_kernel net/netlink/af_netlink.c:1319 [inline]
netlink_unicast+0x1095/0x1360 net/netlink/af_netlink.c:1345
netlink_sendmsg+0x16f3/0x1870 net/netlink/af_netlink.c:1916
sock_sendmsg_nosec net/socket.c:704 [inline]
sock_sendmsg net/socket.c:724 [inline]
sock_write_iter+0x594/0x690 net/socket.c:1057
do_iter_readv_writev+0xa7f/0xc70
do_iter_write+0x52c/0x1500 fs/read_write.c:851
vfs_writev fs/read_write.c:924 [inline]
do_writev+0x63f/0xe30 fs/read_write.c:967
__do_sys_writev fs/read_write.c:1040 [inline]
__se_sys_writev fs/read_write.c:1037 [inline]
__x64_sys_writev+0xe5/0x120 fs/read_write.c:1037
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x54/0xd0 arch/x86/entry/common.c:82
entry_SYSCALL_64_after_hwframe+0x44/0xae
Bytes 68-71 of 312 are uninitialized
Memory access of size 312 starts at ffff88812ab54000
Data copied to user address 0000000020001440
CPU: 1 PID: 6365 Comm: syz-executor801 Not tainted 5.16.0-rc3-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 |
In the Linux kernel, the following vulnerability has been resolved:
kunit: fix reference count leak in kfree_at_end
The reference counting issue happens in the normal path of
kfree_at_end(). When kunit_alloc_and_get_resource() is invoked, the
function forgets to handle the returned resource object, whose refcount
increased inside, causing a refcount leak.
Fix this issue by calling kunit_alloc_resource() instead of
kunit_alloc_and_get_resource().
Fixed the following when applying:
Shuah Khan <skhan@linuxfoundation.org>
CHECK: Alignment should match open parenthesis
+ kunit_alloc_resource(test, NULL, kfree_res_free, GFP_KERNEL,
(void *)to_free); |
In the Linux kernel, the following vulnerability has been resolved:
mm, slub: fix potential memoryleak in kmem_cache_open()
In error path, the random_seq of slub cache might be leaked. Fix this
by using __kmem_cache_release() to release all the relevant resources. |
In the Linux kernel, the following vulnerability has been resolved:
bpf, s390: Fix potential memory leak about jit_data
Make sure to free jit_data through kfree() in the error path. |
In the Linux kernel, the following vulnerability has been resolved:
drm/nouveau/debugfs: fix file release memory leak
When using single_open() for opening, single_release() should be
called, otherwise the 'op' allocated in single_open() will be leaked. |
In the Linux kernel, the following vulnerability has been resolved:
drm/nouveau/kms/nv50-: fix file release memory leak
When using single_open() for opening, single_release() should be
called, otherwise the 'op' allocated in single_open() will be leaked. |
In the Linux kernel, the following vulnerability has been resolved:
HID: usbhid: free raw_report buffers in usbhid_stop
Free the unsent raw_report buffers when the device is removed.
Fixes a memory leak reported by syzbot at:
https://syzkaller.appspot.com/bug?id=7b4fa7cb1a7c2d3342a2a8a6c53371c8c418ab47 |
In the Linux kernel, the following vulnerability has been resolved:
irqchip/gic-v3-its: Fix potential VPE leak on error
In its_vpe_irq_domain_alloc, when its_vpe_init() returns an error,
there is an off-by-one in the number of VPEs to be freed.
Fix it by simply passing the number of VPEs allocated, which is the
index of the loop iterating over the VPEs.
[maz: fixed commit message] |
In the Linux kernel, the following vulnerability has been resolved:
virtio-net: fix pages leaking when building skb in big mode
We try to use build_skb() if we had sufficient tailroom. But we forget
to release the unused pages chained via private in big mode which will
leak pages. Fixing this by release the pages after building the skb in
big mode. |