| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ftrace: Add cond_resched() to ftrace_graph_set_hash()
When the kernel contains a large number of functions that can be traced,
the loop in ftrace_graph_set_hash() may take a lot of time to execute.
This may trigger the softlockup watchdog.
Add cond_resched() within the loop to allow the kernel to remain
responsive even when processing a large number of functions.
This matches the cond_resched() that is used in other locations of the
code that iterates over all functions that can be traced. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/set_memory: Avoid spinlock recursion in change_page_attr()
Commit 1f9ad21c3b38 ("powerpc/mm: Implement set_memory() routines")
included a spin_lock() to change_page_attr() in order to
safely perform the three step operations. But then
commit 9f7853d7609d ("powerpc/mm: Fix set_memory_*() against
concurrent accesses") modify it to use pte_update() and do
the operation safely against concurrent access.
In the meantime, Maxime reported some spinlock recursion.
[ 15.351649] BUG: spinlock recursion on CPU#0, kworker/0:2/217
[ 15.357540] lock: init_mm+0x3c/0x420, .magic: dead4ead, .owner: kworker/0:2/217, .owner_cpu: 0
[ 15.366563] CPU: 0 PID: 217 Comm: kworker/0:2 Not tainted 5.15.0+ #523
[ 15.373350] Workqueue: events do_free_init
[ 15.377615] Call Trace:
[ 15.380232] [e4105ac0] [800946a4] do_raw_spin_lock+0xf8/0x120 (unreliable)
[ 15.387340] [e4105ae0] [8001f4ec] change_page_attr+0x40/0x1d4
[ 15.393413] [e4105b10] [801424e0] __apply_to_page_range+0x164/0x310
[ 15.400009] [e4105b60] [80169620] free_pcp_prepare+0x1e4/0x4a0
[ 15.406045] [e4105ba0] [8016c5a0] free_unref_page+0x40/0x2b8
[ 15.411979] [e4105be0] [8018724c] kasan_depopulate_vmalloc_pte+0x6c/0x94
[ 15.418989] [e4105c00] [801424e0] __apply_to_page_range+0x164/0x310
[ 15.425451] [e4105c50] [80187834] kasan_release_vmalloc+0xbc/0x134
[ 15.431898] [e4105c70] [8015f7a8] __purge_vmap_area_lazy+0x4e4/0xdd8
[ 15.438560] [e4105d30] [80160d10] _vm_unmap_aliases.part.0+0x17c/0x24c
[ 15.445283] [e4105d60] [801642d0] __vunmap+0x2f0/0x5c8
[ 15.450684] [e4105db0] [800e32d0] do_free_init+0x68/0x94
[ 15.456181] [e4105dd0] [8005d094] process_one_work+0x4bc/0x7b8
[ 15.462283] [e4105e90] [8005d614] worker_thread+0x284/0x6e8
[ 15.468227] [e4105f00] [8006aaec] kthread+0x1f0/0x210
[ 15.473489] [e4105f40] [80017148] ret_from_kernel_thread+0x14/0x1c
Remove the read / modify / write sequence to make the operation atomic
and remove the spin_lock() in change_page_attr().
To do the operation atomically, we can't use pte modification helpers
anymore. Because all platforms have different combination of bits, it
is not easy to use those bits directly. But all have the
_PAGE_KERNEL_{RO/ROX/RW/RWX} set of flags. All we need it to compare
two sets to know which bits are set or cleared.
For instance, by comparing _PAGE_KERNEL_ROX and _PAGE_KERNEL_RO you
know which bit gets cleared and which bit get set when changing exec
permission. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: ufs: Fix a deadlock in the error handler
The following deadlock has been observed on a test setup:
- All tags allocated
- The SCSI error handler calls ufshcd_eh_host_reset_handler()
- ufshcd_eh_host_reset_handler() queues work that calls
ufshcd_err_handler()
- ufshcd_err_handler() locks up as follows:
Workqueue: ufs_eh_wq_0 ufshcd_err_handler.cfi_jt
Call trace:
__switch_to+0x298/0x5d8
__schedule+0x6cc/0xa94
schedule+0x12c/0x298
blk_mq_get_tag+0x210/0x480
__blk_mq_alloc_request+0x1c8/0x284
blk_get_request+0x74/0x134
ufshcd_exec_dev_cmd+0x68/0x640
ufshcd_verify_dev_init+0x68/0x35c
ufshcd_probe_hba+0x12c/0x1cb8
ufshcd_host_reset_and_restore+0x88/0x254
ufshcd_reset_and_restore+0xd0/0x354
ufshcd_err_handler+0x408/0xc58
process_one_work+0x24c/0x66c
worker_thread+0x3e8/0xa4c
kthread+0x150/0x1b4
ret_from_fork+0x10/0x30
Fix this lockup by making ufshcd_exec_dev_cmd() allocate a reserved
request. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: core: Make do_proc_control() and do_proc_bulk() killable
The USBDEVFS_CONTROL and USBDEVFS_BULK ioctls invoke
usb_start_wait_urb(), which contains an uninterruptible wait with a
user-specified timeout value. If timeout value is very large and the
device being accessed does not respond in a reasonable amount of time,
the kernel will complain about "Task X blocked for more than N
seconds", as found in testing by syzbot:
INFO: task syz-executor.0:8700 blocked for more than 143 seconds.
Not tainted 5.14.0-rc7-syzkaller #0
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:syz-executor.0 state:D stack:23192 pid: 8700 ppid: 8455 flags:0x00004004
Call Trace:
context_switch kernel/sched/core.c:4681 [inline]
__schedule+0xc07/0x11f0 kernel/sched/core.c:5938
schedule+0x14b/0x210 kernel/sched/core.c:6017
schedule_timeout+0x98/0x2f0 kernel/time/timer.c:1857
do_wait_for_common+0x2da/0x480 kernel/sched/completion.c:85
__wait_for_common kernel/sched/completion.c:106 [inline]
wait_for_common kernel/sched/completion.c:117 [inline]
wait_for_completion_timeout+0x46/0x60 kernel/sched/completion.c:157
usb_start_wait_urb+0x167/0x550 drivers/usb/core/message.c:63
do_proc_bulk+0x978/0x1080 drivers/usb/core/devio.c:1236
proc_bulk drivers/usb/core/devio.c:1273 [inline]
usbdev_do_ioctl drivers/usb/core/devio.c:2547 [inline]
usbdev_ioctl+0x3441/0x6b10 drivers/usb/core/devio.c:2713
...
To fix this problem, this patch replaces usbfs's calls to
usb_control_msg() and usb_bulk_msg() with special-purpose code that
does essentially the same thing (as recommended in the comment for
usb_start_wait_urb()), except that it always uses a killable wait and
it uses GFP_KERNEL rather than GFP_NOIO. |
| In the Linux kernel, the following vulnerability has been resolved:
isdn: mISDN: Fix sleeping function called from invalid context
The driver can call card->isac.release() function from an atomic
context.
Fix this by calling this function after releasing the lock.
The following log reveals it:
[ 44.168226 ] BUG: sleeping function called from invalid context at kernel/workqueue.c:3018
[ 44.168941 ] in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 5475, name: modprobe
[ 44.169574 ] INFO: lockdep is turned off.
[ 44.169899 ] irq event stamp: 0
[ 44.170160 ] hardirqs last enabled at (0): [<0000000000000000>] 0x0
[ 44.170627 ] hardirqs last disabled at (0): [<ffffffff814209ed>] copy_process+0x132d/0x3e00
[ 44.171240 ] softirqs last enabled at (0): [<ffffffff81420a1a>] copy_process+0x135a/0x3e00
[ 44.171852 ] softirqs last disabled at (0): [<0000000000000000>] 0x0
[ 44.172318 ] Preemption disabled at:
[ 44.172320 ] [<ffffffffa009b0a9>] nj_release+0x69/0x500 [netjet]
[ 44.174441 ] Call Trace:
[ 44.174630 ] dump_stack_lvl+0xa8/0xd1
[ 44.174912 ] dump_stack+0x15/0x17
[ 44.175166 ] ___might_sleep+0x3a2/0x510
[ 44.175459 ] ? nj_release+0x69/0x500 [netjet]
[ 44.175791 ] __might_sleep+0x82/0xe0
[ 44.176063 ] ? start_flush_work+0x20/0x7b0
[ 44.176375 ] start_flush_work+0x33/0x7b0
[ 44.176672 ] ? trace_irq_enable_rcuidle+0x85/0x170
[ 44.177034 ] ? kasan_quarantine_put+0xaa/0x1f0
[ 44.177372 ] ? kasan_quarantine_put+0xaa/0x1f0
[ 44.177711 ] __flush_work+0x11a/0x1a0
[ 44.177991 ] ? flush_work+0x20/0x20
[ 44.178257 ] ? lock_release+0x13c/0x8f0
[ 44.178550 ] ? __kasan_check_write+0x14/0x20
[ 44.178872 ] ? do_raw_spin_lock+0x148/0x360
[ 44.179187 ] ? read_lock_is_recursive+0x20/0x20
[ 44.179530 ] ? __kasan_check_read+0x11/0x20
[ 44.179846 ] ? do_raw_spin_unlock+0x55/0x900
[ 44.180168 ] ? ____kasan_slab_free+0x116/0x140
[ 44.180505 ] ? _raw_spin_unlock_irqrestore+0x41/0x60
[ 44.180878 ] ? skb_queue_purge+0x1a3/0x1c0
[ 44.181189 ] ? kfree+0x13e/0x290
[ 44.181438 ] flush_work+0x17/0x20
[ 44.181695 ] mISDN_freedchannel+0xe8/0x100
[ 44.182006 ] isac_release+0x210/0x260 [mISDNipac]
[ 44.182366 ] nj_release+0xf6/0x500 [netjet]
[ 44.182685 ] nj_remove+0x48/0x70 [netjet]
[ 44.182989 ] pci_device_remove+0xa9/0x250 |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: conntrack: serialize hash resizes and cleanups
Syzbot was able to trigger the following warning [1]
No repro found by syzbot yet but I was able to trigger similar issue
by having 2 scripts running in parallel, changing conntrack hash sizes,
and:
for j in `seq 1 1000` ; do unshare -n /bin/true >/dev/null ; done
It would take more than 5 minutes for net_namespace structures
to be cleaned up.
This is because nf_ct_iterate_cleanup() has to restart everytime
a resize happened.
By adding a mutex, we can serialize hash resizes and cleanups
and also make get_next_corpse() faster by skipping over empty
buckets.
Even without resizes in the picture, this patch considerably
speeds up network namespace dismantles.
[1]
INFO: task syz-executor.0:8312 can't die for more than 144 seconds.
task:syz-executor.0 state:R running task stack:25672 pid: 8312 ppid: 6573 flags:0x00004006
Call Trace:
context_switch kernel/sched/core.c:4955 [inline]
__schedule+0x940/0x26f0 kernel/sched/core.c:6236
preempt_schedule_common+0x45/0xc0 kernel/sched/core.c:6408
preempt_schedule_thunk+0x16/0x18 arch/x86/entry/thunk_64.S:35
__local_bh_enable_ip+0x109/0x120 kernel/softirq.c:390
local_bh_enable include/linux/bottom_half.h:32 [inline]
get_next_corpse net/netfilter/nf_conntrack_core.c:2252 [inline]
nf_ct_iterate_cleanup+0x15a/0x450 net/netfilter/nf_conntrack_core.c:2275
nf_conntrack_cleanup_net_list+0x14c/0x4f0 net/netfilter/nf_conntrack_core.c:2469
ops_exit_list+0x10d/0x160 net/core/net_namespace.c:171
setup_net+0x639/0xa30 net/core/net_namespace.c:349
copy_net_ns+0x319/0x760 net/core/net_namespace.c:470
create_new_namespaces+0x3f6/0xb20 kernel/nsproxy.c:110
unshare_nsproxy_namespaces+0xc1/0x1f0 kernel/nsproxy.c:226
ksys_unshare+0x445/0x920 kernel/fork.c:3128
__do_sys_unshare kernel/fork.c:3202 [inline]
__se_sys_unshare kernel/fork.c:3200 [inline]
__x64_sys_unshare+0x2d/0x40 kernel/fork.c:3200
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f63da68e739
RSP: 002b:00007f63d7c05188 EFLAGS: 00000246 ORIG_RAX: 0000000000000110
RAX: ffffffffffffffda RBX: 00007f63da792f80 RCX: 00007f63da68e739
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000040000000
RBP: 00007f63da6e8cc4 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 00007f63da792f80
R13: 00007fff50b75d3f R14: 00007f63d7c05300 R15: 0000000000022000
Showing all locks held in the system:
1 lock held by khungtaskd/27:
#0: ffffffff8b980020 (rcu_read_lock){....}-{1:2}, at: debug_show_all_locks+0x53/0x260 kernel/locking/lockdep.c:6446
2 locks held by kworker/u4:2/153:
#0: ffff888010c69138 ((wq_completion)events_unbound){+.+.}-{0:0}, at: arch_atomic64_set arch/x86/include/asm/atomic64_64.h:34 [inline]
#0: ffff888010c69138 ((wq_completion)events_unbound){+.+.}-{0:0}, at: arch_atomic_long_set include/linux/atomic/atomic-long.h:41 [inline]
#0: ffff888010c69138 ((wq_completion)events_unbound){+.+.}-{0:0}, at: atomic_long_set include/linux/atomic/atomic-instrumented.h:1198 [inline]
#0: ffff888010c69138 ((wq_completion)events_unbound){+.+.}-{0:0}, at: set_work_data kernel/workqueue.c:634 [inline]
#0: ffff888010c69138 ((wq_completion)events_unbound){+.+.}-{0:0}, at: set_work_pool_and_clear_pending kernel/workqueue.c:661 [inline]
#0: ffff888010c69138 ((wq_completion)events_unbound){+.+.}-{0:0}, at: process_one_work+0x896/0x1690 kernel/workqueue.c:2268
#1: ffffc9000140fdb0 ((kfence_timer).work){+.+.}-{0:0}, at: process_one_work+0x8ca/0x1690 kernel/workqueue.c:2272
1 lock held by systemd-udevd/2970:
1 lock held by in:imklog/6258:
#0: ffff88807f970ff0 (&f->f_pos_lock){+.+.}-{3:3}, at: __fdget_pos+0xe9/0x100 fs/file.c:990
3 locks held by kworker/1:6/8158:
1 lock held by syz-executor.0/8312:
2 locks held by kworker/u4:13/9320:
1 lock held by
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: Fix soft lockup during fsstress
Below traces are observed during fsstress and system got hung.
[ 130.698396] watchdog: BUG: soft lockup - CPU#6 stuck for 26s! |
| In the Linux kernel, the following vulnerability has been resolved:
net:sfc: fix non-freed irq in legacy irq mode
SFC driver can be configured via modparam to work using MSI-X, MSI or
legacy IRQ interrupts. In the last one, the interrupt was not properly
released on module remove.
It was not freed because the flag irqs_hooked was not set during
initialization in the case of using legacy IRQ.
Example of (trimmed) trace during module remove without this fix:
remove_proc_entry: removing non-empty directory 'irq/125', leaking at least '0000:3b:00.1'
WARNING: CPU: 39 PID: 3658 at fs/proc/generic.c:715 remove_proc_entry+0x15c/0x170
...trimmed...
Call Trace:
unregister_irq_proc+0xe3/0x100
free_desc+0x29/0x70
irq_free_descs+0x47/0x70
mp_unmap_irq+0x58/0x60
acpi_unregister_gsi_ioapic+0x2a/0x40
acpi_pci_irq_disable+0x78/0xb0
pci_disable_device+0xd1/0x100
efx_pci_remove+0xa1/0x1e0 [sfc]
pci_device_remove+0x38/0xa0
__device_release_driver+0x177/0x230
driver_detach+0xcb/0x110
bus_remove_driver+0x58/0xd0
pci_unregister_driver+0x2a/0xb0
efx_exit_module+0x24/0xf40 [sfc]
__do_sys_delete_module.constprop.0+0x171/0x280
? exit_to_user_mode_prepare+0x83/0x1d0
do_syscall_64+0x3d/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f9f9385800b
...trimmed... |
| In the Linux kernel, the following vulnerability has been resolved:
tty: tty_buffer: Fix the softlockup issue in flush_to_ldisc
When running ltp testcase(ltp/testcases/kernel/pty/pty04.c) with arm64, there is a soft lockup,
which look like this one:
Workqueue: events_unbound flush_to_ldisc
Call trace:
dump_backtrace+0x0/0x1ec
show_stack+0x24/0x30
dump_stack+0xd0/0x128
panic+0x15c/0x374
watchdog_timer_fn+0x2b8/0x304
__run_hrtimer+0x88/0x2c0
__hrtimer_run_queues+0xa4/0x120
hrtimer_interrupt+0xfc/0x270
arch_timer_handler_phys+0x40/0x50
handle_percpu_devid_irq+0x94/0x220
__handle_domain_irq+0x88/0xf0
gic_handle_irq+0x84/0xfc
el1_irq+0xc8/0x180
slip_unesc+0x80/0x214 [slip]
tty_ldisc_receive_buf+0x64/0x80
tty_port_default_receive_buf+0x50/0x90
flush_to_ldisc+0xbc/0x110
process_one_work+0x1d4/0x4b0
worker_thread+0x180/0x430
kthread+0x11c/0x120
In the testcase pty04, The first process call the write syscall to send
data to the pty master. At the same time, the workqueue will do the
flush_to_ldisc to pop data in a loop until there is no more data left.
When the sender and workqueue running in different core, the sender sends
data fastly in full time which will result in workqueue doing work in loop
for a long time and occuring softlockup in flush_to_ldisc with kernel
configured without preempt. So I add need_resched check and cond_resched
in the flush_to_ldisc loop to avoid it. |
| In processLaunchBrowser of CommandParamsFactory.java, there is a possible browser interaction from the lockscreen due to improper locking. This could lead to physical escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: ensure snd_nxt is properly initialized on connect
Christoph reported a splat hinting at a corrupted snd_una:
WARNING: CPU: 1 PID: 38 at net/mptcp/protocol.c:1005 __mptcp_clean_una+0x4b3/0x620 net/mptcp/protocol.c:1005
Modules linked in:
CPU: 1 PID: 38 Comm: kworker/1:1 Not tainted 6.9.0-rc1-gbbeac67456c9 #59
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2.el7 04/01/2014
Workqueue: events mptcp_worker
RIP: 0010:__mptcp_clean_una+0x4b3/0x620 net/mptcp/protocol.c:1005
Code: be 06 01 00 00 bf 06 01 00 00 e8 a8 12 e7 fe e9 00 fe ff ff e8
8e 1a e7 fe 0f b7 ab 3e 02 00 00 e9 d3 fd ff ff e8 7d 1a e7 fe
<0f> 0b 4c 8b bb e0 05 00 00 e9 74 fc ff ff e8 6a 1a e7 fe 0f 0b e9
RSP: 0018:ffffc9000013fd48 EFLAGS: 00010293
RAX: 0000000000000000 RBX: ffff8881029bd280 RCX: ffffffff82382fe4
RDX: ffff8881003cbd00 RSI: ffffffff823833c3 RDI: 0000000000000001
RBP: 0000000000000000 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000000 R11: fefefefefefefeff R12: ffff888138ba8000
R13: 0000000000000106 R14: ffff8881029bd908 R15: ffff888126560000
FS: 0000000000000000(0000) GS:ffff88813bd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f604a5dae38 CR3: 0000000101dac002 CR4: 0000000000170ef0
Call Trace:
<TASK>
__mptcp_clean_una_wakeup net/mptcp/protocol.c:1055 [inline]
mptcp_clean_una_wakeup net/mptcp/protocol.c:1062 [inline]
__mptcp_retrans+0x7f/0x7e0 net/mptcp/protocol.c:2615
mptcp_worker+0x434/0x740 net/mptcp/protocol.c:2767
process_one_work+0x1e0/0x560 kernel/workqueue.c:3254
process_scheduled_works kernel/workqueue.c:3335 [inline]
worker_thread+0x3c7/0x640 kernel/workqueue.c:3416
kthread+0x121/0x170 kernel/kthread.c:388
ret_from_fork+0x44/0x50 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:243
</TASK>
When fallback to TCP happens early on a client socket, snd_nxt
is not yet initialized and any incoming ack will copy such value
into snd_una. If the mptcp worker (dumbly) tries mptcp-level
re-injection after such ack, that would unconditionally trigger a send
buffer cleanup using 'bad' snd_una values.
We could easily disable re-injection for fallback sockets, but such
dumb behavior already helped catching a few subtle issues and a very
low to zero impact in practice.
Instead address the issue always initializing snd_nxt (and write_seq,
for consistency) at connect time. |
| In the Linux kernel, the following vulnerability has been resolved:
iio: imu: st_lsm6dsx: fix possible lockup in st_lsm6dsx_read_fifo
Prevent st_lsm6dsx_read_fifo from falling in an infinite loop in case
pattern_len is equal to zero and the device FIFO is not empty. |
| In the Linux kernel, the following vulnerability has been resolved:
iio: imu: st_lsm6dsx: fix possible lockup in st_lsm6dsx_read_tagged_fifo
Prevent st_lsm6dsx_read_tagged_fifo from falling in an infinite loop in
case pattern_len is equal to zero and the device FIFO is not empty. |
| In the Linux kernel, the following vulnerability has been resolved:
iio: light: opt3001: fix deadlock due to concurrent flag access
The threaded IRQ function in this driver is reading the flag twice: once to
lock a mutex and once to unlock it. Even though the code setting the flag
is designed to prevent it, there are subtle cases where the flag could be
true at the mutex_lock stage and false at the mutex_unlock stage. This
results in the mutex not being unlocked, resulting in a deadlock.
Fix it by making the opt3001_irq() code generally more robust, reading the
flag into a variable and using the variable value at both stages. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: typec: ucsi: displayport: Fix deadlock
This patch introduces the ucsi_con_mutex_lock / ucsi_con_mutex_unlock
functions to the UCSI driver. ucsi_con_mutex_lock ensures the connector
mutex is only locked if a connection is established and the partner pointer
is valid. This resolves a deadlock scenario where
ucsi_displayport_remove_partner holds con->mutex waiting for
dp_altmode_work to complete while dp_altmode_work attempts to acquire it. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: ipset: fix region locking in hash types
Region locking introduced in v5.6-rc4 contained three macros to handle
the region locks: ahash_bucket_start(), ahash_bucket_end() which gave
back the start and end hash bucket values belonging to a given region
lock and ahash_region() which should give back the region lock belonging
to a given hash bucket. The latter was incorrect which can lead to a
race condition between the garbage collector and adding new elements
when a hash type of set is defined with timeouts. |
| A local non-privileged user can make improper GPU memory processing operations. If the operations are carefully prepared, then they could be used to gain access to already freed memory.
|
| In the Linux kernel, the following vulnerability has been resolved:
Input: gpio-keys - fix a sleep while atomic with PREEMPT_RT
When enabling PREEMPT_RT, the gpio_keys_irq_timer() callback runs in
hard irq context, but the input_event() takes a spin_lock, which isn't
allowed there as it is converted to a rt_spin_lock().
[ 4054.289999] BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48
[ 4054.290028] in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 0, name: swapper/0
...
[ 4054.290195] __might_resched+0x13c/0x1f4
[ 4054.290209] rt_spin_lock+0x54/0x11c
[ 4054.290219] input_event+0x48/0x80
[ 4054.290230] gpio_keys_irq_timer+0x4c/0x78
[ 4054.290243] __hrtimer_run_queues+0x1a4/0x438
[ 4054.290257] hrtimer_interrupt+0xe4/0x240
[ 4054.290269] arch_timer_handler_phys+0x2c/0x44
[ 4054.290283] handle_percpu_devid_irq+0x8c/0x14c
[ 4054.290297] handle_irq_desc+0x40/0x58
[ 4054.290307] generic_handle_domain_irq+0x1c/0x28
[ 4054.290316] gic_handle_irq+0x44/0xcc
Considering the gpio_keys_irq_isr() can run in any context, e.g. it can
be threaded, it seems there's no point in requesting the timer isr to
run in hard irq context.
Relax the hrtimer not to use the hard context. |
| In the Linux kernel, the following vulnerability has been resolved:
net: cadence: macb: Fix a possible deadlock in macb_halt_tx.
There is a situation where after THALT is set high, TGO stays high as
well. Because jiffies are never updated, as we are in a context with
interrupts disabled, we never exit that loop and have a deadlock.
That deadlock was noticed on a sama5d4 device that stayed locked for days.
Use retries instead of jiffies so that the timeout really works and we do
not have a deadlock anymore. |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: correct handling of extreme memory squeeze
Testing with iperf3 using the "pasta" protocol splicer has revealed
a problem in the way tcp handles window advertising in extreme memory
squeeze situations.
Under memory pressure, a socket endpoint may temporarily advertise
a zero-sized window, but this is not stored as part of the socket data.
The reasoning behind this is that it is considered a temporary setting
which shouldn't influence any further calculations.
However, if we happen to stall at an unfortunate value of the current
window size, the algorithm selecting a new value will consistently fail
to advertise a non-zero window once we have freed up enough memory.
This means that this side's notion of the current window size is
different from the one last advertised to the peer, causing the latter
to not send any data to resolve the sitution.
The problem occurs on the iperf3 server side, and the socket in question
is a completely regular socket with the default settings for the
fedora40 kernel. We do not use SO_PEEK or SO_RCVBUF on the socket.
The following excerpt of a logging session, with own comments added,
shows more in detail what is happening:
// tcp_v4_rcv(->)
// tcp_rcv_established(->)
[5201<->39222]: ==== Activating log @ net/ipv4/tcp_input.c/tcp_data_queue()/5257 ====
[5201<->39222]: tcp_data_queue(->)
[5201<->39222]: DROPPING skb [265600160..265665640], reason: SKB_DROP_REASON_PROTO_MEM
[rcv_nxt 265600160, rcv_wnd 262144, snt_ack 265469200, win_now 131184]
[copied_seq 259909392->260034360 (124968), unread 5565800, qlen 85, ofoq 0]
[OFO queue: gap: 65480, len: 0]
[5201<->39222]: tcp_data_queue(<-)
[5201<->39222]: __tcp_transmit_skb(->)
[tp->rcv_wup: 265469200, tp->rcv_wnd: 262144, tp->rcv_nxt 265600160]
[5201<->39222]: tcp_select_window(->)
[5201<->39222]: (inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM) ? --> TRUE
[tp->rcv_wup: 265469200, tp->rcv_wnd: 262144, tp->rcv_nxt 265600160]
returning 0
[5201<->39222]: tcp_select_window(<-)
[5201<->39222]: ADVERTISING WIN 0, ACK_SEQ: 265600160
[5201<->39222]: [__tcp_transmit_skb(<-)
[5201<->39222]: tcp_rcv_established(<-)
[5201<->39222]: tcp_v4_rcv(<-)
// Receive queue is at 85 buffers and we are out of memory.
// We drop the incoming buffer, although it is in sequence, and decide
// to send an advertisement with a window of zero.
// We don't update tp->rcv_wnd and tp->rcv_wup accordingly, which means
// we unconditionally shrink the window.
[5201<->39222]: tcp_recvmsg_locked(->)
[5201<->39222]: __tcp_cleanup_rbuf(->) tp->rcv_wup: 265469200, tp->rcv_wnd: 262144, tp->rcv_nxt 265600160
[5201<->39222]: [new_win = 0, win_now = 131184, 2 * win_now = 262368]
[5201<->39222]: [new_win >= (2 * win_now) ? --> time_to_ack = 0]
[5201<->39222]: NOT calling tcp_send_ack()
[tp->rcv_wup: 265469200, tp->rcv_wnd: 262144, tp->rcv_nxt 265600160]
[5201<->39222]: __tcp_cleanup_rbuf(<-)
[rcv_nxt 265600160, rcv_wnd 262144, snt_ack 265469200, win_now 131184]
[copied_seq 260040464->260040464 (0), unread 5559696, qlen 85, ofoq 0]
returning 6104 bytes
[5201<->39222]: tcp_recvmsg_locked(<-)
// After each read, the algorithm for calculating the new receive
// window in __tcp_cleanup_rbuf() finds it is too small to advertise
// or to update tp->rcv_wnd.
// Meanwhile, the peer thinks the window is zero, and will not send
// any more data to trigger an update from the interrupt mode side.
[5201<->39222]: tcp_recvmsg_locked(->)
[5201<->39222]: __tcp_cleanup_rbuf(->) tp->rcv_wup: 265469200, tp->rcv_wnd: 262144, tp->rcv_nxt 265600160
[5201<->39222]: [new_win = 262144, win_now = 131184, 2 * win_n
---truncated--- |