CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
An Out-of-bounds Write in RT-Labs P-Net version 1.0.1 or earlier allows an attacker to induce a crash in IO devices that use the library by sending a malicious RPC packet. |
An Out-of-bounds Write in RT-Labs P-Net version 1.0.1 or earlier allows an attacker to corrupt the memory of IO devices that use the library by sending a malicious RPC packet. |
An Out-of-bounds Write in RT-Labs P-Net version 1.0.1 or earlier allows an attacker to corrupt the memory of IO devices that use the library by sending a malicious RPC packet. |
An Out-of-bounds Write in RT-Labs P-Net version 1.0.1 or earlier allows an attacker to induce a crash in IO devices that use the library by sending a malicious RPC packet. |
An Heap-based Buffer Overflow in RT-Labs P-Net version 1.0.1 or earlier allows an attacker to corrupt the memory of IO devices that use the library by sending a malicious RPC packet. |
An Heap-based Buffer Overflow in RT-Labs P-Net version 1.0.1 or earlier allows an attacker to induce a crash in IO devices that use the library by sending a malicious RPC packet. |
An Heap-based Buffer Overflow in RT-Labs P-Net version 1.0.1 or earlier allows an attacker to induce a crash in IO devices that use the library by sending a malicious RPC packet. |
An Heap-based Buffer Overflow in RT-Labs P-Net version 1.0.1 or earlier allows an attacker to induce a crash in IO devices that use the library by sending a malicious RPC packet. |
XPDF v4.04 was discovered to contain a stack overflow via the function FileStream::copy() at xpdf/Stream.cc:795. |
Tenda AC1200 Router Model W15Ev2 V15.11.0.10(1576) was discovered to contain a stack overflow via the setWanPpoe function. This vulnerability allows attackers to cause a Denial of Service (DoS) via crafted overflow data. |
Tenda AC10 V15.03.06.23 contains a Stack overflow vulnerability via /goform/formSetSpeedWan. |
Tenda AC10 V15.03.06.23 contains a Stack overflow vulnerability via /goform/formSetDeviceName. |
D-Link DIR-X3260 Prog.cgi Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DIR-X3260 routers. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the prog.cgi binary, which handles HNAP requests made to the lighttpd webserver. The issue results from the lack of proper validation of the length an user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-20774. |
D-Link DIR-X3260 Prog.cgi Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DIR-X3260 routers. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the prog.cgi binary, which handles HNAP requests made to the lighttpd webserver. The issue results from the lack of proper validation of the length an user-supplied data prior to copying it to a fixed-length heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-20727. |
D-Link DAP-2622 DDP Set IPv6 Address Primary DNS Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-2622 routers. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the DDP service. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root.
. Was ZDI-CAN-20095. |
D-Link DAP-2622 DDP Set IPv6 Address Secondary DNS Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-2622 routers. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the DDP service. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root.
. Was ZDI-CAN-20096. |
D-Link DAP-2622 DDP Set IPv6 Address Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-2622 routers. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the DDP service. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root.
. Was ZDI-CAN-20097. |
D-Link DAP-2622 DDP Set SSID List SSID Name Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-2622 routers. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the DDP service. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root.
. Was ZDI-CAN-20098. |
D-Link DAP-2622 DDP Set SSID List RADIUS Secret Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-2622 routers. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the DDP service. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root.
. Was ZDI-CAN-20099. |
D-Link DAP-2622 DDP Set SSID List RADIUS Server Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-2622 routers. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the DDP service. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root.
. Was ZDI-CAN-20100. |