CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
mm/damon/reclaim: avoid divide-by-zero in damon_reclaim_apply_parameters()
When creating a new scheme of DAMON_RECLAIM, the calculation of
'min_age_region' uses 'aggr_interval' as the divisor, which may lead to
division-by-zero errors. Fix it by directly returning -EINVAL when such a
case occurs. |
In the Linux kernel, the following vulnerability has been resolved:
tcp_bpf: Call sk_msg_free() when tcp_bpf_send_verdict() fails to allocate psock->cork.
syzbot reported the splat below. [0]
The repro does the following:
1. Load a sk_msg prog that calls bpf_msg_cork_bytes(msg, cork_bytes)
2. Attach the prog to a SOCKMAP
3. Add a socket to the SOCKMAP
4. Activate fault injection
5. Send data less than cork_bytes
At 5., the data is carried over to the next sendmsg() as it is
smaller than the cork_bytes specified by bpf_msg_cork_bytes().
Then, tcp_bpf_send_verdict() tries to allocate psock->cork to hold
the data, but this fails silently due to fault injection + __GFP_NOWARN.
If the allocation fails, we need to revert the sk->sk_forward_alloc
change done by sk_msg_alloc().
Let's call sk_msg_free() when tcp_bpf_send_verdict fails to allocate
psock->cork.
The "*copied" also needs to be updated such that a proper error can
be returned to the caller, sendmsg. It fails to allocate psock->cork.
Nothing has been corked so far, so this patch simply sets "*copied"
to 0.
[0]:
WARNING: net/ipv4/af_inet.c:156 at inet_sock_destruct+0x623/0x730 net/ipv4/af_inet.c:156, CPU#1: syz-executor/5983
Modules linked in:
CPU: 1 UID: 0 PID: 5983 Comm: syz-executor Not tainted syzkaller #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/12/2025
RIP: 0010:inet_sock_destruct+0x623/0x730 net/ipv4/af_inet.c:156
Code: 0f 0b 90 e9 62 fe ff ff e8 7a db b5 f7 90 0f 0b 90 e9 95 fe ff ff e8 6c db b5 f7 90 0f 0b 90 e9 bb fe ff ff e8 5e db b5 f7 90 <0f> 0b 90 e9 e1 fe ff ff 89 f9 80 e1 07 80 c1 03 38 c1 0f 8c 9f fc
RSP: 0018:ffffc90000a08b48 EFLAGS: 00010246
RAX: ffffffff8a09d0b2 RBX: dffffc0000000000 RCX: ffff888024a23c80
RDX: 0000000000000100 RSI: 0000000000000fff RDI: 0000000000000000
RBP: 0000000000000fff R08: ffff88807e07c627 R09: 1ffff1100fc0f8c4
R10: dffffc0000000000 R11: ffffed100fc0f8c5 R12: ffff88807e07c380
R13: dffffc0000000000 R14: ffff88807e07c60c R15: 1ffff1100fc0f872
FS: 00005555604c4500(0000) GS:ffff888125af1000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005555604df5c8 CR3: 0000000032b06000 CR4: 00000000003526f0
Call Trace:
<IRQ>
__sk_destruct+0x86/0x660 net/core/sock.c:2339
rcu_do_batch kernel/rcu/tree.c:2605 [inline]
rcu_core+0xca8/0x1770 kernel/rcu/tree.c:2861
handle_softirqs+0x286/0x870 kernel/softirq.c:579
__do_softirq kernel/softirq.c:613 [inline]
invoke_softirq kernel/softirq.c:453 [inline]
__irq_exit_rcu+0xca/0x1f0 kernel/softirq.c:680
irq_exit_rcu+0x9/0x30 kernel/softirq.c:696
instr_sysvec_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1052 [inline]
sysvec_apic_timer_interrupt+0xa6/0xc0 arch/x86/kernel/apic/apic.c:1052
</IRQ> |
Stored cross-site scripting (XSS) vulnerabilities in Web Content translation in Liferay Portal 7.4.0 through 7.4.3.112, and older unsupported versions, and Liferay DXP 2023.Q4.0 through 2023.Q4.8, 2023.Q3.1 through 2023.Q3.10, 7.4 GA through update 92, and older unsupported versions allow remote attackers to inject arbitrary web script or HTML via any rich text field in a web content article. |
SourceCodester Web-based Pharmacy Product Management System V1.0 is vulnerable to Cross Site Scripting (XSS) in Category Management via the category name field. |
A URL validation bypass vulnerability exists in validator.js through version 13.15.15. The isURL() function uses '://' as a delimiter to parse protocols, while browsers use ':' as the delimiter. This parsing difference allows attackers to bypass protocol and domain validation by crafting URLs leading to XSS and Open Redirect attacks. |
An issue was discovered in Chipsalliance Rocket-Chip commit f517abbf41abb65cea37421d3559f9739efd00a9 (2025-01-29) allowing attackers to corrupt exception handling and privilege state transitions via a flawed interaction between exception handling and MRET return mechanisms in the CSR logic when an exception is triggered during MRET execution. The Control and Status Register (CSR) logic has a flawed interaction between exception handling and exception return (MRET) mechanisms which can cause faulty trap behavior. When the MRET instruction is executed in machine mode without being in an exception state, an Instruction Access Fault may be triggered. This results in both the exception handling logic and the exception return logic activating simultaneously, leading to conflicting updates to the control and status registers. |
Dify v1.6.0 was discovered to contain a Server-Side Request Forgery (SSRF) via the component controllers.console.remote_files.RemoteFileUploadApi. A different vulnerability than CVE-2025-29720. |
TitanSystems Zender v3.9.7 contains an account takeover vulnerability in its password reset functionality. A temporary password or reset token issued to one user can be used to log in as another user, due to improper validation of token-user linkage. This allows remote attackers to gain unauthorized access to any user account by exploiting the password reset mechanism. The vulnerability occurs because the reset token is not correctly bound to the requesting account and is accepted for other user emails during login, enabling privilege escalation and information disclosure. |
There is a memory corruption vulnerability due to an out of bounds read in DefaultFontOptions() when using SymbolEditor in NI Circuit Design Suite. This vulnerability may result in information disclosure or arbitrary code execution. Successful exploitation requires an attacker to get a user to open a specially crafted .sym file. This vulnerability affects NI Circuit Design Suite 14.3.1 and prior versions. |
Local privilege escalation due to insecure XPC service configuration. The following products are affected: Acronis True Image (macOS) before build 42389, Acronis True Image for SanDisk (macOS) before build 42198, Acronis True Image for Western Digital (macOS) before build 42197. |
The ZoloBlocks plugin for WordPress is vulnerable to Stored Cross-Site Scripting via multiple Gutenberg blocks in versions up to, and including, 2.3.10. This is due to insufficient input sanitization and output escaping on user-supplied attributes within multiple block components including Google Maps markers, Lightbox captions, Image Gallery data attributes, Progress Pie prefix/suffix fields, and Text Path URL fields. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
Issue summary: An application using the OpenSSL HTTP client API functions may
trigger an out-of-bounds read if the 'no_proxy' environment variable is set and
the host portion of the authority component of the HTTP URL is an IPv6 address.
Impact summary: An out-of-bounds read can trigger a crash which leads to
Denial of Service for an application.
The OpenSSL HTTP client API functions can be used directly by applications
but they are also used by the OCSP client functions and CMP (Certificate
Management Protocol) client implementation in OpenSSL. However the URLs used
by these implementations are unlikely to be controlled by an attacker.
In this vulnerable code the out of bounds read can only trigger a crash.
Furthermore the vulnerability requires an attacker-controlled URL to be
passed from an application to the OpenSSL function and the user has to have
a 'no_proxy' environment variable set. For the aforementioned reasons the
issue was assessed as Low severity.
The vulnerable code was introduced in the following patch releases:
3.0.16, 3.1.8, 3.2.4, 3.3.3, 3.4.0 and 3.5.0.
The FIPS modules in 3.5, 3.4, 3.3, 3.2, 3.1 and 3.0 are not affected by this
issue, as the HTTP client implementation is outside the OpenSSL FIPS module
boundary. |
NVIDIA Delegated Licensing Service for all appliance platforms contains a SQL injection vulnerability where an User/Attacker may cause an authorized action. A successful exploit of this vulnerability may lead to partial denial of service (UI component). |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: Fix UBSAN shift-out-of-bounds warning
If get_num_sdma_queues or get_num_xgmi_sdma_queues is 0, we end up
doing a shift operation where the number of bits shifted equals
number of bits in the operand. This behaviour is undefined.
Set num_sdma_queues or num_xgmi_sdma_queues to ULLONG_MAX, if the
count is >= number of bits in the operand.
Bug: https://gitlab.freedesktop.org/drm/amd/-/issues/1472 |
In the Linux kernel, the following vulnerability has been resolved:
rpmsg: char: Avoid double destroy of default endpoint
The rpmsg_dev_remove() in rpmsg_core is the place for releasing
this default endpoint.
So need to avoid destroying the default endpoint in
rpmsg_chrdev_eptdev_destroy(), this should be the same as
rpmsg_eptdev_release(). Otherwise there will be double destroy
issue that ept->refcount report warning:
refcount_t: underflow; use-after-free.
Call trace:
refcount_warn_saturate+0xf8/0x150
virtio_rpmsg_destroy_ept+0xd4/0xec
rpmsg_dev_remove+0x60/0x70
The issue can be reproduced by stopping remoteproc before
closing the /dev/rpmsgX. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: libsas: Fix use-after-free bug in smp_execute_task_sg()
When executing SMP task failed, the smp_execute_task_sg() calls del_timer()
to delete "slow_task->timer". However, if the timer handler
sas_task_internal_timedout() is running, the del_timer() in
smp_execute_task_sg() will not stop it and a UAF will happen. The process
is shown below:
(thread 1) | (thread 2)
smp_execute_task_sg() | sas_task_internal_timedout()
... |
del_timer() |
... | ...
sas_free_task(task) |
kfree(task->slow_task) //FREE|
| task->slow_task->... //USE
Fix by calling del_timer_sync() in smp_execute_task_sg(), which makes sure
the timer handler have finished before the "task->slow_task" is
deallocated. |
In the Linux kernel, the following vulnerability has been resolved:
ACPICA: Fix use-after-free in acpi_ut_copy_ipackage_to_ipackage()
There is an use-after-free reported by KASAN:
BUG: KASAN: use-after-free in acpi_ut_remove_reference+0x3b/0x82
Read of size 1 at addr ffff888112afc460 by task modprobe/2111
CPU: 0 PID: 2111 Comm: modprobe Not tainted 6.1.0-rc7-dirty
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996),
Call Trace:
<TASK>
kasan_report+0xae/0xe0
acpi_ut_remove_reference+0x3b/0x82
acpi_ut_copy_iobject_to_iobject+0x3be/0x3d5
acpi_ds_store_object_to_local+0x15d/0x3a0
acpi_ex_store+0x78d/0x7fd
acpi_ex_opcode_1A_1T_1R+0xbe4/0xf9b
acpi_ps_parse_aml+0x217/0x8d5
...
</TASK>
The root cause of the problem is that the acpi_operand_object
is freed when acpi_ut_walk_package_tree() fails in
acpi_ut_copy_ipackage_to_ipackage(), lead to repeated release in
acpi_ut_copy_iobject_to_iobject(). The problem was introduced
by "8aa5e56eeb61" commit, this commit is to fix memory leak in
acpi_ut_copy_iobject_to_iobject(), repeatedly adding remove
operation, lead to "acpi_operand_object" used after free.
Fix it by removing acpi_ut_remove_reference() in
acpi_ut_copy_ipackage_to_ipackage(). acpi_ut_copy_ipackage_to_ipackage()
is called to copy an internal package object into another internal
package object, when it fails, the memory of acpi_operand_object
should be freed by the caller. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7921: resource leaks at mt7921_check_offload_capability()
Fixed coverity issue with resource leaks at variable "fw" going out of
scope leaks the storage it points to mt7921_check_offload_capability().
Addresses-Coverity-ID: 1527806 ("Resource leaks") |
In the Linux kernel, the following vulnerability has been resolved:
x86/fpu: Fix copy_xstate_to_uabi() to copy init states correctly
When an extended state component is not present in fpstate, but in init
state, the function copies from init_fpstate via copy_feature().
But, dynamic states are not present in init_fpstate because of all-zeros
init states. Then retrieving them from init_fpstate will explode like this:
BUG: kernel NULL pointer dereference, address: 0000000000000000
...
RIP: 0010:memcpy_erms+0x6/0x10
? __copy_xstate_to_uabi_buf+0x381/0x870
fpu_copy_guest_fpstate_to_uabi+0x28/0x80
kvm_arch_vcpu_ioctl+0x14c/0x1460 [kvm]
? __this_cpu_preempt_check+0x13/0x20
? vmx_vcpu_put+0x2e/0x260 [kvm_intel]
kvm_vcpu_ioctl+0xea/0x6b0 [kvm]
? kvm_vcpu_ioctl+0xea/0x6b0 [kvm]
? __fget_light+0xd4/0x130
__x64_sys_ioctl+0xe3/0x910
? debug_smp_processor_id+0x17/0x20
? fpregs_assert_state_consistent+0x27/0x50
do_syscall_64+0x3f/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Adjust the 'mask' to zero out the userspace buffer for the features that
are not available both from fpstate and from init_fpstate.
The dynamic features depend on the compacted XSAVE format. Ensure it is
enabled before reading XCOMP_BV in init_fpstate. |
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix off-by-one errors in fast-commit block filling
Due to several different off-by-one errors, or perhaps due to a late
change in design that wasn't fully reflected in the code that was
actually merged, there are several very strange constraints on how
fast-commit blocks are filled with tlv entries:
- tlvs must start at least 10 bytes before the end of the block, even
though the minimum tlv length is 8. Otherwise, the replay code will
ignore them. (BUG: ext4_fc_reserve_space() could violate this
requirement if called with a len of blocksize - 9 or blocksize - 8.
Fortunately, this doesn't seem to happen currently.)
- tlvs must end at least 1 byte before the end of the block. Otherwise
the replay code will consider them to be invalid. This quirk
contributed to a bug (fixed by an earlier commit) where uninitialized
memory was being leaked to disk in the last byte of blocks.
Also, strangely these constraints don't apply to the replay code in
e2fsprogs, which will accept any tlvs in the blocks (with no bounds
checks at all, but that is a separate issue...).
Given that this all seems to be a bug, let's fix it by just filling
blocks with tlv entries in the natural way.
Note that old kernels will be unable to replay fast-commit journals
created by kernels that have this commit. |